
Addison-Wesley Publishing Company

Reading, Massachusetts Menlo Park, California New York

Don Mills, Ontario Wokingham, England Amsterdam Bonn

Sydney Singapore Tokyo Madrid San Juan

Paris Seoul Milan Mexico City Taipei

I N S I D E M A C I N T O S H

Devices

Apple Computer, Inc.

© 1994 Apple Computer, Inc.
All rights reserved.

No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form or
by any means, mechanical, electronic,
photocopying, recording, or otherwise,
without prior written permission of
Apple Computer, Inc. Printed in the
United States of America.

No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application
developers to develop applications only
for Apple Macintosh computers.

Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
printing or clerical errors.

Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, APDA,
AppleLink, AppleTalk, A/UX,
EtherTalk, LaserWriter, Macintosh,
MPW, PowerBook, ProDOS, and
TokenTalk are trademarks of Apple
Computer, Inc., registered in the United
States and other countries.

Apple Desktop Bus, Finder, Macintosh
Quadra, PowerBook Duo, Power
Macintosh, and QuickDraw, are
trademarks of Apple Computer, Inc.

Adobe Illustrator, Adobe Photoshop,
and PostScript are trademarks of Adobe
Systems Incorporated, which may be
registered in certain jurisdictions.

America Online is a registered service
mark of America Online, Inc.

CompuServe is a registered service
mark of CompuServe, Inc.

FrameMaker is a registered trademark
of Frame Technology Corporation.

Helvetica and Palatino are registered
trademarks of Linotype Company.

Internet is a trademark of Digital
Equipment Corporation.

ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.

Motorola is a registered trademark of
Motorola Corporation.

NuBus is a trademark of Texas
Instruments.

Optrotech is a trademark of Orbotech
Corporation.

UNIX is a trademark of UNIX System
Laboratories, Inc.

Simultaneously published in the United
States and Canada.

LIMITED WARRANTY ON MEDIA AND
REPLACEMENT

ALL IMPLIED WARRANTIES ON THIS
MANUAL, INCLUDING IMPLIED
WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN DURATION
TO NINETY (90) DAYS FROM THE DATE
OF THE ORIGINAL RETAIL PURCHASE
OF THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO WARRANTY
OR REPRESENTATION, EITHER EXPRESS
OR IMPLIED, WITH RESPECT TO THIS
MANUAL, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT,
THIS MANUAL IS SOLD “AS IS,” AND
YOU, THE PURCHASER, ARE ASSUMING
THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the possibility
of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND IN
LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or liability
for incidental or consequential damages, so
the above limitation or exclusion may not
apply to you. This warranty gives you
specific legal rights, and you may also have
other rights which vary from state to state.

ISBN 0-201-62271-8
1 2 3 4 5 6 7 8 9-CRW-9897969594
First Printing, July 1994

Library of Congress Cataloging-in-Publication Data

Inside Macintosh / [Apple Computer, Inc.].
p. cm.

Includes index.
ISBN 0-201-62271-8
1. Macintosh (Computer) 2. Device drivers (Computer programs)

I. Apple Computer, Inc.
QA76.8.M3I43 1994
005.7’ 1265—dc20 94-18426

CIP

iii

Contents

Figures, Tables, and Listings xiii

Preface About This Book xvii

Format of a Typical Chapter xvii

Conventions Used in This Book xviii

Special Fonts xviii

Types of Notes xviii

Assembly-Language Information xviii

Development Environment xix

For More Information xx

Chapter 1 Device Manager 1-1

Introduction to Devices and Drivers 1-3

About the Device Manager 1-5

The Device Control Entry 1-6

The Unit Table 1-8

The Driver I/O Queue 1-10

Driver Routines 1-12

Driver Resources 1-12

Using the Device Manager 1-14

Opening and Closing Device Drivers 1-18

Communicating With Device Drivers 1-20

Controlling and Monitoring Device Drivers 1-22

Writing a Device Driver 1-24

Creating a Driver Resource 1-24

Responding to the Device Manager 1-28

Entering and Exiting From Driver Routines 1-29

Writing Open and Close Routines 1-31

Writing a Prime Routine 1-33

Writing Control and Status Routines 1-34

Handling Asynchronous I/O 1-37

Installing a Device Driver 1-38

Writing a Chooser-Compatible Device Driver 1-40

How the Chooser Works 1-40

Creating a Chooser Extension File 1-43

Creating a Device Package 1-45

Responding to the Chooser 1-46

Allocating Private Storage 1-48

iv

Writing a Desk Accessory 1-49

How Desk Accessories Work 1-49

Creating a Driver Resource for a Desk Accessory 1-50

Opening and Closing a Desk Accessory 1-51

Responding to Events 1-51

Device Manager Reference 1-53

Data Structures 1-53

Device Manager Parameter Block 1-53

Device Control Entry 1-56

Device Manager Functions 1-58

Opening and Closing Device Drivers 1-59

Communicating With Device Drivers 1-69

Controlling and Monitoring Device Drivers 1-75

Writing and Installing Device Drivers 1-82

Resources 1-89

The Driver Resource 1-89

Summary of the Device Manager 1-91

C Summary 1-91

Constants 1-91

Data Types 1-92

Functions 1-94

Pascal Summary 1-95

Constants 1-95

Data Types 1-97

Routines 1-98

Assembly-Language Summary 1-99

Data Structures 1-99

Trap Macros 1-100

Result Codes 1-101

Chapter 2 Slot Manager 2-1

Introduction to Slots and Cards 2-3

Slot Address Allocations 2-5

Firmware 2-7

The sResource 2-7

Type and Name Entries 2-9

The Board sResource and Functional sResources 2-11

The sResource Directory 2-12

The Format Block 2-13

About the Slot Manager 2-15

Using the Slot Manager 2-16

Enabling and Disabling NuBus Cards 2-17

Deleting and Restoring sResources 2-17

Enabling and Disabling sResources 2-18

Searching for sResources 2-19

v

Obtaining Information From sResources 2-20

Installing and Removing Slot Interrupt Handlers 2-22

Slot Manager Reference 2-22

Data Structures 2-22

Slot Manager Parameter Block 2-23

Slot Information Record 2-24

Format Header Record 2-26

Slot Parameter RAM Record 2-27

Slot Execution Parameter Block 2-27

Slot Interrupt Queue Element 2-28

Slot Manager Routines 2-29

Determining the Version of the Slot Manager 2-30

Finding sResources 2-31

Getting Information From sResources 2-40

Enabling, Disabling, Deleting, and Restoring sResources 2-51

Loading Drivers and Executing Code From sResources 2-58

Getting Information About Expansion Cards and Declaration

ROMs 2-61

Accessing Expansion Card Parameter RAM 2-67

Managing the Slot Interrupt Queue 2-70

Low-Level Routines 2-72

Summary of the Slot Manager 2-87

Pascal Summary 2-87

Constants 2-87

Data Types 2-87

Slot Manager Routines 2-90

Low-Level Routines 2-91

C Summary 2-92

Constants 2-92

Data Types 2-92

Slot Manager Functions 2-94

Low-Level Functions 2-96

Assembly-Language Summary 2-97

Data Structures 2-97

Trap Macros 2-99

Result Codes 2-100

Chapter 3 SCSI Manager 3-1

Introduction to SCSI Concepts 3-3

SCSI Bus Signals 3-4

SCSI Bus Phases 3-5

SCSI Commands 3-7

SCSI Messages 3-7

SCSI Handshaking 3-7

vi

About the SCSI Manager 3-8

Conformance With the SCSI Specification 3-9

Overview of SCSI Manager Data Structures 3-10

The Structure of Block Devices 3-12

The Driver Descriptor Record 3-12

The Partition Map 3-13

Using the SCSI Manager 3-15

Reading Data From a SCSI Device 3-15

Using CDB and TIB Structures 3-17

Using the SCSIComplete Function 3-21

Choosing Polled or Blind Transfers 3-22

SCSI Manager Reference 3-23

Data Structures 3-23

Driver Descriptor Record 3-23

Partition Map Entry Record 3-25

SCSI Manager TIB Instructions 3-27

SCSI Manager Routines 3-31

Summary of the SCSI Manager 3-43

Pascal Summary 3-43

Constants 3-43

Data Types 3-43

Routines 3-44

C Summary 3-45

Constants 3-45

Data Types 3-45

Functions 3-46

Assembly-Language Summary 3-47

Data Structures 3-47

Trap Macros 3-48

Result Codes 3-48

Chapter 4 SCSI Manager 4.3 4-1

About SCSI Manager 4.3 4-3

Transport 4-5

SCSI Interface Modules 4-6

System Performance 4-6

Compatibility 4-6

Using SCSI Manager 4.3 4-7

Locating SCSI Devices 4-8

Describing Data Buffers 4-9

Handshaking Instructions 4-9

Error Recovery Techniques 4-10

Optional Features 4-10

Writing a SCSI Device Driver 4-11

Loading and Initializing a Driver 4-11

vii

Selecting a Startup Device 4-12

Transitions Between SCSI Environments 4-12

Handling Asynchronous Requests 4-13

Handling Immediate Requests 4-13

Virtual Memory Compatibility 4-14

Writing a SCSI Interface Module 4-15

SIM Initialization and Operation 4-15

Supporting the Original SCSI Manager 4-16

Handshaking of Blind Transfers 4-18

Supporting DMA 4-18

Loading Drivers 4-18

SCSI Manager 4.3 Reference 4-19

Data Structures 4-19

Simple Data Types 4-19

Device Identification Record 4-19

Command Descriptor Block Record 4-20

Scatter/Gather List Element 4-20

SCSI Manager Parameter Block Header 4-21

SCSI I/O Parameter Block 4-23

SCSI Bus Inquiry Parameter Block 4-28

SCSI Abort Command Parameter Block 4-33

SCSI Terminate I/O Parameter Block 4-33

SCSI Virtual ID Information Parameter Block 4-34

SCSI Load Driver Parameter Block 4-34

SCSI Driver Identification Parameter Block 4-35

SIM Initialization Record 4-36

SCSI Manager 4.3 Functions 4-37

Client Functions 4-37

SIM Support Functions 4-54

SIM Internal Functions 4-60

Summary of SCSI Manager 4.3 4-65

C Summary 4-65

Constants 4-65

Data Types 4-70

Functions 4-75

Pascal Summary 4-75

Constants 4-75

Data Types 4-79

Routines 4-85

Assembly-Language Summary 4-86

Data Structures 4-86

Trap Macros 4-89

Result Codes 4-90

viii

Chapter 5 ADB Manager 5-1

About the Apple Desktop Bus 5-3

Characteristics of ADB Devices 5-3

About the ADB Manager 5-5

ADB Commands 5-7

ADB Transactions 5-9

ADB Device Registers 5-9

Register 0 5-10

Register 3 5-10

Default ADB Device Address and Device Handler Identification 5-11

ADB Device Table 5-13

Address Resolution 5-15

ADB Communication 5-17

Using the ADB Manager 5-22

Checking for the ADB Manager 5-22

Getting Information About ADB Devices 5-22

Communicating With ADB Devices 5-24

Writing an ADB Device Handler 5-29

Installing an ADB Device Handler 5-30

Creating an ADB Device Handler 5-36

ADB Manager Reference 5-37

Data Structures 5-37

ADB Data Block 5-37

ADB Information Block 5-38

ADB Operation Block 5-38

ADB Manager Routines 5-39

Initializing the ADB Manager 5-39

Communicating Through the ADB 5-40

Getting ADB Device Information 5-42

Setting ADB Device Information 5-44

Application-Defined Routines 5-45

ADB Device Handlers 5-45

ADB Command Completion Routines 5-47

Summary of the ADB Manager 5-48

Pascal Summary 5-48

Data Types 5-48
ADB Manager Routines 5-48
Application-Defined Routines 5-49

C Summary 5-49
Data Types 5-49
ADB Manager Functions 5-50
Application-Defined Functions 5-50

Assembly-Language Summary 5-51
Data Structures 5-51
Trap Macros 5-51
Global Variables 5-51

Result Codes 5-51

ix

Chapter 6 Power Manager 6-1

About the Power Manager 6-4

The Power-Saver State 6-6

The Idle State 6-7

The Sleep State 6-8

The Sleep Queue 6-9

Sleep Requests 6-10

Sleep Demands 6-10

Wakeup Demands 6-11

Sleep-Request Revocations 6-12

Power Manager Dispatch 6-12

Using the Power Manager 6-13

Determining Whether the Power Manager Is Present 6-14

Determining Whether the Power Manager Dispatch Routines are

Present 6-14

Enabling or Disabling the Idle State 6-15

Setting, Disabling, and Reading the Wakeup Timer 6-16

Installing a Sleep Procedure 6-18

Using Application Global Variables in Sleep Procedures 6-19

Writing a Sleep Procedure 6-20

Switching Serial Power On and Off 6-25

Monitoring the Battery and Battery Charger 6-26

Power Manager Reference 6-26

Data Structures 6-26

Sleep Queue Record 6-26

Hard Disk Queue Structure 6-27

Wakeup Time Structure 6-27

Battery Information Structure 6-27

Battery Time Structure 6-28

Power Manager Routines 6-28

Controlling the Idle State 6-28

Controlling and Reading the Wakeup Timer 6-31

Controlling the Sleep Queue 6-33

Controlling Serial Power 6-34

Reading the Status of the Internal Modem 6-36

Reading the Status of the Battery and the Battery Charger 6-38

Power Manager Dispatch Routines 6-40

Determining the Power Manager Features Available 6-40

Controlling the Sleep and Wakeup Timers 6-42

Controlling the Dimming Timer 6-46

Controlling the Hard Disk 6-48

Getting Information About the Internal Batteries 6-54

Controlling the Internal Modem 6-58

Controlling the Processor 6-60

Getting and Setting the SCSI ID 6-63

Application-Defined Routines 6-65

x

Sleep Procedures 6-65

Hard Disk Spindown Function 6-66

Summary of the Power Manager 6-67

Pascal Summary 6-67

Constants 6-67

Data Types 6-69

Power Manager Routines 6-70

Power Manager Dispatch Routines 6-70

Application-Defined Routines 6-72

C Summary 6-72

Constants and Data Types 6-72

Power Manager Functions 6-75

Power Manager Dispatch Functions 6-76

Application-Defined Functions 6-77

Assembly-Language Summary 6-77

Data Structures 6-77

Trap Macros 6-78

Result Codes 6-80

Chapter 7 Serial Driver 7-1

 Introduction to Serial Communication 7-3

Asynchronous and Synchronous Communication 7-4

Duplex Communication 7-4

Flow Control Methods 7-4

Asynchronous Serial Communication Protocol 7-5

The RS-422 Serial Interface 7-6

About the Serial Driver 7-8

Macintosh Serial Architecture 7-8

Serial Communication Errors 7-10

Using the Serial Driver 7-11

Opening the Serial Driver 7-15

Specifying an Alternate Input Buffer 7-15

Setting the Handshaking Options 7-16

Setting the Baud Rate and Data Format 7-16

Reading and Writing to the Serial Ports 7-16

Synchronous I/O Requests 7-17

Asynchronous I/O Requests 7-17

Closing the Serial Driver 7-17

Synchronous Clocking 7-18

Serial Driver Reference 7-18

Serial Driver Routines 7-18

Low-Level Routines 7-27

Summary of the Serial Driver 7-30

Pascal Summary 7-30

Constants 7-30

xi

Data Types 7-31

Routines 7-32

C Summary 7-32

Constants 7-32

Data Types 7-33

Functions 7-34

Assembly-Language Summary 7-34

Data Structures 7-34

Device Manager Interface 7-35

Result Codes 7-35

Glossary GL-1

Index IN-1

xiii

Figures, Tables, and Listings

Chapter 1 Device Manager 1-1

Figure 1-1 Devices and the Macintosh 1-4
Figure 1-2 Communication with devices 1-5
Figure 1-3 The device control entry 1-7
Figure 1-4 The unit table 1-9
Figure 1-5 Relationship of the Device Manager data structures 1-11
Figure 1-6 Structure of a driver resource 1-13
Figure 1-7 Hierarchy of Device Manager functions 1-14
Figure 1-8 Device Manager parameter blocks 1-16
Figure 1-9 The driver header 1-25
Figure 1-10 The Chooser window 1-41
Figure 1-11 Structure of a device package 1-45

Table 1-1 Device Manager I/O functions and responsible driver
routines 1-12

Table 1-2 Reserved unit numbers 1-38
Table 1-3 Device package flags 1-46
Table 1-4 Chooser messages and their meanings 1-47

Listing 1-1 Opening a device driver 1-18
Listing 1-2 Closing a device driver 1-20
Listing 1-3 Reading from a device driver 1-21
Listing 1-4 Writing to a device driver 1-22
Listing 1-5 Controlling and monitoring a device driver 1-23
Listing 1-6 Driver flag constants 1-27
Listing 1-7 An assembly-language driver header 1-28
Listing 1-8 An assembly-language dispatching routine 1-29
Listing 1-9 Example driver open routine 1-32
Listing 1-10 Example driver close routine 1-33
Listing 1-11 Example driver prime routine 1-34
Listing 1-12 Example driver control routine 1-35
Listing 1-13 Example driver status routine 1-36
Listing 1-14 Finding space in the unit table 1-39
Listing 1-15 'DRVR' resource format 1-89

Chapter 2 Slot Manager 2-1

Figure 2-1 Simplified processor-bus and NuBus architecture 2-4
Figure 2-2 The NuBus 32-bit address space 2-6
Figure 2-3 The structure of a typical sResource 2-8
Figure 2-4 The format of the sBlock and sExecBlock data structures 2-9
Figure 2-5 The sRsrcType entry format 2-10
Figure 2-6 A sample board sResource 2-12
Figure 2-7 The structure of the sResource directory 2-13

xiv

Figure 2-8 The format block and sResources for a sample video card 2-14

Table 2-1 Slot address allocations by slot ID 2-6
Table 2-2 Large data types used in sResources 2-9
Table 2-3 The Slot Manager search routines 2-19
Table 2-4 How the Slot Manager determines the base address of a slot

device 2-55

Listing 2-1 Disabling and enabling an sResource 2-18
Listing 2-2 Searching for a specified type of sResource 2-19
Listing 2-3 Searching for the name of a board sResource 2-21

Chapter 3 SCSI Manager 3-1

Figure 3-1 SCSI bus phases and allowable transitions 3-6
Figure 3-2 The role of the SCSI Manager 3-9

Table 3-1 SCSI bus signals 3-5

Listing 3-1 Reading data from a SCSI device 3-16
Listing 3-2 Using TIB and CDB structures 3-18

Chapter 4 SCSI Manager 4.3 4-1

Figure 4-1 The SCSI Manager 4.3 architecture 4-4

Table 4-1 Original SCSI Manager parameter conversion 4-17
Table 4-2 SCSIAction function selector codes 4-39

Chapter 5 ADB Manager 5-1

Figure 5-1 The ADB Manager and device handlers 5-6
Figure 5-2 Command formats for Talk, Listen, and Flush 5-8
Figure 5-3 Command format for SendReset 5-8
Figure 5-4 A typical ADB transaction 5-9
Figure 5-5 Format of device register 3 5-11
Figure 5-6 Resolving address conflicts 5-16
Figure 5-7 Polling the ADB 5-18
Figure 5-8 How an ADB device responds to a polling request by the ADB

Manager 5-19
Figure 5-9 The ADB service request signal 5-20
Figure 5-10 An ADB device asserts the service request signal 5-21
Figure 5-11 The ADBOp routine and an ADB completion routine 5-25

Table 5-1 Register 0 in the Apple Standard keyboard 5-10
Table 5-2 Bits in device register 3 5-11
Table 5-3 Defined default ADB device addresses 5-12
Table 5-4 Special device handler IDs 5-13
Table 5-5 Typical ADB device table at initialization 5-14

xv

Listing 5-1 Determining whether an ADB device is an Apple Extended
keyboard 5-23

Listing 5-2 Sending an ADB command synchronously 5-25
Listing 5-3 Reading the current state of the LED lights 5-26
Listing 5-4 Setting the current state of the LED lights 5-27
Listing 5-5 Counting in binary using a keyboard’s LED lights 5-28
Listing 5-6 Installing an ADB device handler 5-32
Listing 5-7 Installing a routine pointer into JADBProc 5-35
Listing 5-8 A sample device handler 5-37

Chapter 6 Power Manager 6-1

Figure 6-1 A network driver’s sleep dialog box 6-5

Table 6-1 Response of network services to sleep requests and sleep
demands 6-10

Listing 6-1 Determining which Power Manager dispatch routines exist 6-15
Listing 6-2 Setting the wakeup timer 6-17
Listing 6-3 Adding an entry to the sleep queue 6-18
Listing 6-4 Installing a sleep procedure that uses application global

variables 6-20
Listing 6-5 Accepting and denying a sleep request 6-21
Listing 6-6 A sleep procedure 6-21
Listing 6-7 Retrieving the sleep queue record and the selector code 6-22
Listing 6-8 Displaying a dialog box in response to a sleep demand 6-23
Listing 6-9 A modal dialog filter function that times out 6-24

Chapter 7 Serial Driver 7-1

Figure 7-1 The format of serialized bits 7-5
Figure 7-2 The role of the Serial Driver 7-9
Figure 7-3 The serConfig parameter format 7-19

Listing 7-1 Using the Serial Driver 7-11

xvii

P R E F A C E

About This Book

This book, Inside Macintosh: Devices, describes the parts of the Macintosh

Operating System that allow you to directly control, manage, and

communicate with internal and external hardware devices. It contains

information you need to know to write applications and device drivers

that interface with the Device Manager, Slot Manager, SCSI Manager,

SCSI Manager 4.3, ADB Manager, Power Manager, and Serial Driver.

If you are new to programming for Macintosh computers, you should read

the book Inside Macintosh: Overview for an introduction to general concepts

of Macintosh programming. You should also read other books in the

Inside Macintosh series for specific information about other aspects of the

Macintosh Toolbox and the Macintosh Operating System. In particular, to

benefit most from this book, you should already be familiar with the run-time

environment of Macintosh applications, as described in the two books

Inside Macintosh: Processes and Inside Macintosh: Memory.

Format of a Typical Chapter

Most of the chapters in this book include the following four sections:

■ “About the ... Manager.” You should read this section for a general
understanding of the manager and what tasks you can use it for.

■ “Using the ... Manager.” This section provides detailed instructions on
using the manager. You should read this section if you need to use the
services provided by that manager.

■ “Reference.” This section provides a complete reference to the constants,
data structures, and routines provided by the manager. Each routine
description also follows a standard format, which presents the routine
declaration followed by a description of every parameter of the routine.
Some routine descriptions also give additional information, such as
circumstances under which you cannot call the routine.

■ “Summary.” This section provides the C, Pascal, and assembly-language
interfaces for the constants, data structures, routines, and result codes
associated with the manager.

In addition, most chapters contain additional sections that provide

background information about a topic, or advanced information for specific

types of programs.

xviii

P R E F A C E

Conventions Used in This Book

Inside Macintosh uses various conventions to present information. Words

that require special treatment appear in specific fonts or font styles. Certain

information, such as parameter blocks, appears in special formats so that you

can scan it quickly.

Special Fonts
All code listings, reserved words, and the names of actual data structures,

constants, fields, parameters, and routines are shown in Courier (this is
Courier).

Words that appear in boldface are key terms or concepts and are defined in

the glossary at the end of this book.

Types of Notes
There are several types of notes used in Inside Macintosh.

Note

A note like this contains information that is interesting but possibly not
essential to an understanding of the main text. (An example appears on
page 1-27 in the chapter “Device Manager.”) ◆

IMPORTANT

A note like this contains information that is essential for an
understanding of the main text. (An example appears on page 1-10 in
the chapter “Device Manager.”) ▲

▲ W A R N I N G

Warnings like this indicate potential problems that you should be aware
of as you design your application. Failure to heed these warnings could
result in system crashes or loss of data. (An example appears on
page 1-15 in the chapter “Device Manager.”) ▲

Assembly-Language Information
Inside Macintosh provides information about the registers for specific routines

like this:

Registers on entry

A0 Contents of register A0 on entry

Registers on exit

D0 Contents of register D0 on exit

xix

P R E F A C E

In addition, Inside Macintosh presents information about the fields of a

parameter block in this format:

Parameter block

The arrow in the left column indicates whether the field is an input parameter,

output parameter, or both. You must supply values for all input parameters

and input/output parameters. The routine returns values in output

parameters and input/output parameters.

The ✕ symbol designates fields that may be affected by the execution of the

routine. Any value you store in one of these affected fields may be lost. Also,

the meaning of these fields upon completion of the routine is undefined; your

application should not depend on these values.

The second column shows the field name as defined in the MPW C or Pascal

interface files; the third column indicates the C or Pascal data type of that

field. The fourth column provides a brief description of the use of the field.

For a complete description of each field, see the discussion that follows the

parameter block or the description of the parameter block in the reference

section of the chapter.

Development Environment

The system software routines described in this book are available using C,

Pascal, or assembly-language interfaces. How you access these routines

depends on the development environment you are using. This book shows

the interface to system software routines provided by the Macintosh

Programmer’s Workshop (MPW).

Code listings in this book show methods of using various routines and

illustrate techniques for accomplishing particular tasks. All code listings have

been compiled and, in most cases, tested. However, Apple Computer does not

intend that you use these code samples in your application.

↔ inAndOut Handle Input/output parameter.

← output1 Ptr Output parameter.

→ input1 Ptr Input parameter.

✕ trashed long Affected field.

xx

P R E F A C E

For More Information

APDA is Apple’s worldwide source for hundreds of development tools,

technical resources, training products, and information for anyone interested

in developing applications on Apple platforms. Customers receive the

APDA Tools Catalog featuring all current versions of Apple development tools

and the most popular third-party development tools. APDA offers convenient

payment and shipping options, including site licensing.

To order products or to request a complimentary copy of the APDA Tools
Catalog, contact

APDA

Apple Computer, Inc.

P.O. Box 319

Buffalo, NY 14207-0319

If you provide commercial products and services, call 408-974-4897 for

information on the developer support programs available from Apple.

For information on registering signatures, file types, Apple events, and other

technical information, contact

Macintosh Developer Technical Support

Apple Computer, Inc.

1 Infinite Loop, M/S 303-2T

Cupertino, CA 95014

Telephone 1-800-282-2732 (United States)
1-800-637-0029 (Canada)
716-871-6555 (International)

Fax 716-871-6511

AppleLink APDA

America Online APDAorder

CompuServe 76666,2405

Internet APDA@applelink.apple.com

Contents 1-1

C H A P T E R 1

Contents

Device Manager

Introduction to Devices and Drivers 1-3

About the Device Manager 1-5

The Device Control Entry 1-6

The Unit Table 1-8

The Driver I/O Queue 1-10

Driver Routines 1-12

Driver Resources 1-12

Using the Device Manager 1-14

Opening and Closing Device Drivers 1-18

Communicating With Device Drivers 1-20

Controlling and Monitoring Device Drivers 1-22

Writing a Device Driver 1-24

Creating a Driver Resource 1-24

Responding to the Device Manager 1-28

Entering and Exiting From Driver Routines 1-29

Writing Open and Close Routines 1-31

Writing a Prime Routine 1-33

Writing Control and Status Routines 1-34

Handling Asynchronous I/O 1-37

Installing a Device Driver 1-38

Writing a Chooser-Compatible Device Driver 1-40

How the Chooser Works 1-40

Creating a Chooser Extension File 1-43

Creating a Device Package 1-45

Responding to the Chooser 1-46

Allocating Private Storage 1-48

Writing a Desk Accessory 1-49

How Desk Accessories Work 1-49

Creating a Driver Resource for a Desk Accessory 1-50

Opening and Closing a Desk Accessory 1-51

C H A P T E R 1

1-2 Contents

Responding to Events 1-51

Device Manager Reference 1-53

Data Structures 1-53

Device Manager Parameter Block 1-53

Device Control Entry 1-56

Device Manager Functions 1-58

Opening and Closing Device Drivers 1-59

Communicating With Device Drivers 1-69

Controlling and Monitoring Device Drivers 1-75

Writing and Installing Device Drivers 1-82

Resources 1-89

The Driver Resource 1-89

Summary of the Device Manager 1-91

C Summary 1-91

Constants 1-91

Data Types 1-92

Functions 1-94

Pascal Summary 1-95

Constants 1-95

Data Types 1-97

Routines 1-98

Assembly-Language Summary 1-99

Data Structures 1-99

Trap Macros 1-100

Result Codes 1-101

C H A P T E R 1

Introduction to Devices and Drivers 1-3

Device Manager

This chapter describes how your application can use the Device Manager to transfer

information into and out of a Macintosh computer. The Device Manager controls the

exchange of information between applications and hardware devices.

This chapter provides a brief introduction to devices and device drivers (the programs

that control devices) and then explains how you can use the Device Manager functions to

■ open, close, and exchange information with device drivers

■ write your own device driver that can communicate with the Device Manager

■ provide a user interface for your device driver by making it a Chooser extension or
desk accessory.

You should read the sections “About the Device Manager” and “Using the Device

Manager” if your application needs to use the Device Manager to communicate with a

device driver. Applications often communicate with the Device Manager indirectly, by

calling functions of other managers (for example, the File Manager) that use the Device

Manager. However, sometimes applications must call Device Manager functions directly.

The sections “Writing a Device Driver,” “Writing a Chooser-Compatible Device Driver,”

and “Writing a Desk Accessory,” provide information you’ll need if you are writing your

own device driver.

If you writing a device driver, you should understand how memory is organized and

allocated in Macintosh computers. See Inside Macintosh: Memory, for this information.

You should also be familiar with resources and how the system searches resource files.

You can find this information in the chapter “Resource Manager” in Inside Macintosh:
More Macintosh Toolbox. If your device driver is to perform background tasks, you’ll need

to understand how processes are scheduled. Inside Macintosh: Processes covers these

topics. If your driver will control a hardware device, you should read Designing Cards
and Drivers for the Macintosh Family, third edition.

Introduction to Devices and Drivers

A device is a physical part of the Macintosh, or a piece of external equipment, that

can exchange information with applications or with the Macintosh Operating System.

Input devices transfer information into the Macintosh, while output devices receive

information from the Macintosh. An I/O device can transfer information in either

direction.

Devices transfer information in one of two ways. Character devices read or write a

stream of characters, or bytes, one at a time. Character devices provide sequential access

to data—they cannot skip over bytes in the data stream, and cannot go back to pick up

bytes that have already passed. The keyboard and the serial ports are examples of

character devices.

Block devices read and write blocks of bytes as a group. Disk drives, for example, can

read and write blocks of 512 bytes or more. Block devices provide random access to

data—they can read or write any block of data on demand.

C H A P T E R 1

Device Manager

1-4 Introduction to Devices and Drivers

Devices communicate with applications and with the Operating System through special

programs called device drivers. A device driver typically controls a specific hardware

device, such as a modem, hard disk, or printer. This type of device driver acts as a

translator, converting software requests into hardware actions and hardware actions into

software results. Figure 1-1 illustrates some of the hardware devices that communicate

with the Macintosh through device drivers.

Figure 1-1 Devices and the Macintosh

Macintosh device drivers may be either synchronous or asynchronous. A synchronous
device driver completes a requested transaction before returning control to the Device

Manager. An asynchronous device driver can initiate a transaction and return control to

the Device Manager before the transaction is complete. This type of device driver usually

relies on interrupts from a hardware device to regain control of the processor and

complete the transaction.

The Macintosh ROM and system software contain device drivers for controlling the

standard devices included with every Macintosh computer, such as the mouse, serial

ports, and floppy disk drive. Before deciding to write your own device driver, you

should consider whether your device can be accessed using one of the standard device

drivers. The section “Writing a Device Driver,” beginning on page 1-24, discusses the

reasons why you may want to use a standard device driver rather than writing your own.

Although device drivers are often used to control hardware, they are not restricted to

this function. For example, Macintosh desk accessories and Chooser extensions are small

programs that are written as device drivers, even though they may have nothing to do

with controlling hardware. In general, a device driver is a program that conforms to a

standard interface and provides access to a service through a standard set of routines.

C H A P T E R 1

Device Manager

About the Device Manager 1-5

Your program can take advantage of this interface to perform tasks unrelated to actual

physical devices.

About the Device Manager

The Device Manager provides a common programming interface for applications and

other managers to use when communicating with device drivers. The Device Manager

also includes support functions useful for writing your own device drivers.

Typically, your application won’t communicate directly with device drivers; instead, it

will call Device Manager functions or call the functions of another manager that calls the

Device Manager. For example, your application can communicate with a disk driver by

calling the Device Manager directly or by calling the File Manager, which calls the

Device Manager. Figure 1-2 shows the relationship between applications, the Device

Manager, other managers, device drivers, and devices.

Figure 1-2 Communication with devices

Before the Device Manager allows an application or another manager to communicate

with a device driver, the driver must be open, which means the Device Manager has

received a request to open the driver, has loaded the driver into memory, if necessary,

and has successfully called the driver’s open routine.

C H A P T E R 1

Device Manager

1-6 About the Device Manager

Your application opens a device driver using one of the Device Manager functions,

OpenDriver, OpenSlot, or PBOpen. These functions return a driver reference number

for the driver. You use the driver reference number to identify the driver in subsequent

communication requests.

Your application communicates with a driver by calling Device Manager functions such

as FSRead or PBRead, and supplying the driver reference number of the device. The

Device Manager then invokes a corresponding routine in the device driver to perform

the requested operation. The section “Driver Routines” on page 1-12 describes these

routines and their relationship to the Device Manager functions.

The Device Manager uses several data structures to locate, manage, and communicate

with device drivers. These structures are described in the following sections.

The Device Control Entry
The Device Manager maintains a data structure called a device control entry (DCE) for

each open driver. The device control entry is a relocatable block in the system heap that

contains a handle or pointer to the device driver code, and additional information about

the driver. Typically, the Device Manager maintains one device control entry for each

open device driver, but it is possible for multiple entries to refer to the same driver.

Figure 1-3 shows the device control entry structure. See “Device Manager Reference,”

beginning on page 1-53, for descriptions of the fields within the device control entry

structure.

C H A P T E R 1

Device Manager

About the Device Manager 1-7

Figure 1-3 The device control entry

C H A P T E R 1

Device Manager

1-8 About the Device Manager

The Unit Table

The Device Manager uses a data structure called the unit table to organize and keep

track of device control entries. The unit table is a nonrelocatable block in the system

heap, containing an array of handles. Each handle points to the device control entry of

an installed device driver. The location of a driver’s device control entry handle in the

unit table is called the driver’s unit number. If the handle at a given unit number is nil,

there is no device control entry installed in that position.

When you open a device driver, the Device Manager returns a driver reference number

for the driver. The driver reference number is the one’s complement (logical NOT) of the

unit number.

The system global variable UTableBase points to the first entry of the unit table. The

system global variable UnitNtryCnt contains the size of the unit table (that is, how

many handles it can hold). Figure 1-4 shows the organization of the unit table, including

the locations of some of the standard device drivers reserved by Apple Computer, Inc.

C H A P T E R 1

Device Manager

About the Device Manager 1-9

Figure 1-4 The unit table

C H A P T E R 1

Device Manager

1-10 About the Device Manager

The Driver I/O Queue

The Device Manager maintains an I/O queue for each open device driver. An I/O queue

is a standard Macintosh Operating System queue of type ioQType, as described in the

chapter “Queue Utilities” in Inside Macintosh: Operating System Utilities.

At the head of a device driver’s I/O queue is the request currently being processed

by the driver. The rest of the queue contains pending I/O requests—those the Device

Manager has received but not yet sent to the device driver. This queue allows your

application to request a data transfer with a busy device and accomplish other tasks

while the device processes previous requests.

With respect to the I/O queue, the Device Manager allows you to make three types of

requests: asynchronous, synchronous, and immediate.

■ Asynchronous requests. When you make an asynchronous request, the Device
Manager places your request at the end of the driver I/O queue and returns control
to your application—potentially before the request is processed. Your application is
free to perform other tasks while the device driver processes the requests in its queue.
The Device Manager provides mechanisms for your application to determine when
the driver has processed the request.

■ Synchronous requests. When you make a synchronous request, the Device Manager
places your request at the end of the queue and waits until the device driver has
handled every request in the queue, including the synchronous one, before returning
control to your application. Notice there can never be more than one synchronous
request in a driver I/O queue at any given time.

■ Immediate requests. The Device Manager sends immediate requests directly to the
device driver, bypassing the queue, and returns control to your application when the
request is complete. Because the device driver might be in the middle of processing
another request, you must make sure the driver is reentrant before making an
immediate request. A reentrant driver is capable of handling multiple requests
simultaneously. As some device drivers are not reentrant, you should always consult
a driver’s documentation to determine if it supports immediate requests.

IMPORTANT

The terms synchronous and asynchronous are used here to describe how
the Device Manager queues your I/O requests. How a device driver
processes these requests (synchronously or asynchronously) depends
on the design of the driver. When you make a synchronous request
to a device driver, the Device Manager waits for the driver to complete
the request, regardless of whether the driver handles the request
synchronously or asynchronously. ▲

Figure 1-5 shows the relationship of the unit table, device control entry, and I/O queue

to a device driver.

C H A P T E R 1

Device Manager

About the Device Manager 1-11

Figure 1-5 Relationship of the Device Manager data structures

C H A P T E R 1

Device Manager

1-12 About the Device Manager

Driver Routines

Every device driver must provide a set of routines for handling requests from the Device

Manager. When an application or another manager calls a Device Manager function, the

Device Manager invokes one of the following routines in the designated device driver:

■ The open routine allocates memory and initializes the device driver’s data structures.
It may also initialize a hardware device or perform any other tasks necessary to make
the driver operational. All device drivers must implement an open routine.

■ The close routine deactivates the device driver, releases any memory allocated by the
driver, removes any patches installed by the driver, and performs any other tasks
necessary to reverse the actions of the open routine. All drivers must implement a
close routine.

■ The control routine is usually used to send control information to the device driver.
The function of this routine is driver-dependent. This routine is optional and need not
be implemented.

■ The status routine is usually used to return status information from the device driver.
The function of this routine is driver-dependent. The status routine is optional and
need not be implemented.

■ The prime routine implements the input and output functions of the driver. This
routine is optional. If the prime routine is implemented, it must support either read
functions or write functions, or both.

Each driver routine is responsible for handling specific types of Device Manager

requests. Table 1-1 shows the Device Manager I/O functions and the driver routines

responsible for handling them. The Device Manager I/O functions are described in

“Using the Device Manager,” beginning on page 1-14. The section “Writing a Device

Driver,” beginning on page 1-24, describes the driver routines.

Driver Resources
Device drivers are usually stored in driver resources, which can be located in

applications, system extension files, or the firmware of expansion cards. A driver

Table 1-1 Device Manager I/O functions and responsible driver routines

Device Manager function Responsible driver routine

OpenDriver, PBOpen, OpenSlot Open

FSRead, PBRead Prime

FSWrite, PBWrite Prime

Control, PBControl Control

Status, PBStatus Status

KillIO, PBKillIO Control

CloseDriver, PBClose Close

C H A P T E R 1

Device Manager

About the Device Manager 1-13

resource consists of a header followed by the driver code. The header contains

information about the driver such as which driver routines are implemented and where

the routines are located within the driver code. The Device Manager copies the relevant

information from the header into the device control entry when you open the driver.

Figure 1-6 shows the structure of a driver resource. The section “Creating a Driver

Resource,” beginning on page 1-24, describes driver resources in detail.

Figure 1-6 Structure of a driver resource

C H A P T E R 1

Device Manager

1-14 Using the Device Manager

Using the Device Manager

Your application can use Device Manager functions to communicate with devices

through their device drivers. This section describes the Device Manager functions that

allow you to open, close, and control device drivers, exchange information with them,

and monitor their status. The Device Manager also provides support functions useful for

writing and installing device drivers. The section “Writing a Device Driver,” beginning

on page 1-24, describes these support functions.

The Device Manager includes high-level and low-level versions of most of its functions.

The high-level versions are somewhat easier to use, but they allow less control of how

the Device Manager processes the I/O request (for example, they are always handled

synchronously) and they return less information to your application. Conversely, the

low-level functions require some additional setup, but they allow you greater control

and return more information.

The high-level Device Manager functions call the low-level functions, which in turn call

the appropriate driver routine. For example, the Device Manager converts the high-level

FSRead function to a low-level PBRead function before calling the driver’s prime

routine. Figure 1-7 depicts this hierarchy.

Figure 1-7 Hierarchy of Device Manager functions

C H A P T E R 1

Device Manager

Using the Device Manager 1-15

The high-level functions differ in form, but the low-level functions all have the form:

pascal OSErr PBRoutineName (ParmBlkPtr paramBlock, Boolean async);

The paramBlock parameter is a pointer to a structure of type ParamBlockRec. You

use the fields of this structure to pass more complete information to the driver than you

can with high-level functions, and the driver uses the same structure to pass information

back. The ParamBlockRec is defined in C as a union of six structures, but only the

IOParam and CntrlParam types are used by the Device Manager. Figure 1-8 shows the

fields of the ParamBlockRec structure used by the Device Manager. These fields are

described in detail later in this section and in “Data Structures” on page 1-53.

The async parameter specifies whether the Device Manager should process the function

asynchronously. For synchronous requests you set this parameter to false; the Device

Manager adds the parameter block to the driver I/O queue and waits until the driver

completes the request (which means it has completed all previously queued requests)

before returning control to your application.

▲ W A R N I N G

Never call any Device Manager function synchronously at interrupt
time. A synchronous request at interrupt time may block other pending
I/O requests. Because the device driver cannot begin processing the
synchronous request until it completes the other requests in its queue,
this situation can cause the Device Manager to loop indefinitely while it
waits for the device driver to complete the synchronous request. ▲

If you set the async parameter to true, the Device Manager adds the parameter block

to the driver I/O queue and returns control to your application immediately. In this case,

a noErr result code signifies that the request was successfully queued, not that the

request was successfully completed. The Device Manager sets the ioResult field of the

parameter block to 1 when the request is queued, and stores the actual result code there

when the driver indicates the request is complete.

When you make an asynchronous request you can also provide a pointer to a completion

routine in the ioCompletion field of the parameter block. The Device Manager

executes this routine when the driver completes the asynchronous request. Your

completion routine could, for example, set a flag to signal your application that the

I/O operation is complete. See “Handling Asynchronous I/O,” beginning on page 1-37,

for more information about completion routines and asynchronous operation.

Assembly-Language Note

You can call a Device Manager function immediately, bypassing the I/O
queue, by setting bit 9 of the trap word. You can set or test this bit using
the global constant noQueueBit. However, remember that the device
driver might be processing another request, especially if you make an
immediate request during interrupt time. The driver must be reentrant
to handle this situation properly. You should always check a driver’s
documentation to make sure the driver is reentrant before making
immediate requests. ◆

C H A P T E R 1

Device Manager

1-16 Using the Device Manager

Figure 1-8 Device Manager parameter blocks

When you use a low-level Device Manager function, the Device Manager places the

parameter block at the end of the driver I/O queue and then either waits for the driver

to complete the request or returns control to your application, depending on the value of

C H A P T E R 1

Device Manager

Using the Device Manager 1-17

the async parameter. For the high-level functions, the Device Manager creates a

parameter block for you, filling the required fields with the values you supplied. The

Device Manager then inserts the parameter block at the end of the I/O queue as a

synchronous request. As previously-queued requests are processed, the parameter block

moves forward in the I/O queue. When the parameter block is at the beginning of the

queue, the Device Manager calls the appropriate driver routine and passes it a pointer to

the parameter block and a pointer to the driver’s device control entry.

For read and write requests, the Device Manager calls the driver’s prime routine. This

routine can execute synchronously, completing the requested read or write transaction

before returning control to the Device Manager, or asynchronously, beginning the

requested transaction but returning control to the Device Manager before completing it.

For information about reading and writing data to devices, see “Communicating With

Device Drivers” on page 1-20.

If you are writing a device driver and your driver’s prime routine can execute

asynchronously, your driver must use some mechanism to regain control of the

processor to complete asynchronous requests. Your driver would typically use an

interrupt handler for this purpose, and notify the Device Manager when the transaction

is complete. See “Writing a Prime Routine” on page 1-33 and “Handling Asynchronous

I/O” on page 1-37 for more information about writing asynchronous routines.

The Device Manager handles control and status requests in the same way as read and

write requests, except that for control requests it calls the control routine and for status

requests it calls the status routine. See “Controlling and Monitoring Device Drivers” on

page 1-22 for information about making these requests. For information about providing

status and control routines for your own driver, see “Writing Control and Status

Routines” on page 1-34.

The Device Manager responds to KillIO requests by calling the device driver’s control

routine with a value of killCode for the csCode parameter. If the driver returns

noErr, the Device Manager removes all parameter blocks from the queue, calling their

completion routines with the result code abortErr. For more information about

canceling I/O requests, see the description of the KillIO function on page 1-80. For

information on how your driver can handle KillIO requests, see “Writing Control and

Status Routines” on page 1-34.

In response to a close request, the Device Manager waits until the driver is inactive, then

calls the driver’s close routine. When the driver indicates it has processed the close

request, the Device Manager unlocks the driver resource if the dRAMBased flag is set,

and unlocks the device control entry if the dNeedLock flag is not set. The Device

Manager does not release the driver resource or dispose of the device control entry

unless you call the DriverRemove function. The next section describes how to open

and close a device driver. See “Writing Open and Close Routines” on page 1-31 for

information about how your driver should respond to open and close requests.

C H A P T E R 1

Device Manager

1-18 Using the Device Manager

Opening and Closing Device Drivers
You must open a driver before your application can communicate with it. The Device

Manager provides three functions for opening device drivers: OpenDriver, OpenSlot,

and PBOpen. Each of these functions requires a driver name and returns a driver

reference number.

A driver name consists of a period (.) followed by any sequence of 1 to 254 printing

characters; for example, .ATP is the name of one of the high-level AppleTalk drivers. The

initial period in a driver name allows the Device Manager and the File Manager, which

share the _Open trap, to distinguish between driver names and filenames. Refer to

a device driver’s documentation to determine the driver name.

The OpenDriver function, which is the high-level function for opening a device driver,

takes the driver name as its first parameter and returns the driver reference number in its

second parameter. When an application or another manager calls the OpenDriver

function, the Device Manager first searches the unit table to see if a driver with the

specified name is already installed. If the name does not match any installed driver, the

Device Manager searches the current Resource Manager search path for a driver resource

with the specified name.

To open a device driver from a resource, the Device Manager

■ creates a device control entry for the driver, filling in the DCE with values from the
header of the driver resource

■ installs a handle to the device control entry in the unit table at a location determined
by the driver resource ID

■ calls the driver’s open routine

Listing 1-1 shows an application-defined function that uses the OpenDriver function to

open a driver.

Listing 1-1 Opening a device driver

short gDrvrRefNum; /* global variable for storing

 my driver reference number */

OSErr MyOpenDriver(void)

{

Handle drvrHdl;

short drvrID;

short tempDrvrID;

ResType drvrType;

Str255 drvrName;

OSErr myErr;

tempDrvrID = MyFindSpaceInUnitTable(); /* see Listing 1-14 */

C H A P T E R 1

Device Manager

Using the Device Manager 1-19

if (tempDrvrID > 0)

{

drvrHdl = GetNamedResource((ResType)'DRVR', "\p.MYDRIVER");

GetResInfo(drvrHdl, &drvrID, &drvrType, drvrName);

SetResInfo(drvrHdl, tempDrvrID, drvrName);

myErr = OpenDriver("\p.MYDRIVER", &gDrvrRefNum);

if (myErr == noErr)

DetachResource(drvrHdl);

drvrHdl = GetNamedResource((ResType)'DRVR', drvrName);

SetResInfo(drvrHdl, drvrID, drvrName);

return(myErr);

}

else

return(openErr); /* no space in the unit table */

}

The OpenDriver function uses the resource ID of the driver resource as the unit

number for the device driver, which determines where the device control entry will be

stored in the unit table. Because the OpenDriver function does not check to see if

another device control entry is already located at that position in the unit table, the

MyOpenDriver function begins by searching for an available space in the unit table.

Listing 1-14 on page 1-39 shows the MyFindSpaceInUnitTable function.

If there is room in the unit table, the MyOpenDriver function calls GetNamedResource

to load the resource into memory, then changes the ID of the driver resource in the

resource map before calling the OpenDriver function.

After the driver is open, MyOpenDriver calls the DetachResource function to prevent

the driver resource from being released. Finally, MyOpenDriver restores the original

resource ID so that the driver’s resource file remains unchanged.

You can use the PBOpen or OpenSlot functions instead of the OpenDriver function

when you want more control over how the Device Manager opens the device driver. For

example, you can set read and write permissions for the device with the ioPermssn

field of the parameter block. Use the OpenSlot function to open drivers that serve slot

devices, and the PBOpen function for all other drivers.

Because the Device Manager always opens device drivers synchronously, you must set

the async parameter to false when using the PBOpen or OpenSlot functions. If a

device driver is already open, the Device Manager simply returns the driver reference

number.

The remaining Device Manager functions require your application to use the driver

reference number, instead of the driver name, when referring to a device driver.

C H A P T E R 1

Device Manager

1-20 Using the Device Manager

When you finish using a driver, you may want to close it. However, you do not normally

close drivers that might be needed by the system or by other applications. Whether you

should close a particular driver depends on the type of driver and how it is being used.

Refer to the driver’s documentation to determine if it should be closed. See the

appropriate chapters in this book and other books in the Inside Macintosh series for

information about standard Macintosh drivers.

If you do want to close a driver, you can use the high-level CloseDriver function or

the low-level PBClose function. Listing 1-2 shows how to use the PBClose function to

close the driver opened in Listing 1-1.

Listing 1-2 Closing a device driver

OSErr MyCloseDriver(short refNum)

{

IOParam paramBlock;

paramBlock.ioRefNum = refNum;

return(PBClose((ParmBlkPtr)¶mBlock, false));

}

The MyCloseDriver function specifies the driver to close by placing the driver

reference number in the ioRefNum field of the parameter block and then calls the Device

Manager PBClose function.

Communicating With Device Drivers
Once a device driver is open and you have its reference number, you can use Device

Manager functions to exchange information with it. When you want to receive

information from a device driver, you first allocate a data buffer to hold the information

and then call the FSRead or PBRead function. To send information to a device driver,

you first store the information in a data buffer and then call the FSWrite or PBWrite

function. You must specify the number of bytes you want transferred when calling any

of these functions.

The PBRead and PBWrite functions support asynchronous requests, and allow you

to specify a completion routine. For block devices you specify the drive number,

positioning mode, and positioning offset in the ioVRefNum, ioPosMode, and

ioPosOffset fields of the parameter block. The Device Manager does not interpret

these fields—they are used by the device driver to locate the desired data block.

The Macintosh Operating System defines three positioning modes for block devices:

■ At the current position. Transfer begins at the current position on the
medium—typically where the last transfer ended.

C H A P T E R 1

Device Manager

Using the Device Manager 1-21

■ Offset from the start. Transfer begins at the specified offset from the beginning of the
medium.

■ Offset from the mark. Transfer begins at the specified offset from the current position.

You specify the positioning mode by setting the ioPosMode field to one of the defined

constants, fsAtMark, fsFromStart, or fsFromMark. Be sure you specify a mode that

is compatible with the device.

On completion, the PBRead and PBWrite functions return in the ioActCount field of

the parameter block the total number of bytes actually transferred. For block devices,

these functions also return a new positioning offset in the ioPosOffset field.

Certain device drivers provide additional abilities with the read and write functions.

For example, the Disk Driver allows you to use the PBRead function to verify that

data written to a block device matches the data in memory. To do this, you add the

read-verify constant rdVerify to the value in the ioPosMode field of the parameter

block, as explained in the description of the PBRead function on page 1-70.

Listing 1-3 shows an example of how to read from a device driver.

Listing 1-3 Reading from a device driver

OSErr MyReadFromDriver(short refNum)

{

IOParam paramBlock;

char buffer[256];

paramBlock.ioRefNum = refNum;

paramBlock.ioReqCount = 256;

paramBlock.ioBuffer = (Ptr)buffer;

return(PBRead((ParmBlkPtr)¶mBlock, false));

}

The MyReadFromDriver function uses a parameter block to specify the device driver

(by its driver reference number), the number of bytes to read, and a pointer to a buffer

to receive the data. When MyReadFromDriver calls the PBRead function, the Device

Manager appends the parameter block to the end of the driver I/O queue. Because the

async parameter is set to false, the Device Manager does not return control to

MyReadFromDriver until the driver has completed every request in its queue.

Listing 1-4 shows an example of how to write to a device driver.

C H A P T E R 1

Device Manager

1-22 Using the Device Manager

Listing 1-4 Writing to a device driver

OSErr MyWriteToDriver(short refNum)

{

IOParam paramBlock;

char* buffer;

buffer = "Data to Write";

paramBlock.ioCompletion = nil;

paramBlock.ioRefNum = refNum;

paramBlock.ioBuffer = (Ptr)buffer;

paramBlock.ioReqCount = strlen(buffer);

return(PBWrite((ParmBlkPtr)¶mBlock, false));

}

The MyWriteToDriver function also uses a parameter block to transfer information to

the driver. After filling in the necessary fields, MyWriteToDriver sends the parameter

block to the PBWrite function. Because the async parameter is false, the Device

Manager appends the parameter block to the end of the I/O queue and does not return

control to the MyWriteToDriver function until the driver has completed the request.

Controlling and Monitoring Device Drivers
In addition to the read and write functions, the Device Manager provides functions that

allow your application to control and monitor device drivers in other ways.

The Control and PBControl functions send commands to a driver. Because the

types of commands to which drivers respond varies, you need to consult a driver’s

documentation to determine what commands it accepts. As an example, you can send

a command to the Disk Driver requesting that it eject a disk.

The Status and PBStatus functions return status information from a driver. Again,

the type of information drivers provide varies widely. The Serial Driver, for example, can

return a breakdown of the types of errors that have occurred recently.

The control and status functions use the CntrlParam structure of the ParamBlockRec

union. This structure is defined in “Device Manager Parameter Block,” beginning on

page 1-53.

Because of the diversity of device drivers, the control and status functions have two

general-purpose parameters: csCode and csParamPtr (or csParam for the low-level

PBControl and PBStatus functions). You indicate the type of control or status

information you are requesting by placing a driver-specific code in the csCode

parameter. You send or receive information using the csParamPtr parameter.

Listing 1-5 shows an example of how to send control and status requests to a device

driver using the PBControl and PBStatus functions.

C H A P T E R 1

Device Manager

Using the Device Manager 1-23

Listing 1-5 Controlling and monitoring a device driver

OSErr MyIssueDriverControl(short refNum)

{

CntrlParam paramBlock;

paramBlock.ioCRefNum = refNum;

paramBlock.csCode = kClearAll; /* driver-specific control request */

return(PBControl((ParmBlkPtr)paramBlock, false));

}

OSErr MyGetDriverStatus(short refNum)

{

CntrlParam paramBlock;

OSErr myErr;

short count;

paramBlock.ioCRefNum = refNum;

paramBlock.csCode = kByteCount; /* driver-specific status request */

myErr = PBStatus((ParmBlkPtr)¶mBlock, false);

count = paramBlock.csParam[0]; /* value returned in csParam array */

if (myErr == noErr)

return(count);

else

return(myErr);

}

The MyIssueDriverControl and MyGetDriverStatus functions call the

example device driver control and status routines shown in Listing 1-12 on page 1-35

and Listing 1-13 on page 1-36.

The MyIssueDriverControl function begins by setting up the fields of a parameter

block. The ioCRefNum field specifies the driver reference number, and the csCode field

specifies the type of control information being sent. The MyDriverControl function

shown in Listing 1-12 interprets the driver-specific value kClearAll as a request for

the device driver to clear the information in its private storage.

The MyGetDriverStatus function also begins by setting up the fields of a parameter

block. The ioCRefNum field specifies the device driver reference number, and the

csCode field specifies the type of status information being requested. The

MyDriverStatus function shown in Listing 1-13 interprets a value of kByteCount

as a request to return the number of bytes transferred by the last I/O operation. This

information is returned in the csParam field of the parameter block.

C H A P T E R 1

Device Manager

1-24 Writing a Device Driver

Writing a Device Driver

This section shows you how to write a basic device driver—one that can respond to

Device Manager requests. Although you will need to write some assembly-language

interface code, you can write your device driver routines in a high-level language.

Before you decide to write your own device driver, you should consider whether your

task can be more easily accomplished using one of the standard Macintosh drivers

described in this book or other Inside Macintosh volumes. In general, you should consider

writing a device driver only if your hardware device or system service needs to be

accessed at unpredictable times or by more than one application.

For example, if you develop a new output device that you want to make available to any

application, you might need to write a custom driver. On the other hand, if your product

is a specialized device that can only be used by your application, it may be easier to

control the device using private code within your application.

This section describes how to

■ create a driver resource

■ write the code in your driver resource so that it responds appropriately to Device
Manager requests

■ handle the special requirements of asynchronous I/O

■ install and initialize your driver

Creating a Driver Resource
You will probably want to store your device driver in a driver resource, although if you

are writing a driver for a slot device, you might want to store your driver in an

sResource data structure in the declaration ROM of the expansion card. See the chapter

“Slot Manager” in this book for information about sResource data structures.

Storing your driver in a driver resource allows the Device Manager to load your driver

code into memory and install a device control entry for your driver in the unit table. Like

all resources, your driver resource has a resource type, a resource ID, a resource name,

and resource attributes.

■ The resource type must be 'DRVR' if you plan to use the Device Manager to load
your driver into memory. If you write your own routine to load the driver, you can
choose a different resource type.

■ The resource ID determines where in the unit table the Device Manager installs the
driver’s device control entry. Because you must choose the resource ID when creating
your driver resource, you cannot know which unit numbers are available until you
open your driver. Therefore, your driver-opening routine must find an empty location
in the unit table and change the resource ID accordingly. “Installing a Device Driver”
on page 1-38 discusses appropriate values for the resource ID.

C H A P T E R 1

Device Manager

Writing a Device Driver 1-25

■ The resource name should be the same as the driver name because the Device
Manager calls GetNamedResource using this name if it can’t find the driver in the
unit table. A driver name consists of a period (.) followed by any sequence of 1 to 255
printing characters. The Device Manager ignores case (but not diacritical marks) when
comparing names.

■ The resource attributes of your driver resource depend on your driver. A typical
driver might have these attributes: locked, since most drivers contain code that is
called at interrupt time; in the system heap, so that the driver exists over launches of
applications; and preloaded, which makes resource loading slightly more efficient.

A driver resource has two parts:

■ a driver header that contains information about the driver

■ the routines that do the work of the driver

The driver header contains a few words of flags and other data, offsets to the driver’s

routines, and an optional driver name. Figure 1-9 shows the format of a driver header.

Figure 1-9 The driver header

The elements of the driver header are:

Element Description

drvrFlags Flags in the high-order byte of this field specify certain
characteristics of the driver. These flags are copied to the high-order
byte of the dCtlFlags field of the device control entry when the

C H A P T E R 1

Device Manager

1-26 Writing a Device Driver

driver is opened. You can use the constants shown in Listing 1-6 to
set or test the flags in this field.

drvrDelay If the dNeedTime flag is set, this field contains the requested
number of ticks between periodic actions. This value is approximate
and should not be used as a timing reference.

drvrEMask Used only by desk accessories, this field contains an event mask.
See “Writing a Desk Accessory” on page 1-49 for information about
this field.

drvrMenu Used only by desk accessories, this field contains a menu ID. See
“Writing a Desk Accessory” on page 1-49 for more information.

drvrOpen The offset of the driver’s open routine, relative to offset 0 of the
driver header.

drvrPrime The offset of the driver’s prime routine.

drvrCtl The offset of the driver’s control routine.

drvrStatus The offset of the driver’s status routine.

drvrClose The offset of the driver’s close routine.

drvrName A Pascal string containing the driver’s name, up to 255 characters.

See the section “Entering and Exiting From Driver Routines” on page 1-29 for more

information about the routine offsets.

Note

Your driver routines, which follow the driver header, must be aligned on
a word boundary. ◆

Name Bit Meaning

dReadEnable 8 Set if the driver can respond to read
requests.

dWritEnable 9 Set if the driver can respond to write
requests.

dCtlEnable 10 Set if the driver can respond to control
requests.

dStatEnable 11 Set if the driver can respond to status
requests.

dNeedGoodbye 12 Set if the driver needs to be called before
the application heap is reinitialized.

dNeedTime 13 Set if the driver needs time for
performing periodic tasks.

dNeedLock 14 Set if the driver needs to be locked in
memory as soon as it is opened.

C H A P T E R 1

Device Manager

Writing a Device Driver 1-27

Listing 1-6 Driver flag constants

enum {

/* flags used in the driver header and device control entry */

dNeedLockMask = 0x4000, /* set if driver must be locked in memory as

soon as it’s opened */

dNeedTimeMask = 0x2000, /* set if driver needs time for performing

periodic tasks */

dNeedGoodByeMask = 0x1000, /* set if driver needs to be called before the

application heap is initialized */

dStatEnableMask = 0x0800, /* set if driver responds to status requests */

dCtlEnableMask = 0x0400, /* set if driver responds to control requests */

dWritEnableMask = 0x0200, /* set if driver responds to write requests */

dReadEnableMask = 0x0100, /* set if driver responds to read requests */

};

The dReadEnable, dWritEnable, dCtlEnable, and dStatEnable flags indicate

which Device Manager requests the device driver can respond to. The next section,

“Responding to the Device Manager,” describes these routines in detail.

Drivers in the application heap are lost when the heap is reinitialized. If you set

the dNeedGoodbye flag, the Device Manager calls your driver before the heap is

reinitialized so that you can perform any clean-up actions. See “Writing Control and

Status Routines,” beginning on page 1-34, for information about using this flag.

You set the dNeedTime flag if your device driver needs to perform some action

periodically. For example, a network driver may want to poll its input buffer every

5 seconds to see if it has received any messages. The value of the drvrDelay field

indicates how many ticks should pass between periodic actions. For example, a value

of 0 in the drvrDelay field indicates that the action should happen as often as possible,

a value of 1 means it should happen every sixtieth of a second, a value of 2 means at

most every thirtieth of a second, and so on. Whether the action actually occurs this

frequently depends on how often an application calls WaitNextEvent or SystemTask.

See “Writing Control and Status Routines,” beginning on page 1-34, for information

about using this flag.

Note

If you do not want your driver to depend on applications to call
WaitNextEvent or SystemTask, you can perform actions periodically
by installing a VBL task, a Deferred Task Manager task, a Time Manager
task, or a Notification Manager task. For more information, see Inside
Macintosh: Processes. ◆

You need to set the dNeedLock flag if your device driver’s code must be locked in

memory. In particular, you need to set this flag in these two cases:

■ If any part of your driver’s code can be called at interrupt time. Because the Operating
System may perform memory management at interrupt time, your driver must be
locked to prevent it from being moved.

C H A P T E R 1

Device Manager

1-28 Writing a Device Driver

■ If your driver provides the Operating System with a pointer to any part of its code.
For example, if your driver uses the Device Manager to call another driver, you might
provide the Device Manager with a pointer to a completion routine. If that completion
routine is in your driver code, your driver code must be locked. Otherwise, that
pointer might not be valid when the Device Manager calls the completion routine.

You can create your driver header in these ways:

■ You can use a resource compiler. See “Resources” on page 1-89 for the Rez format of
the driver resource.

■ You can use the DC instruction, as shown in Listing 1-7, to position the header
information directly in your assembly language code.

Listing 1-7 An assembly-language driver header

DHeader

DFlags DC.W 0 ;set by MyDriverOpen

DDelay DC.W 0 ;none

DEMask DC.W 0 ;DA event mask

DMenu DC.W 0 ;no menu

DC.W DOpen - DHeader ;offset to Open

DC.W DPrime - DHeader ;offset to Prime

DC.W DControl - DHeader ;offset to Control

DC.W DStatus - DHeader ;offset to Status

DC.W DClose - DHeader ;offset to Close

Name DC.B '.MYDRIVER' ;driver name

ALIGN 2 ;word alignment

In this example, the drvrFlags word is cleared to 0 because the flags are set by the

MyDriverOpen function, shown in Listing 1-9 on page 1-32. This is an implementation

decision—you can set the flags in the driver header or in your driver’s open routine. The

drvrDelay field is set to 0 because this driver does not perform any periodic actions

using the SystemTask function. The drvrEMask and drvrMenu fields are set to 0, as

this driver is not a desk accessory. The next five fields contain offsets to the driver

routines, defined in the next section, “Responding to the Device Manager.” The header

ends with the driver name and the word alignment directive.

Responding to the Device Manager
The Device Manager calls a driver routine by setting up registers and jumping to the

address indicated by the routine’s offset in the driver header.

■ Register A0 contains a pointer to the parameter block.

■ Register A1 contains a pointer to the driver’s device control entry.

This interface requires you to use some assembly language when writing a driver.

However, you can write your driver routines in a high-level language if you provide an

C H A P T E R 1

Device Manager

Writing a Device Driver 1-29

assembly-language dispatching mechanism that acts as an interface between the Device

Manager and your driver routines.

The next few sections discuss how you can provide a dispatching routine and how you

can implement your driver routines in a high-level language.

Entering and Exiting From Driver Routines

Listing 1-8 shows an assembly-language dispatching routine that you can use as an

interface between the Device Manager and your high-level language driver routines.

This example properly handles synchronous, asynchronous, and immediate requests,

as well as the special cases of open, close, and KillIO.

Listing 1-8 An assembly-language dispatching routine

DOpen

MOVEM.L A0-A1,-(SP) ;save ParmBlkPtr, DCtlPtr across function call

MOVEM.L A0-A1,-(SP) ;push ParmBlkPtr, DCtlPtr for C

BSR MyDriverOpen ;call linked C function

ADDQ #8,SP ;clean up the stack

MOVEM.L (SP)+,A0-A1 ;restore ParmBlkPtr, DCtlPtr

RTS ;open is always immediate, must return via RTS

DPrime

MOVEM.L A0-A1,-(SP) ;save ParmBlkPtr, DCtlPtr across function call

MOVEM.L A0-A1,-(SP) ;push ParmBlkPtr, DCtlPtr for C

BSR MyDriverPrime ;call linked C function

ADDQ #8,SP ;clean up the stack

MOVEM.L (SP)+,A0-A1 ;restore ParmBlkPtr, DCtlPtr

BRA.B IOReturn

DControl

MOVEM.L A0-A1,-(SP) ;save ParmBlkPtr, DCtlPtr across function call

MOVEM.L A0-A1,-(SP) ;push ParmBlkPtr, DCtlPtr for C

BSR MyDriverControl;call linked C function

ADDQ #8,SP ;clean up the stack

MOVEM.L (SP)+,A0-A1 ;restore ParmBlkPtr, DCtlPtr

CMPI.W #killCode,csCode(A0) ;test for KillIO call (special case)

BNE.B IOReturn

RTS ;KillIO must always return via RTS

DStatus

MOVEM.L A0-A1,-(SP) ;save ParmBlkPtr, DCtlPtr across function call

MOVEM.L A0-A1,-(SP) ;push ParmBlkPtr, DCtlPtr for C

C H A P T E R 1

Device Manager

1-30 Writing a Device Driver

BSR MyDriverStatus ;call linked C function

ADDQ #8,SP ;clean up the stack

MOVEM.L (SP)+,A0-A1 ;restore ParmBlkPtr, DCtlPtr

IOReturn

MOVE.W ioTrap(A0),D1

BTST #noQueueBit,D1 ;immediate calls are not queued, and must RTS

BEQ.B @Queued ;branch if queued

@NotQueued

TST.W D0 ;test asynchronous return result

BLE.B @ImmedRTS ;result must be ≤0
CLR.W D0 ;"in progress" result (> 0) not passed back

@ImmedRTS

MOVE.W D0,ioResult(A0) ;for immediate calls you must explicitly

; place the result in the ioResult field

RTS

@Queued

TST.W D0 ;test asynchronous return result

BLE.B @MyIODone ;I/O is complete if result ≤ 0
CLR.W D0 ;"in progress" result (> 0) not passed back

RTS

@MyIODone

MOVE.L JIODone,-(SP) ;push IODone jump vector onto stack

RTS

DClose

MOVEM.L A0-A1,-(SP) ;save ParmBlkPtr, DCtlPtr across function call

MOVEM.L A0-A1,-(SP) ;push ParmBlkPtr, DCtlPtr for C

BSR MyDriverClose ;call linked C function

ADDQ #8,SP ;clean up the stack

MOVEM.L (SP)+,A0-A1 ;restore ParmBlkPtr, DCtlPtr

RTS ;close is always immediate, must return via RTS

In this example, DOpen, DPrime, DControl, DStatus, and DClose are the five entry

points that the Device Manager locates using the offsets defined in the driver header.

These in turn call the actual driver routines, which are written in C. The C functions

return a result code if the I/O completed, or a positive value (usually 1) if the I/O is

being handled asynchronously.

C H A P T E R 1

Device Manager

Writing a Device Driver 1-31

When the driver routine returns, the dispatching routine removes the parameters from

the stack, restores the A0 and A1 registers, and then returns control to the Device

Manager in one of two ways:

■ Calling the IODone routine. This routine, described in detail on page 1-87, indicates
to the Device Manager that the request is complete. The Device Manager removes the
request from the I/O queue and calls the completion routine, if any. This is the normal
method of returning from driver prime, control, and status routines.

■ Returning with an RTS instruction. Use this method when you do not want the Device
Manager to remove the request from the I/O queue. There are three cases where the
RTS instruction should be used:

■ Returning from an asynchronous request that is not yet complete. After your device
driver begins an asynchronous operation, it should return control to the Device
Manager with an RTS instruction. The device driver can regain control of the
processor using an interrupt handler, VBL task, or other method, and jump to
IODone when the request is complete.

■ Returning from an immediate request. Because the Device Manager does not queue
immediate requests, they should always return with an RTS instruction.

■ Returning from open, close, and KillIO requests. These requests are never queued
and should always return with an RTS instruction.

To use this dispatching routine you would place it after the driver header in your

assembly-language source file, and link it to your C-language driver routines. Listing 1-7

on page 1-28 shows the driver header. Sample driver routines are presented in the

following sections.

Writing Open and Close Routines

You must provide both an open routine and a close routine for your device driver. The

open routine should allocate any private storage your driver requires and place a handle

to this storage in the dCtlStorage field of the device control entry. After allocating

memory, the open routine should perform any other preparation required by your driver.

If your open routine installs an interrupt handler, you may want to store a pointer

to the device control entry in private storage where it will be available for the interrupt

handler. The section “Handling Asynchronous I/O” on page 1-37 discusses

interrupt handling in more detail.

Listing 1-9 shows a sample open routine, MyDriverOpen. This function begins

by checking whether the driver is already open (by examining the contents of the

dCtlStorage field of the device control entry). If the driver is not already open, the
MyDriverOpen function sets the appropriate flags in the device control entry and

allocates memory in the system heap for private storage. The private storage of the

driver in this example contains two fields, byteCount and lastErr, which store

information about the last I/O function. The prime, control, and status routines

described in the following sections use these fields.

If the MyDriverOpen function fails to allocate memory for private storage, it returns the

openErr result code, which notifies the Device Manager that the driver did not open.

C H A P T E R 1

Device Manager

1-32 Writing a Device Driver

Listing 1-9 Example driver open routine

struct MyDriverGlobals {

short byteCount;

short lastErr;

};

typedef struct MyDriverGlobals MyDriverGlobals;

typedef struct MyDriverGlobals *MyDriverGlobalsPtr, **MyDriverGlobalsHdl;

OSErr MyDriverOpen(IOParamPtr pb, DCtlPtr dce)

{

if (dce->dCtlStorage == nil)

{

/* set up flags in the device control entry */

dce->dCtlFlags |= (dCtlEnableMask | dStatEnableMask | dWritEnableMask |

 dReadEnableMask | dNeedLockMask | dRAMBasedMask);

/* initialize dCtlStorage */

dce->dCtlStorage = NewHandleSysClear(sizeof(MyDriverGlobals));

if (dce->dCtlStorage == nil)

return(openErr);

else

return(noErr);

}

else

{

/* the driver is already open */

return(noErr);

}

}

The close routine must reverse the effects of the open routine by releasing any memory

allocated by the driver, removing interrupt handlers, removing any VBL or Time

Manager tasks, and replacing changed interrupt vectors. If the close routine cannot

complete the close request, it should return the closErr result code and the driver

should continue to operate normally.

The Device Manager does not dispose of the device control entry when a driver is

closed. If you want to save any information about the operational state of the driver

until the next time the driver is opened, you can store a handle to the information in the

dCtlStorage field of the device control entry.

Listing 1-10 shows a sample close routine, MyDriverClose. Because this device

driver does not need to store any information until the next time it is opened, the

MyDriverClose function disposes of the private storage allocated by MyDriverOpen.

C H A P T E R 1

Device Manager

Writing a Device Driver 1-33

Listing 1-10 Example driver close routine

OSErr MyDriverClose(IOParamPtr pb, DCtlPtr dce)

{

if (dce->dCtlStorage != nil)

{

DisposeHandle(dce->dCtlStorage);

dce->dCtlStorage = nil;

}

return(noErr);

}

Writing a Prime Routine

The prime routine implements I/O requests. You can write your prime routine to

execute synchronously or asynchronously. While a synchronous prime routine completes

an entire I/O request before returning to the Device Manager, an asynchronous prime

routine can begin an I/O transaction but return to the Device Manager before the request

is complete. In this case, the I/O request continues to be executed, typically when more

data is available, by other routines such as interrupt handlers or completion routines.

“Handling Asynchronous I/O” on page 1-37 discusses how to complete an

asynchronous prime routine.

The Device Manager indicates whether it is requesting a read or a write operation by

placing one of the following constants in the low-order byte of the ioTrap field of the

parameter block:

enum {

aRdCmd = 2, /* read operation requested */

aWrCmd = 3 /* write operation requested */

};

The Device Manager includes two routines, Fetch and Stash, that provide low-level

support for reading and writing characters to and from data buffers. Use of these

routines is optional. “Writing and Installing Device Drivers,” beginning on page 1-82,

describes these functions.

The Fetch and Stash routines update the ioActCount field of the parameter block.

If you do not use these routines, you are responsible for updating this field.

If your driver serves a block device, you should update the dCtlPosition field of the

device control entry.

Listing 1-11 shows a sample prime routine. This routine determines whether a read or

write operation is being requested, then calls the appropriate function. The reading and

writing functions, which are not shown here, would transfer the data to or from the

hardware device.

C H A P T E R 1

Device Manager

1-34 Writing a Device Driver

Listing 1-11 Example driver prime routine

OSErr MyDriverPrime(IOParamPtr pb, DCtlPtr dce)

{

MyDriverGlobalsHdl dStore;

short callType;

long numBytes;

short myErr;

dStore = (MyDriverGlobalsHdl)dce->dCtlStorage;

numBytes = pb->ioReqCount;

callType = 0x00ff & pb->ioTrap; /* get the low byte */

switch (callType)

{

case aRdCmd:

myErr = MyReadBytes(pb->ioBuffer, numBytes);

break;

case aWrCmd:

myErr = MyWriteBytes(pb->ioBuffer, numBytes);

break;

}

(*dStore)->byteCount = numBytes; /* save in private storage */

(*dStore)->lastErr = myErr;

pb->ioActCount = numBytes; /* update parameter block field */

return(myErr);

}

After obtaining a handle to the device driver’s private storage from the dCtlStorage

field of the device control entry, the MyDriverPrime function examines the low-order

byte of the ioTrap field of the parameter block to determine whether the Device

Manager is requesting a read operation or a write operation. MyDriverPrime then calls

either the MyReadBytes or MyWriteBytes function to move the requested number of

bytes to or from the buffer designated by the parameter block.

The MyDriverPrime function stores the result code and byte count in its private

storage. These values will be used by the example control and status routines described

in the next section. Finally, MyDriverPrime updates the ioActCount field of the

parameter block and returns the result code.

Writing Control and Status Routines

Control and status routines are usually used to send and receive driver-specific

information. However, you can use these routines for any kind of data transfer as long

as you implement the minimum functionality described in this section. Like the prime

routine, the control and status routines that you write can execute synchronously or

asynchronously.

C H A P T E R 1

Device Manager

Writing a Device Driver 1-35

The Device Manager passes information to the control routine in the csCode and

csParam fields of the parameter block. The csCode field specifies the type of control

request and the csParam field contains any additional information. The csCode values

-32767 through 127 are reserved by Apple Computer, Inc. Within this range, the

following constant values are defined for use by all device drivers:

When the Device Manager receives a KillIO request, it removes every parameter block

from the driver I/O queue. If your driver responds to any requests asynchronously, the

part of your driver that completes asynchronous requests (for example, an interrupt

handler) might expect the parameter block for the pending request to be at the head of

the queue. The Device Manager notifies your driver of KillIO requests so that it can

take the appropriate actions to stop work on the pending request. Your driver must

return control to the Device Manager by means of an RTS instruction and not by

jumping to the IODone routine.

If you set the dNeedGoodbye flag in the drvrFlags field of the driver header (or the

dCtlFlags field of the device control entry), the Device Manager will call your control

routine with the value goodbye in the csCode parameter before the heap is

reinitialized. You driver can respond by performing any clean-up actions necessary

before heap reinitialization.

If you set the dNeedTime flag in the drvrFlags field of the driver header (or the

dCtlFlags field of the device control entry), the Event Manager will periodically call

your control routine with the value accRun in the csCode parameter. Because these

calls are immediate, your driver must be reentrant to handle them properly. For more

information about the dNeedTime flag and periodic actions, see the description of the

driver header, beginning on page 1-25.

Your control routine must return the controlErr result code for any csCode values

that are not supported. You can define driver-specific csCode values if necessary, as

long as they are outside the range reserved by Apple Computer, Inc.

Listing 1-12 shows a sample control routine, MyDriverControl. This function

interprets the driver-specific csCode value of kClearAll as a command to clear the

information saved in the driver’s private storage by the MyDriverPrime routine.

Listing 1-12 Example driver control routine

OSErr MyDriverControl(CntrlParamPtr pb, DCtlPtr dce)

{

MyDriverGlobalsHdl dStore;

dStore = (MyDriverGlobalsHdl)dce->dCtlStorage;

Constant name Value Meaning

killCode 1 KillIO requested

goodbye –1 Heap being reinitialized

accRun 65 Time for periodic action

C H A P T E R 1

Device Manager

1-36 Writing a Device Driver

switch (pb->csCode)

{

case kClearAll:

(*dStore)->byteCount = 0;

(*dStore)->lastErr = 0;

return(noErr);

default: /* always return controlErr for unknown csCode */

return(controlErr);

}

}

Your status routine should work in a similar manner. The Device Manager uses the

csCode field to specify the type of status information requested. The status routine

should respond to whatever requests are appropriate for your driver and return the

error code statusErr for any unsupported csCode value.

The Device Manager interprets a status request with a csCode value of 1 as a special

case. When the Device Manager receives such a status request, it returns a handle to

the driver’s device control entry. Your driver’s status routine never sees this request.

Listing 1-13 shows a sample status routine, MyDriverStatus, that implements two

driver-specific status requests, kByteCount and kLastErr. When MyDriverStatus

receives one of these requests, it returns the byte count or error code values saved in

private storage by the MyDriverPrime routine. MyDriverStatus returns this

information in the csParam field.

Listing 1-13 Example driver status routine

OSErr MyDriverStatus(CntrlParamPtr pb, DCtlPtr dce)

{

MyDriverGlobalsHdl dStore;

dStore = (MyDriverGlobalsHdl)dce->dCtlStorage;

switch (pb->csCode)

{

case kByteCount:

pb->csParam[0] = (*dStore)->byteCount;

return(noErr);

case kLastErr:

pb->csParam[0] = (*dStore)->lastErr;

return(noErr);

default: /* always return statusErr for unknown csCode */

return(statusErr);

}

}

C H A P T E R 1

Device Manager

Writing a Device Driver 1-37

Handling Asynchronous I/O
If you design any of your driver routines to execute asynchronously, you must provide a

mechanism for your driver to complete the requests. Some examples of routines that you

might use are:

■ Completion routines. Your driver routine could call another driver to start the data
transfer. In this case, you can provide that driver with a completion routine. When
the other driver completes the request, the Device Manager executes the completion
routine. In the completion routine, you could call the other driver again to execute the
next part of the I/O operation. When the entire operation is complete, the completion
routine should return by calling the IODone routine.

■ Interrupt handlers. If your driver serves a hardware device that generates interrupts,
you can create an interrupt handler that responds to these interrupts. Your interrupt
handler must clear the source of the interrupt and return as quickly as possible,
while preserving all registers other than D0 through D3 and A0 through A3. For
more information about interrupts and how to install an interrupt handler, see
Inside Macintosh: Processes and Designing Cards and Drivers for the Macintosh Family,
third edition.

■ VBL, Time Manager, and Deferred Task Manager tasks. Installing any of these tasks
ensures that your driver receives system time at some point in the future. During this
time, you can check to see if the I/O operation is ready to continue.

If your driver serves a device on a NuBus™ expansion card, you might want to use slot

interrupts to signal your driver. When a NuBus card device signals a slot interrupt, the

CPU can quickly detect which card requested the interrupt service, but not which device

on the card. To determine which device caused the interrupt, the system uses a polling

procedure. Your driver should provide a polling routine that checks if the device it

serves caused the current interrupt, and if so, calls the proper driver routine to handle

the interrupt. The Slot Manager maintains a queue of these polling routines for each slot.

Your driver can install an element in this queue using the Slot Manager function

SIntInstall. You can remove a queue element with the SIntRemove function.

See the chapter “Slot Manager” in this book for information about these functions.

You should observe these guidelines when writing or using asynchronous routines:

■ Once you pass a parameter block to an asynchronous routine it is out of your control.
You should not examine or change the parameter block until your completion routine
is called because you have no way of knowing the state of the parameter block.

■ Do not dispose of or reuse a parameter block until the asynchronous request is
completed. For example, if you declare the parameter block as a local variable, your
function cannot return until the request is complete because local variables are
allocated on the stack and released when a function returns.

■ Use a completion routine to determine when an asynchronous routine has completed,
rather than polling the ioResult field of the parameter block. Polling the ioResult
field is not efficient and defeats the purpose of asynchronous operation.

C H A P T E R 1

Device Manager

1-38 Writing a Device Driver

Installing a Device Driver
There are a variety of ways to install a device driver, depending on where the driver

code is stored and how much control you want over the installation process.

■ You can store the device driver in a resource within an application and have the
application install the driver.

■ You can store the device driver, and the code to install it, in a system extension file.
See the chapter “Start Manager” in Inside Macintosh: Operating System Utilities for
information about creating system extensions.

■ You can store the device driver in the declaration ROM of an expansion card. Slot
device drivers can be designed to load automatically at startup, or you can use the
Slot Manager SGetDriver function to load the driver into memory. Refer to
Designing Cards and Drivers for the Macintosh Family, third edition, for information
about writing and installing slot device drivers.

If you store your driver in a resource of type 'DRVR' you can use the OpenDriver or

PBOpen functions to install and open your driver. If you need more control over the

installation process, you can use the DriverInstall function to create the device

control entry and add it to the unit table, or you can create the device control entry

yourself, install it in the unit table, and then use OpenDriver or PBOpen to open the

driver. If the driver is already installed in the unit table, OpenDriver and PBOpen

simply call the driver’s open routine and return the driver reference number.

If you want to use the OpenDriver function to install your driver, you are responsible

for examining the unit table and changing your driver resource ID so that the

OpenDriver function installs your driver in an empty location in the unit table. If the

handle at a given unit number is nil, there is no device control entry installed in that

position. You can install your device control entry in any empty location in the unit table

that is not listed as reserved by Apple Computer, Inc. Table 1-2 summarizes the unit

numbers reserved for specific purposes.

Listing 1-14 shows a method of searching the unit table for an appropriate location to

install your driver. The MyOpenDriver function in Listing 1-1 on page 1-18 calls this

function and then uses the OpenDriver function to install and open the device driver.

Table 1-2 Reserved unit numbers

Unit number range Reference number range Purpose

0 through 11 –1 through –12 Reserved for serial, disk, AppleTalk,
printer, and other drivers

12 through 31 –13 through –32 Available for desk accessories

32 through 38 –33 through –39 Available for SCSI devices

39 through 47 –40 through –48 Reserved

48 through 127 –49 through –128 Available for slot and other drivers

C H A P T E R 1

Device Manager

Writing a Device Driver 1-39

Listing 1-14 Finding space in the unit table

short MyFindSpaceInUnitTable(void);

{

Ptr curUTableBase, newUTableBase;

short curUTableEntries, newUTableEntries;

short refNum, unitNum;

/* get current unit table values from low memory globals */

curUTableEntries = *(short*)UnitNtryCnt;

curUTableBase = *(Ptr*)UTableBase;

/* search for empty space in the current unit table */

for (unitNum = curUTableEntries - 1;

unitNum >= 48; /* lowest available unit number */

unitNum--)

{

refNum = ~(unitNum);

if (GetDCtlEntry(refNum) == nil)

return(unitNum); /* found a space */

}

/* no space in the current table, so make a new one */

/* increase the size of the table by 16 (an arbitrary value) */

newUTableEntries = curUTableEntries + 16;

/* allocate space for the new table */

newUTableBase =

NewPtrSysClear((long)newUTableEntries * sizeof(Handle));

if (newUTableBase == nil)

return(memErr);

/* copy the old table to the new table */

BlockMove(curUTableBase, newUTableBase,

 (long)curUTableEntries * sizeof(Handle));

/* set the new unit table values in low memory */

(Ptr)UTableBase = newUTableBase;

(short)UnitNtryCnt = newUTableEntries;

unitNum = newUTableEntries - 1;

return(unitNum);

}

C H A P T E R 1

Device Manager

1-40 Writing a Chooser-Compatible Device Driver

Although rare, it is possible for the unit table to become completely full. If the

MyFindSpaceInUnitTable function does not find an empty unit table entry, it creates

a larger unit table and copies the contents of the old unit table into the new one. To avoid

the need for every driver to create a larger table, this function increases the size of the

table by 16 entries—a reasonable amount in most cases.

The MyFindSpaceInUnitTable function does not need to disable interrupts when

changing the values of the UTableBase and UnitNtryCnt system global variables

because both unit tables are valid and drivers are not opened or closed at interrupt time.

Note that this function does not check for empty locations in the space reserved for desk

accessories or SCSI drivers. You may wish to modify the function if you are installing

one of these.

Writing a Chooser-Compatible Device Driver

The Chooser is a desk accessory that helps provide a standard user interface for

networking and printing device drivers. The Chooser allows the user to make choices

such as which serial port to use, which AppleTalk zone to communicate with, and which

LaserWriter to use.

This section describes how the Chooser works, how to create a Chooser extension, and

how to respond to actions from the user. You should read the previous section, “Writing

a Device Driver,” before you read this section.

How the Chooser Works
The Chooser allows users to select which devices they want to use. When the user

opens the Chooser, it displays a window containing lists and buttons for making

device-related choices. Typically, users select a type of device from the icon list, then

select the particular device they want to use from the device list. For AppleTalk devices,

the user must also select an AppleTalk zone from the zone list. The Chooser window can

also display buttons, such as an OK button; and radio buttons, such as the background

printing On and Off buttons. Figure 1-10 shows an example of the Chooser window.

C H A P T E R 1

Device Manager

Writing a Chooser-Compatible Device Driver 1-41

Figure 1-10 The Chooser window

The Chooser relies on the List Manager for creating, displaying, and manipulating

possible user selections in this window. You may want to read the chapter

“List Manager” in Inside Macintosh: More Macintosh Toolbox for more information.

The Chooser does not communicate directly with device drivers; instead, it

communicates with device packages. A device package is a resource similar to a driver

resource, except a device package responds to Chooser messages instead of Device

Manager requests. The device package is responsible for communicating the user’s

choices to the device driver.

Device packages are stored in Chooser extension files, which the Chooser looks for in the

Extensions folder inside the System Folder of the startup disk. A Chooser extension file

contains a number of resources in addition to the device package resource. These other

resources contain information about the buttons, labels, and lists that the Chooser

displays when the user selects the device icon from the icon list. You use these resources

to define the following properties:

■ The device list label. The Chooser displays this label over the device list.

■ The buttons to use. The Chooser allows the device package to display up to four
buttons, called the Left button, the Right button, the On radio button, and the Off
radio button.

■ The titles and positions of the buttons.

■ The radio button label.

■ The AppleTalk device type name. The Chooser searches the current AppleTalk zone
for devices of this type.

■ An AppleTalk Name-Binding Protocol (NBP) retry interval and a timeout count. The
Chooser uses this information when searching for AppleTalk devices.

C H A P T E R 1

Device Manager

1-42 Writing a Chooser-Compatible Device Driver

When a user selects the icon corresponding to a particular device package, the Chooser

sends messages to that device package by calling the device package as if it were the

following function:

pascal OSErr MyPackage (short message, short caller,

StringPtr objName, StringPtr zoneName,

long p1, long p2);

The Chooser passes the following parameters to the device package:

Parameter Description

message The operation to be performed; this parameter has one of the following
values:

enum {

/* Chooser messages */

chooserInitMsg = 11,

newSelMsg = 12,

fillListMsg = 13,

getSelMsg = 14,

selectMsg = 15,

deselectMsg = 16,

terminateMsg = 17,

buttonMsg = 19

};

Table 1-4 on page 1-47 explains the meaning of these messages.

caller A number that identifies the application calling your device package. The
value chooserID indicates the Chooser. Values in the range 0–127 are
reserved; values outside this range may be used by applications.

objName Additional information whose meaning depends on the value of the
message parameter. See Table 1-4 on page 1-47 for more information.

zoneName The name of the AppleTalk zone containing the devices in the device list.
If the Chooser is being used with the local zone and bit 24 of the flags
field of the device package header is not set, the string value is “*”,
otherwise, it is the actual zone name. See “Creating a Device Package” on
page 1-45 for more information about the package header.

p1 A handle to the List Manager list that contains the device choices
displayed in the device list box.

p2 Additional information whose meaning depends on the value of the
message parameter. See Table 1-4 on page 1-47 for more details.

When the user opens the Chooser, the Chooser searches the Extensions folder for

Chooser extension files. For each one it finds, it opens the file, fetches the device icon,

reads the flags field of the device package header, and closes the file. The Chooser then

displays each device icon, and dims the icons for AppleTalk devices if AppleTalk is not

connected.

C H A P T E R 1

Device Manager

Writing a Chooser-Compatible Device Driver 1-43

When the user selects a device icon that is not dimmed, the Chooser reopens the

corresponding Chooser extension file and performs the following actions:

1. The Chooser labels the device list with the device list label.

2. The Chooser sends the chooserInitMsg message to the device package.

3. If the selected device package represents a serial printer, the Chooser places the two
icons that represent the printer port and the modem port serial drivers into the device
list box. When the user makes a selection, the Chooser records the user’s choice in low
memory and parameter RAM.

4. If the selected device icon represents an AppleTalk device and the corresponding
device package does not accept fillListMsg messages, the Chooser initiates an
asynchronous routine that interrogates the current AppleTalk zone for all devices
whose type matches the AppleTalk device type name specified in the Chooser
extension file. The asynchronous routine uses the retry interval and the timeout
count. As responses arrive, the Chooser updates the device list.

5. If the device package does accept fillListMsg messages, the Chooser sends the
fillListMsg message to the device package. The device package responds by filling
the device list with the appropriate device choices.

6. To determine which devices in the device list should be selected, the Chooser calls
the device package with the getSelMsg message. The device package responds
by inspecting the list and setting the selected or unselected state of each entry. The
Chooser may send the getSelMsg message frequently; for example, each time a new
response to the AppleTalk zone interrogation arrives. The Chooser does not send the
getSelMsg message for serial printers; it highlights the icon corresponding to the
currently selected serial port, as recorded in low memory.

7. If the device package allows multiple devices to be active at once, the Chooser sets
the appropriate List Manager bits. When the user selects or deselects a device, the
Chooser calls the device package with the appropriate message. For packages that
do not accept multiple active devices, the Chooser sends the selectMsg or
deselectMsg message; otherwise, it sends the newSelMsg message. The device
package mounts or unmounts the device, if appropriate, and records the user’s choice.

8. When the user selects a different device icon or closes the Chooser, the Chooser calls
the current device package with the terminateMsg message, if the package accepts
this kind of message. At this time, the package can clean up, if necessary. The Chooser
then calls the UpdateResFile function, closes the device resource file, and flushes
the system startup volume.

Creating a Chooser Extension File
The Chooser uses three file types to identify different kinds of devices supported by

Chooser extension files:

File type Device type

'PRES' Serial printer

'PRER' Non-serial printer

'RDEV' Other device

C H A P T E R 1

Device Manager

1-44 Writing a Chooser-Compatible Device Driver

You can specify the creator of your Chooser extension file, which allows you to give your

device its own icon.

You can include the following resources in your Chooser extension file:

You should also include a 'BNDL' resource (and appropriate icon family resources) to

give your device type a distinctive icon because this may be the only way that devices

are identified in the Chooser window. The chapter “Finder Interface” in Inside Macintosh:
Macintosh Toolbox Essentials describes the 'BNDL' resource.

The Chooser allows your device package to display two buttons, called the Left button

and the Right button because of their default positions. The Left button has a double

border and is highlighted (the title string is dark) when one or more devices are selected

in the device list. When this button is highlighted, pressing the Return or Enter key, or

double-clicking in the device list, is equivalent to clicking the button. The Right button

has a single border and is always highlighted. The user can activate it only by clicking it.

The Chooser also allows you to display two radio buttons and a radio button label.

These buttons are called the On radio button and the Off radio button because those are

the titles the LaserWriter uses, but you can name them anything you want.

You can position these buttons by including a resource of type 'ncrt' with an ID

of –4096. The first word in this type of resource specifies the number of rectangles, and

the rest of the resource contains the rectangle definitions. The first rectangle positions the

Left button, the second positions the Right button, the third positions the On radio

Resource
 type

Resource
 ID Description

'PACK' –4096 Device package. This resource contains the device package
header and code.

'STR ' –4096 Type name for AppleTalk devices. The Chooser searches the
current AppleTalk zone for devices of this type.

'GNRL' –4096 AppleTalk information. The first byte of this resource
contains the Name-Binding Protocol (NBP) retry interval,
the second byte contains the timeout count.

'STR ' –4091 List box label. The Chooser labels the device list with this
string after the user has selected the device’s icon.

'STR ' –4087 Radio button label.

'STR ' –4088 Off radio button title.

'STR ' –4089 On radio button title.

'STR ' –4092 Right button title.

'STR ' –4093 Left button title.

'ncrt' –4096 Button positions.

'LDEF' –4096 Alternate list definition function. You can supply this
function to modify the device list—to include pictures
or icons, for example.

'STR ' –4090 Reserved for use by the Chooser.

C H A P T E R 1

Device Manager

Writing a Chooser-Compatible Device Driver 1-45

button, and the fourth positions the Off radio button. The fifth rectangle positions the

radio button label.

Each rectangle definition is 8 bytes long and contains the rectangle coordinates in the

order [top, left, bottom, right]. The default values are [112, 206, 132, 266] for the Left button

and [112, 296, 132, 356] for the Right button. You could use the values [112, 251, 132, 331]

to center a single button.

The Chooser uses the List Manager to produce and display the standard device list. You

can supply a list definition function to modify this list. For example, you might want to

include pictures or icons in your list. To do this, you must provide a resource of type

'LDEF' with an ID of –4096. For complete information about list construction and data

structures, see the chapter “List Manager” in Inside Macintosh: More Macintosh Toolbox.

Creating a Device Package
Like a driver resource, a device package has two parts:

■ a header that contains flags and other information about the driver

■ the code that responds to Chooser messages

Figure 1-11 shows the structure of a device package.

Figure 1-11 Structure of a device package

Since the Chooser expects the package code to be at the beginning of the device package,

the first field of the package header should be a BRA.S instruction to the package code.

C H A P T E R 1

Device Manager

1-46 Writing a Chooser-Compatible Device Driver

The device ID is an integer that identifies the device. The version field differentiates

versions of the driver code.

The flags field contains information about the device package and the device it serves.

Table 1-3 lists the meaning of each bit of the flags field.

The package code should implement the MyPackage function described on page 1-42.

The following section, “Responding to the Chooser,” discusses how to implement this

function.

Responding to the Chooser
This section gives more details about how your device package should respond when it

receives a message from the Chooser.

When the Chooser sends your device package a message, the Chooser extension file is

the current resource file and the Chooser window is the current graphics port. The

Table 1-3 Device package flags

Bit Meaning

31 Set if an AppleTalk device

30–29 Reserved (clear to 0)

28 Set if the device package can have multiple instances selected at once

27 Set if the device package uses the Left button

26 Set if the device package uses the Right button

25 Set if no zone name has been saved

24 Set if the device package uses actual zone names

23–21 Reserved (clear to 0)

20 Set if the device uses the On and Off radio buttons and radio button label

19–17 Reserved (clear to 0)

17 Set if the device package accepts the chooserInitMsg message

16 Set if the device package accepts the newSelMsg message

15 Set if the device package accepts the fillListMsg message

14 Set if the device package accepts the getSelMsg message

13 Set if the device package accepts the selectMsg message

12 Set if the device package accepts the deselectMsg message

11 Set if the device package accepts the terminateMsg message

10–0 Reserved (clear to 0)

C H A P T E R 1

Device Manager

Writing a Chooser-Compatible Device Driver 1-47

startup disk is the default volume and the System Folder of the startup disk is the

default directory. Your device package must preserve all of these.

Table 1-4 lists the Chooser messages and how your device package should respond

to them.

Table 1-4 Chooser messages and their meanings

Message Meaning

chooserInitMsg The Chooser sends this message to your device package when the user selects
the icon representing your device in the icon list. The objName parameter
contains a pointer to a data structure that contains a size word followed by four
handles to structures of type ControlRecord. The size is at least 18 bytes
(2 bytes for the size word and 4 bytes for each of the handles). The handles
reference the Left and Right buttons and the On and Off radio buttons, in that
order. Your device package can respond to this message by setting up the initial
button configuration. To display any of the radio buttons, use the ShowControl
function. To highlight them, use the SetControlValue function. The p2
parameter is not used. For more information about controls, see the chapter
“Control Manager” in Inside Macintosh: Macintosh Toolbox Essentials.

newSelMsg If your device package allows multiple selections, the Chooser sends this
message to your package when the user changes or adds a selection. The
objName and p2 parameters are not used.

fillListMsg The Chooser sends this message when the user selects a device icon. The p1
parameter contains a handle to a List Manager list. Your device package should
use the List Manager to fill this list with choices for the particular type of device.
The objName and p2 parameters are not used.

getSelMsg The Chooser sends this message to determine which devices in the device list
should be selected. The p1 parameter contains a handle to a List Manager list.
Your device package should respond by inspecting the list and setting the
selected or unselected state of each entry, using the LSetSelect function. You
should alter only the entries that require updating. The Chooser does not send
this message for serial printers.

selectMsg If your device package does not allow multiple selections, the Chooser sends
this message to your package when the user selects a device in the device list.
You should record the user’s selection, preferably in your Chooser extension file.
Your device package may not call the List Manager in response to this message.

If your device package accepts fillListMsg messages, the objName
parameter is undefined and the p2 parameter contains the row number of the
selected device.

If your device package does not accept fillListMsg messages, the objName
parameter contains a pointer to a string containing the name of the device (up to
32 characters). If the device is an AppleTalk device, the p2 parameter contains
the AddrBlock value for the address of the selected AppleTalk device. For more
information about AppleTalk devices, refer to Inside Macintosh: Networking.

continued

C H A P T E R 1

Device Manager

1-48 Writing a Chooser-Compatible Device Driver

Allocating Private Storage
Device packages initially have no data space allocated. There are two ways your device

package can acquire data space:

■ Use the List Manager to allocate extra memory in the device list.

■ Create a resource.

The Chooser uses column 0 of the device list structure to store the names displayed in

the device list. For device packages that do not accept fillListMsg messages, the

Chooser uses column 1 to store the 4-byte AppleTalk internet addresses of the devices

in the list. Therefore, your device package can use column 1 and higher (if it accepts

fillListMsg messages) or column 2 and higher to store private data. You can use

standard List Manager functions to add these columns, store data in them, and retrieve

the data stored there. Your device package can also use the refCon field of the device

list for its own purposes.

Using the device list is limited by the fact that the Chooser disposes of the device list

whenever the user changes device types or changes the current zone. However, the

Chooser does call your device package with the terminateMsg message before it

disposes of the list.

deselectMsg If your device package does not allow multiple selections, the Chooser sends
this message to your package when the user deselects a device in the device list.
Your device package may not call the List Manager in response to this message.

If your device package accepts fillListMsg messages, the objName
parameter is undefined and the p2 parameter contains the row number of the
device that was deselected.

If your device package does not accept fillListMsg messages, the objName
parameter contains a pointer to a string containing the name of the device (up to
32 characters). If the device is an AppleTalk device, the p2 parameter contains
the AddrBlock value for the address of the selected AppleTalk device. For more
information about AppleTalk devices, refer to Inside Macintosh: Networking.

terminateMsg The Chooser sends this message when the user selects a different device icon,
closes the Chooser window, or changes zones. Your device package should
perform any necessary cleanup tasks but should not dispose of the device list.
The objName and p2 parameters are not used.

buttonMsg The Chooser sends this message when the user clicks one of the buttons in the
Chooser window. The low-order byte of the p2 parameter contains 1 if the user
clicked the Left button, 2 if the user clicked the Right button, 3 if the user clicked
the On radio button, and 4 if the user clicked the Off radio button. You must
perform the appropriate highlighting for the radio buttons. The high-order word
of the p2 parameter contains the modifier bits from the mouse-up event. See the
chapters “Control Manager” and “Event Manager” in Inside Macintosh:
Macintosh Toolbox Essentials for more information.

Table 1-4 Chooser messages and their meanings (continued)

Message Meaning

C H A P T E R 1

Device Manager

Writing a Desk Accessory 1-49

Also, if your device package does not accept fillListMsg messages, the Chooser

disposes of the device list whenever a new response from the AppleTalk zone

interrogation arrives. However, the Chooser does send the getSelMsg message

immediately afterward.

The second way to obtain storage space is to create a resource in the device resource file.

This file is always the current resource file when the Chooser sends a message to the

package, so you can use the GetResource function to obtain a handle to the storage.

It is important for most device packages to record which devices the user has chosen.

The recommended method for this is to create a resource in your driver resource file.

This resource can be of any type; in fact, it’s advantageous to provide your own resource

type so that no other program will try to modify it. If you choose to use a standard

resource type, you should use only resource IDs in the range –4080 through –4065.

Writing a Desk Accessory

Desk accessories are small applications designed like device drivers. Desk accessories

typically provide a user interface with a window and a menu, perform some limited

function, and are opened from the Apple menu. The Chooser is an example of a desk

accessory.

Desk accessories were originally created for the Macintosh because they offered two

distinct advantages over applications. They provided both a limited degree of

multitasking and a primitive form of interapplication communication. However, modern

Macintosh applications enjoy far more sophisticated versions of these capabilities. Users

can even open applications from the Apple menu. For these reasons, you would be better

served by writing a small application than by writing a desk accessory.

Control panels have largely replaced desk accessories as a user interface for device

drivers. In addition to providing a more consistent and extensible interface, control

panels can include an initialization ('INIT') resource to load and execute your device

driver at system startup. For more information about control panels, see the chapter

“Control Panels” in Inside Macintosh: More Macintosh Toolbox.

If you’re certain you need to write a desk accessory, you should read this section. You

might also want to read the chapters “Event Manager,” “Window Manager,” “Dialog

Manager,” and “Menu Manager” in Inside Macintosh: Macintosh Toolbox Essentials.

How Desk Accessories Work
When the user opens a desk accessory (or when an application calls the OpenDeskAcc

function), the system performs a major context switch, loads the desk accessory into the

system heap, and calls the desk accessory driver open routine. The desk accessory can

respond by creating its window and menu.

C H A P T E R 1

Device Manager

1-50 Writing a Desk Accessory

When events occur, the Event Manager directs them to the desk accessory by calling its

driver control routine. The Event Manager handles switching between applications and

desk accessories in the system heap.

When the user closes the desk accessory (by closing its window or choosing Quit from

its menu) or an application closes the desk accessory (by calling the CloseDeskAcc

function), the desk accessory disposes of its window and any other data structures

associated with it.

In a single-application environment in System 6, and in a multiple-application

environment in which the desk accessory is launched in the application’s partition

(for example, a desk accessory opened by the user from the Apple menu while holding

down the Option key), the Event Manager handles events for desk accessories in a

slightly different manner, although it still translates them into control requests. For

details, see the chapter “Event Manager” in Inside Macintosh: Macintosh Toolbox Essentials.

Creating a Driver Resource for a Desk Accessory
You create a desk accessory by creating a driver resource and storing it in a resource file,

as described in “Creating a Driver Resource,” beginning on page 1-24. Typically, you

store your desk accessory driver resource in a file of type 'dfil', which the user places

in the Apple Menu Items folder.

Three fields of the driver resource header are of particular importance to desk

accessories:

■ The drvrEMask field. This field contains an event mask specifying which events your
desk accessory can handle. If your desk accessory has a window, you should include
keyboard, activate, update, and mouse-down events, but you should not include
mouse-up events. When an event occurs, the Event Manager checks this field to
determine whether the desk accessory can handle the type of event and, if so, calls
the desk accessory driver control routine. See the chapter “Event Manager” in
Inside Macintosh: Macintosh Toolbox Essentials for more information about events
and event masks.

■ The drvrMenu field. This field contains the menu ID of your desk accessory’s menu,
if it has one, or any one of its menus, if it has more than one. Otherwise, it contains 0.
A desk accessory menu ID must be negative and must be different from the menu ID
for other desk accessories.

■ The drvrDelay field and the dNeedTime flag of the drvrFlags field. Desk
accessories sometimes need to perform certain actions periodically. For example, a
clock desk accessory might change the time it displays every second. If your desk
accessory needs to perform a periodic action, set the dNeedTime flag and use the
drvrDelay field to indicate how often the action should occur. “Creating a Driver
Resource,” beginning on page 1-24, describes these fields in more detail.

All desk accessories must implement open, close, and control routines. Your desk

accessory can implement a prime and status routine if needed.

C H A P T E R 1

Device Manager

Writing a Desk Accessory 1-51

Opening and Closing a Desk Accessory
When the user chooses an item from the Apple menu, the foreground application calls

the OpenDeskAcc function, which determines whether the item is a desk accessory,

application, or document, and schedules it for execution. Applications call the

CloseDeskAcc function if the user chooses the Close menu item from the File menu

when the foreground window does not belong to the application. These functions are

described in “Device Manager Reference,” beginning on page 1-53.

Opening a desk accessory is similar to launching an application. In your desk accessory

driver open routine, you should do the following:

■ Create the desk accessory’s window. You can do this with the Dialog Manager
function GetNewDialog or NewDialog. You should specify that the window be
invisible because the OpenDeskAcc function will display it. You should set the
windowKind field of the windowRecord structure to the desk accessory’s driver
reference number, which you can find in the device control entry. You should also
store a copy of the window pointer in the dCtlWindow field of the device control
entry.

■ Allocate private storage as you would for any device driver.

■ Create any menus needed by your desk accessory. You are responsible for adding
your menus to the menu bar. See the chapter “Menu Manager” in Inside Macintosh:
Macintosh Toolbox Essentials for more details.

If your driver open routine is unable to complete its tasks (because of insufficient

memory, for example), you should modify the code so it doesn’t respond to events,

and display an alert indicating failure.

As for all drivers, your close routine should undo the actions taken by the open routine,

dispose of the desk accessory’s window and private storage, clear the window pointer in

the device control entry, and remove any menus that were added to the menu bar.

Responding to Events
When the Event Manager determines an event has occurred that your desk accessory

should handle, it checks the drvrEMask field of the driver header and, if that field

indicates your desk accessory handles the event type, it passes the event to your desk

accessory by calling your driver control routine.

The Event Manager passes one of nine values in the csCode field to indicate the action

to take:

Constant
name Value Meaning

accEvent 64 Handle a given event

accRun 65 Time for periodic action

accCursor 66 Change cursor shape if appropriate

accMenu 67 Handle a given menu item

C H A P T E R 1

Device Manager

1-52 Writing a Desk Accessory

Along with the accEvent message, the Event Manager sends a pointer to an event

record in the csParam field. Your desk accessory can respond to the event in whatever

way is appropriate. For example, when your desk accessory becomes active, it might

install its menu in the menu bar.

Note

If your desk accessory window is a modeless dialog box and you are
calling the Dialog Manager function IsDialogEvent in response to the
event, you should set the windowKind field of your window record to 2
before you call IsDialogEvent. Setting this field to 2 allows the Dialog
Manager to recognize and handle the event properly. You should restore
the original value of the windowKind field before returning from your
control routine. ◆

The Event Manager periodically sends the accRun message if your desk accessory

has requested time for background processing. To request this service, you set the

dNeedTime flag in the drvrFlags field of your desk accessory driver header. See

“Writing Control and Status Routines,” beginning on page 1-34, for more information.

The accCursor message makes it possible to change the shape of the cursor when it

is inside your desk accessory window and your desk accessory window is active. Your

control routine should check whether the mouse location is in your window and, if so,

should set the cursor appropriately by calling the QuickDraw function InitCursor.

If your desk accessory window is a dialog box, you should respond to the accCursor

message by generating a null event (storing the event code for a null event in an event

record) and passing it to the Dialog Manager function DialogSelect. This allows the

Dialog Manager to blink the insertion point in editText items.

When the Event Manager sends an accMenu message, it provides the menu ID followed

by the menu item number in the csParam field. You should take the appropriate action

and then call the Menu Manager function HiliteMenu with a value of 0 for the menuID

parameter to remove the highlighting from the menu bar.

You should respond to the last five messages, accUndo through accClear, by

processing the corresponding editing command in the desk accessory window, if

appropriate. The chapter “Scrap Manager” in Inside Macintosh: More Macintosh Toolbox

contains information about cutting and pasting.

Your desk accessory routines should restore the current resource file and graphics port if

it changes either one.

accUndo 68 Handle the Undo command

accCut 70 Handle the Cut command

accCopy 71 Handle the Copy command

accPaste 72 Handle the Paste command

accClear 73 Handle the Clear command

Constant
name Value Meaning

C H A P T E R 1

Device Manager

Device Manager Reference 1-53

Device Manager Reference

This section describes the data structures, functions, and resources that are specific to the

Device Manager.

The “Data Structures” section shows the C declarations for the data structures that are

used by the Device Manager. The “Device Manager Functions” section describes the

functions you use to communicate with device drivers and the functions that provide

support for writing your own device drivers. The “Resources” section describes the

driver resource.

Data Structures

This section describes the parameter block structure, the device control entry structure,

and the enumerated types you use to define values within them.

Device Manager Parameter Block

The Device Manager provides both a high-level and a low-level interface for

communicating with device drivers. You pass information to the low-level functions

in a parameter block structure, defined by the ParamBlockRec union.

typedef union ParamBlockRec {

IOParam ioParam;

FileParam fileParam;

VolumeParam volumeParam;

CntrlParam cntrlParam;

SlotDevParam slotDevParam;

MultiDevParam multiDevParam;

} ParamBlockRec;

typedef ParamBlockRec *ParmBlkPtr;

The Device Manager uses two forms of the parameter block: one for the open, close,

read, and write functions (the IOParam structure) and another for the control and status

functions (the CntrlParam structure). Other managers use other structures of the

ParamBlockRec union.

typedef struct IOParam {

 QElemPtr qLink; /* next queue entry */

 short qType; /* queue type */

 short ioTrap; /* routine trap */

 Ptr ioCmdAddr; /* routine address */

 ProcPtr ioCompletion; /* completion routine address */

 OSErr ioResult; /* result code */

 StringPtr ioNamePtr; /* pointer to driver name */

C H A P T E R 1

Device Manager

1-54 Device Manager Reference

 short ioVRefNum; /* volume reference or drive number */

 short ioRefNum; /* driver reference number */

 char ioVersNum; /* not used by the Device Manager */

 char ioPermssn; /* read/write permission */

 Ptr ioMisc; /* not used by the Device Manager */

 Ptr ioBuffer; /* pointer to data buffer */

 long ioReqCount; /* requested number of bytes */

 long ioActCount; /* actual number of bytes completed */

 short ioPosMode; /* positioning mode */

 long ioPosOffset; /* positioning offset */

} IOParam;

typedef struct CntrlParam {

 QElemPtr qLink; /* next queue entry */

 short qType; /* queue type */

 short ioTrap; /* routine trap */

 Ptr ioCmdAddr; /* routine address */

 ProcPtr ioCompletion; /* completion routine address */

 OSErr ioResult; /* result code */

 StringPtr ioNamePtr; /* pointer to driver name */

 short ioVRefNum; /* volume reference or drive number */

 short ioCRefNum; /* driver reference number */

 short csCode; /* type of control or status request */

 short csParam[11]; /* control or status information */

} CntrlParam;

The first eight fields are common to both structures. Each structure also includes its own

unique fields.

Field descriptions for fields common to both structures

qLink A pointer to the next entry in the driver I/O queue. (This field is
used internally by the Device Manager to keep track of
asynchronous calls awaiting execution.)

qType The queue type. (This field is used internally by the Device Manager.)

ioTrap The trap number of the routine that was called. (This field is used
internally by the Device Manager.)

ioCmdAddr The address of the routine that was called. (This field is used
internally by the Device Manager.)

ioCompletion A pointer to a completion routine. When making asynchronous
requests, you must set this field to nil if you are not specifying
a completion routine. The Device Manager automatically sets this
field to nil when you make a synchronous request.

ioResult A value indicating whether the routine completed successfully. The
Device Manager sets this field to 1 when it queues an asynchronous
request. When the driver completes the request, it places the actual

C H A P T E R 1

Device Manager

Device Manager Reference 1-55

result code in this field. You can poll this field to detect when the
driver has completed the request and to determine its result code.
The Device Manager executes the completion routine after this field
receives the result code.

ioNamePtr A pointer to the name of the driver. You use this field only when
opening a driver.

ioVRefNum The drive number, if any. The meaning of this field depends on the
device driver. The Disk Driver uses this field to identify disk
devices.

Field descriptions for the IOParam structure

ioRefNum The driver reference number.

ioVersNum Not used.

ioPermssn The read/write permission of the driver. When you open a driver,
you must supply one of the following values in this field:

enum {

/* access permissions */

fsCurPerm = 0, /* retain current permission */

fsRdPerm = 1, /* allow reads only */

fsWrPerm = 2, /* allow writes only */

fsRdWrPerm = 3 /* allow reads and writes */

};

The Device Manager compares subsequent read and write requests
with the read/write permission of the driver. If the request type is
not permitted, the Device Manager returns a result code indicating
the error.

ioMisc Not used.

ioBuffer A pointer to the data buffer for the driver to use for reads or writes.

ioReqCount The requested number of bytes for the driver to read or write.

ioActCount The actual number of bytes the driver reads or writes.

ioPosMode The positioning mode used by drivers of block devices. Bits 0 and 1
of this field indicate where an operation should begin relative to the
physical beginning of the block-formatted medium. You can use the
following constants to test or set the value of these bits:

enum {

/* positioning modes */

fsAtMark = 0, /* at current position */

fsFromStart = 1, /* offset from beginning */

fsFromMark = 3 /* offset from current

position */

};

C H A P T E R 1

Device Manager

1-56 Device Manager Reference

The Disk Driver allows you to add the following constant to this
field to specify a read-verify operation:

enum {

rdVerify = 64 /* read-verify mode */

};

See the description of the PBRead function on page 1-70.

ioPosOffset The byte offset, relative to the position specified by the positioning
mode, where the driver should perform the operation. If you
specify the fsAtMark positioning mode, the Device Manager
ignores this field.

Field descriptions for the CntrlParam structure

ioCRefNum The driver reference number.

csCode A value identifying the type of control or status request. Each driver
may interpret this number differently.

csParam The control or status information passed to or from the driver. This
field is declared generically as an array of eleven integers. Each
driver may interpret the contents of this field differently. Refer to
the driver’s documentation for specific information.

Device Control Entry

The device control entry structure, defined by the AuxDCE data type, stores information

about each device driver in memory. The AuxDCE data type supersedes the original

DCtlEntry data type, and provides additional fields for drivers that serve slot devices.

See the chapter “Slot Manager” in this book for information about slot device drivers.

typedef struct AuxDCE {

Ptr dCtlDriver; /* pointer or handle to driver */

short dCtlFlags; /* flags */

QHdr dCtlQHdr; /* I/O queue header */

long dCtlPosition; /* current R/W byte position */

Handle dCtlStorage; /* handle to private storage */

short dCtlRefNum; /* driver reference number */

long dCtlCurTicks; /* used internally */

GrafPtr dCtlWindow; /* pointer to driver’s window */

short dCtlDelay; /* ticks between periodic actions */

short dCtlEMask; /* desk accessory event mask */

short dCtlMenu; /* desk accessory menu ID */

char dCtlSlot; /* slot */

char dCtlSlotId; /* sResource directory ID */

long dCtlDevBase; /* slot device base address */

Ptr dCtlOwner; /* reserved; must be 0 */

char dCtlExtDev; /* external device ID */

C H A P T E R 1

Device Manager

Device Manager Reference 1-57

char fillByte; /* reserved */

} AuxDCE;

typedef AuxDCE *AuxDCEPtr, **AuxDCEHandle;

Field descriptions

dCtlDriver A pointer or handle to the driver, as determined by the dRAMBased
flag (bit 6) of the dCtlFlags field.

dCtlFlags Flags describing the abilities and state of the driver. The high-order
byte contains flags copied from the drvrFlags word of the driver
resource. These flags are described in “Creating a Driver Resource,”
beginning on page 1-24.

The low-order byte of the dCtlFlags field contains the following
run-time flags:

You can use the following constants to test or set the value of
these flags:

enum {

/* run-time flags in the device control entry */

dOpenedMask = 0x0020,

dRAMBasedMask = 0x0040,

drvrActiveMask = 0x0080

};

dCtlQHdr A pointer to the header of the driver I/O queue, which is a standard
Operating System queue. See the chapter “Queue Utilities” in
Inside Macintosh: Operating System Utilities for more information
about the QHdr data type.

dCtlPosition The current source or destination position for reading or writing.
This field is used only by drivers of block devices. The value in this
field is the number of bytes beyond the physical beginning of the
medium used by the device, and must be a multiple of 512. For
example, immediately after the Disk Driver reads the first block
of data from a 3.5-inch disk, this field contains the value 512.

dCtlStorage A handle to a driver’s private storage. A driver may allocate a
relocatable block of memory and keep a handle to it in this field.

dCtlRefNum The driver reference number.

Name Bit Meaning

dOpened 5 Set by the Device Manager when the
driver is opened, and cleared when it
is closed.

dRAMBased 6 Set if the dCtlDriver field contains
a handle.

drvrActive 7 Set by the Device Manager when the
driver is executing a request, and cleared
when the driver is inactive.

C H A P T E R 1

Device Manager

1-58 Device Manager Reference

dCtlCurTicks Used internally.

dCtlWindow A pointer to the desk accessory window. See “Writing a Desk
Accessory” on page 1-49 for more information.

dCtlDelay The number of ticks to wait between periodic actions.

dCtlEMask The desk accessory event mask. See “Writing a Desk Accessory” on
page 1-49 for more information.

dCtlMenu The menu ID of a desk accessory’s menu, if any. See “Writing a
Desk Accessory” on page 1-49 for more information.

dCtlSlot The slot number of the slot device.

dCtlSlotId The sResource directory ID of the slot device.

dCtlDevBase The base address of the slot device. For a video card this field
contains the address of the pixel map for the card’s GDevice record.

dCtlOwner Reserved. This field must be 0.

dCtlExtDev The external device ID of the slot device.

fillByte Reserved.

Device Manager Functions

This section describes the functions you use to

■ open and close device drivers

■ communicate with device drivers

■ control and monitor device drivers

■ write and install device drivers

The low-level Device Manager functions described in this section (those that use the

parameter block structure to pass information) provide two advantages over the

corresponding high-level functions:

■ These functions can be executed asynchronously, returning control to your application
before the operation is completed.

■ In most cases, these functions provide more extensive information or perform
advanced operations.

All of these functions exchange parameters with your application through a parameter

block of type ParamBlockRec. When you call a low-level function, you pass the

address of the parameter block to the function.

There are three versions of most low-level functions. The first takes two parameters: a

pointer to the parameter block and a Boolean parameter that specifies whether the

function is to execute asynchronously (true) or synchronously (false). For example,

the first version of the low-level PBRead function has this declaration:

pascal OSErr PBRead(ParmBlkPtr paramBlock, Boolean async);

C H A P T E R 1

Device Manager

Device Manager Reference 1-59

The second version does not take a second parameter; instead, it adds the suffix

Sync to the name of the function.

pascal OSErr PBReadSync(ParmBlkPtr paramBlock);

Similarly, the third version of the function does not take a second parameter; instead,

it adds the suffix Async to the name of the function.

pascal OSErr PBReadAsync(ParmBlkPtr paramBlock);

Only the first version of each function is documented in this section. Note, however, that

the second and third versions of these functions do not use the glue code that the first

version uses and are therefore more efficient. See “Summary of the Device Manager,”

beginning on page 1-91, for a listing of all three versions of these functions.

Assembly-Language Note

All Device Manager functions are synchronous by default. If you want a
function to be executed asynchronously, set bit 10 of the trap word. To
execute a function immediately, set bit 9 of the trap word. You can set
these bits by appending the word ASYNC or IMMED as the second
argument to the trap macro. For example:

_Read, ASYNC

_Control, IMMED

You can set or test bit 10 of a trap word using the global constant
asyncTrpBit. You can set or test bit 9 of the trap word using the global
constant noQueueBit. ◆

▲ W A R N I N G

Never call any synchronous Device Manager function at interrupt time.
This includes all of the high-level functions and the synchronous
versions of the low-level functions.

A synchronous request at interrupt time may block other pending
I/O requests. Because the device driver cannot begin processing the
synchronous request until it completes the other requests in its queue,
this situation can cause the Device Manager to loop indefinitely while it
waits for the device driver to complete the synchronous request. ▲

Opening and Closing Device Drivers

A device driver must be open before your application can communicate with it. You

can use the OpenDriver or PBOpen function to open closed drivers or to determine the

driver reference number of a driver that is already open. You use the OpenSlot function

to open drivers that serve slot devices. To open a desk accessory or other Apple menu

item from within your application, use the OpenDeskAcc function.

C H A P T E R 1

Device Manager

1-60 Device Manager Reference

When you finish communicating with a device driver, you can close it if you are sure no

other application or part of the system needs to use it. You can use the CloseDriver or

PBClose function to close a driver. You use the CloseDeskAcc function to close a desk

accessory.

The PBOpen and PBClose functions use the IOParam union of the Device Manager

parameter block. The OpenSlot function uses the IOParam union fields and some

additional fields that apply only to slot devices.

IMPORTANT

Device drivers cannot be opened or closed asynchronously. The
PBOpen, PBClose, and OpenSlot functions include an asynchronous
option because they share code with the File Manager. The async
parameter must be set to false when these functions are used to open
or close a device driver. ▲

OpenDriver

You can use the OpenDriver function to open a closed device driver or to determine the

driver reference number of an open device driver.

pascal OSErr OpenDriver(ConstStr255Param name, short *drvrRefNum);

name The name of the driver to open. A driver name consists of a period (.)
followed by any sequence of 1 to 255 printing characters. The Device
Manager ignores case (but not diacritical marks) when comparing names.

drvrRefNum The driver reference number of the opened driver.

DESCRIPTION

The OpenDriver function opens the device driver specified by the name parameter and

returns its driver reference number in the drvrRefNum parameter. To avoid replacing an

open driver, the Device Manager searches the drivers that are already installed in the

unit table before searching driver resources. If the specified driver is already open, this

function simply returns the driver reference number.

If the driver is not already open, the Device Manager calls the GetNamedResource

function using the specified name and the resource type 'DRVR'. If the resource is

found, the resource ID defines the unit number of the driver, which determines the

location in the unit table where the Device Manager stores the handle to the driver’s

device control entry (DCE).

After loading the driver resource into memory, the Device Manager creates a DCE for the

driver, copies the flags from the driver header to the dCtlFlags field, and places the

driver reference number in the dCtlRefNum field.

C H A P T E R 1

Device Manager

Device Manager Reference 1-61

The OpenDriver function is a high-level version of the low-level PBOpen function.

Use the PBOpen function when you need to specify read/write permission for the driver.

The next section describes the PBOpen function.

SPECIAL CONSIDERATIONS

Because another driver might already be installed in the unit table at the location

determined by the driver’s resource ID, you should first search for an unused location in

the unit table and renumber the driver resource accordingly before calling this function.

See Listing 1-1 on page 1-18 for an example.

The OpenDriver function may move memory; you should not call it at interrupt time.

RESULT CODES

SEE ALSO

For information about the low-level functions for opening devices, see the next section,

which describes the PBOpen function, and the description of the OpenSlot function on

page 1-63. For an example of how to open a device driver using the OpenDriver

function, see Listing 1-1 on page 1-18.

PBOpen

You can use the PBOpen function to open a closed device driver or to determine the

driver reference number of an open device driver.

pascal OSErr PBOpen(ParmBlkPtr paramBlock, Boolean async);

paramBlock A pointer to an IOParam structure of the Device Manager parameter
block.

async A Boolean value that indicates whether the request is asynchronous. You
must set this field to false because device drivers cannot be opened
asynchronously.

Parameter block

noErr 0 No error
badUnitErr –21 Driver reference number does not match unit table
unitEmptyErr –22 Driver reference number specifies a nil handle in unit table
openErr –23 Requested read/write permission does not match driver’s

open permission
dInstErr –26 Driver resource not found

← ioResult OSErr The device driver’s result code.
→ ioNamePtr StringPtr A pointer to the driver name.
← ioRefNum short The driver reference number.
→ ioPermssn char Read/write permission.

C H A P T E R 1

Device Manager

1-62 Device Manager Reference

DESCRIPTION

The PBOpen function opens the device driver specified by the ioNamePtr field and

returns its driver reference number in the ioRefNum field. To avoid replacing an open

driver, the Device Manager searches the drivers that are already installed in the unit

table before searching driver resources. If the specified driver is already open, this

function simply returns the driver reference number.

If the driver is not already open, the Device Manager calls the GetNamedResource

function using the specified name and the resource type 'DRVR'. If the resource is

found, the resource ID defines the unit number of the driver, which determines the

location in the unit table where the Device Manager stores the handle to the driver’s

device control entry (DCE).

After loading the driver resource into memory, the Device Manager creates a DCE for the

driver, copies the flags from the driver header to the dCtlFlags field, and places

the driver reference number in the dCtlRefNum field.

You specify the access permission for the device driver by placing one of the following

constants in the ioPermssn field of the parameter block:

enum {

/* access permissions */

fsCurPerm = 0, /* retain current permission */

fsRdPerm = 1, /* allow reads only */

fsWrPerm = 2, /* allow writes only */

fsRdWrPerm = 3 /* allow reads and writes */

};

If the driver returns a negative result in register D0, the Device Manager returns the

result code in the ioResult parameter and does not open the driver.

SPECIAL CONSIDERATIONS

Because another driver might already be installed in the unit table at the location

determined by the driver’s resource ID, you should first search for an unused location in

the unit table and renumber the driver resource accordingly before calling this function.

See Listing 1-1 on page 1-18 for an example.

The PBOpen function may move memory; you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for the PBOpen function is _Open (0xA000). You must set up register A0

with the address of the parameter block. When _Open returns, register D0 contains the

result code. Register D0 is the only register affected by this function.

Registers on entry

A0 Address of the parameter block

C H A P T E R 1

Device Manager

Device Manager Reference 1-63

RESULT CODES

SEE ALSO

For information about the high-level function for opening device drivers, see the

description of the OpenDriver function on page 1-60. For information about the

low-level function for opening device drivers that serve devices on expansion cards,

see the next section, which describes the OpenSlot function. For an example of opening

a device driver, see Listing 1-1 on page 1-18.

OpenSlot

You can use the OpenSlot function to open a device driver that serves a slot device.

pascal OSErr OpenSlot(ParmBlkPtr paramBlock, Boolean async);

paramBlock A pointer to a SlotDevParam or MultiDevParam structure of the
ParamBlockRec union.

async A Boolean value that indicates whether the request is asynchronous. You
must set this field to false because device drivers cannot be opened
asynchronously.

Parameter block

Additional fields for a single device

Registers on exit

D0 Result code

noErr 0 No error
badUnitErr –21 Driver reference number does not match unit table
unitEmptyErr –22 Driver reference number specifies a nil handle in unit table
openErr –23 Requested read/write permission does not match driver’s

open permission
dInstErr –26 Driver resource not found

← ioResult OSErr The device driver’s result code.
→ ioNamePtr StringPtr A pointer to the driver name.
← ioRefNum short The driver reference number.
→ ioPermssn char Read/write permission.

→ ioMix Ptr Reserved for use by the driver open routine.
→ ioFlags short Determines the number of additional fields.
→ ioSlot char The slot number.
→ ioId char The slot resource ID.

C H A P T E R 1

Device Manager

1-64 Device Manager Reference

Additional fields for multiple devices

DESCRIPTION

The OpenSlot function is equivalent to the PBOpen function, except that it sets bit 9 of

the trap word, which signals the _Open routine that the parameter block includes

additional fields.

If the sResource serves a single device, you should clear all the bits of the ioFlags field

and include the slot number and slot resource ID in the ioSlot and ioID fields.

If the sResource serves multiple devices, you should set the fMulti bit (bit 0) of the

ioFlags field (clearing all other bits to 0), and specify, in the ioSEBlkPtr field, an

external parameter block that is customized for the devices installed in the slot.

SPECIAL CONSIDERATIONS

The OpenSlot function may move memory; you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for the OpenSlot function is _Open (0xA200). Bit 9 of the trap word is

set to signal that the parameter block contains additional fields for slot devices.

You must set up register A0 with the address of the parameter block. When _Open

returns, register D0 contains the result code. Register D0 is the only register affected by

this function.

RESULT CODES

SEE ALSO

For information about the low-level function for opening other device drivers, see the

description of the PBOpen function on page 1-61. For an example of opening a device

→ ioMMix Ptr Reserved for use by the driver open routine.
→ ioMFlags short The number of additional fields.
→ ioSEBlkPtr Ptr A pointer to an external parameter block.

Registers on entry

A0 Address of the parameter block

Registers on exit

D0 Result code

noErr 0 No error
badUnitErr –21 Driver reference number does not match unit table
unitEmptyErr –22 Driver reference number specifies a nil handle in unit table
openErr –23 Requested read/write permission does not match driver’s

open permission
dInstErr –26 Driver resource not found

C H A P T E R 1

Device Manager

Device Manager Reference 1-65

driver, see Listing 1-1 on page 1-18. Refer to the chapter “Slot Manager” in this book for

more information about slot device drivers.

OpenDeskAcc

You can use the OpenDeskAcc function to open an item in the Apple menu.

pascal short OpenDeskAcc(ConstStr255Param deskAccName);

deskAccName A Pascal string containing the name of the Apple menu item.

DESCRIPTION

The OpenDeskAcc function opens the Apple menu item specified by the deskAccName

parameter. If the item is already open, the OpenDeskAcc function schedules it for

execution and returns to your application. Otherwise, it prepares to open the item. In

either case, your application receives a suspend event and the selected item is brought

to the foreground.

You should ignore the value returned by OpenDeskAcc. If the menu item is a desk

accessory and is successfully opened, the function result is a driver reference number for

the desk accessory driver. Otherwise the function result is undefined. The desk accessory

is responsible for informing the user of any errors.

Because some older desk accessories may not reset the current graphics port before

returning, you should bracket your call to OpenDeskAcc with calls to the QuickDraw

procedures GetPort and SetPort, to save and restore the current port.

SPECIAL CONSIDERATIONS

The OpenDeskAcc function may move memory; you should not call it at interrupt time.

SEE ALSO

For information about closing a desk accessory, see the description of the

CloseDeskAcc function beginning on page 1-68.

CloseDriver

You can use the CloseDriver function to close an open device driver.

pascal OSErr CloseDriver(short refNum);

refNum The driver reference number returned by the driver-opening function.

C H A P T E R 1

Device Manager

1-66 Device Manager Reference

DESCRIPTION

The CloseDriver function closes the device driver indicated by the refNum parameter.

The Device Manager waits until the driver is inactive before calling the driver’s close

routine. When the driver indicates it has processed the close request, the Device

Manager unlocks the driver resource if the dRAMBased flag is set, and unlocks the

device control entry if the dNeedLock flag is not set. The Device Manager does not

dispose of the device control entry or remove it from the unit table.

This function is a high-level version of the low-level PBClose function. Use the

PBClose function when you want to specify a completion routine.

▲ W A R N I N G

You should not close drivers that other applications may be using, such
as a disk driver, the AppleTalk drivers, and so on. ▲

SPECIAL CONSIDERATIONS

The Device Manager does not queue close requests.

▲ W A R N I N G

Do not call the CloseDriver function at interrupt time because if the
driver was processing a request when the interrupt occurred the Device
Manager may loop indefinitely, waiting for the driver to complete the
request. ▲

RESULT CODES

SEE ALSO

For information about the low-level function for closing device drivers, see the next

section, which describes the PBClose function.

PBClose

You can use the PBClose function to close an open device driver.

pascal OSErr PBClose(ParmBlkPtr paramBlock, Boolean async);

paramBlock A pointer to an IOParam structure of the Device Manager parameter
block.

noErr 0 No error
badUnitErr –21 Driver reference number does not match unit table
unitEmptyErr –22 Driver reference number specifies a nil handle in unit table
closErr –24 Driver unable to complete close request
dRemovErr –25 Attempt to remove an open driver

C H A P T E R 1

Device Manager

Device Manager Reference 1-67

async A Boolean value that indicates whether the request is asynchronous. You
must set this field to false because device drivers cannot be closed
asynchronously.

Parameter block

DESCRIPTION

The PBClose function closes the device driver specified by the ioRefNum field. The

Device Manager waits until the driver is inactive before calling the driver’s close routine.

When the driver indicates it has processed the close request, the Device Manager

unlocks the driver resource if the dRAMBased flag is set, and unlocks the device control

entry if the dNeedLock flag is not set. The Device Manager does not dispose of the

device control entry or remove it from the unit table.

If the driver returns a negative result in register D0, the Device Manager returns this

result code in the ioResult field of the parameter block and does not close the driver.

▲ W A R N I N G

You should not close drivers that other applications may be using, such
as a disk driver, the AppleTalk drivers, and so on. ▲

SPECIAL CONSIDERATIONS

The Device Manager does not queue close requests.

▲ W A R N I N G

Do not call the PBClose function at interrupt time because if the driver
was processing a request when the interrupt occurred the Device
Manager may loop indefinitely, waiting for the driver to complete the
request. ▲

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for the PBClose function is _Close (0xA001).

You must set up register A0 with the address of the parameter block. When _Close

returns, register D0 contains the result code. Register D0 is the only register affected by

this function.

← ioResult OSErr The device driver’s result code.
→ ioRefNum short The driver reference number.

Registers on entry

A0 Address of the parameter block

Registers on exit

D0 Result code

C H A P T E R 1

Device Manager

1-68 Device Manager Reference

RESULT CODES

SEE ALSO

For information about the high-level function for closing device drivers, see the

description of the CloseDriver function on page 1-65. For an example of how to close

a device driver using the PBClose function, see Listing 1-2 on page 1-20.

CloseDeskAcc

You can use the CloseDeskAcc function to close a desk accessory.

pascal void CloseDeskAcc(short refNum);

refNum The driver reference number contained in the desk accessory’s
WindowRecord.

DESCRIPTION

The CloseDeskAcc function closes the desk accessory specified by the refNum

parameter. Your application should call CloseDeskAcc only when the user selects the

Close or Quit item from your File menu and the active window does not belong to your

application.

You obtain the refNum parameter from the windowKind field of the desk accessory’s

WindowRecord. Do not use the driver reference number returned by OpenDeskAcc.

SPECIAL CONSIDERATIONS

The CloseDeskAcc function may move memory; you should not call it at interrupt

time.

SEE ALSO

For information about opening a desk accessory or other Apple menu item, see the

description of the OpenDeskAcc function on page 1-65.

noErr 0 No error
badUnitErr –21 Driver reference number does not match unit table
unitEmptyErr –22 Driver reference number specifies a nil handle in unit table
closErr –24 Driver unable to complete close request
dRemovErr –25 Attempt to remove an open driver

C H A P T E R 1

Device Manager

Device Manager Reference 1-69

Communicating With Device Drivers

You can use either the FSRead or PBRead function to read information from a device

driver, and you can use the FSWrite or PBWrite function to write information to a

device driver.

FSRead

You can use the FSRead function to read data from an open driver into a data buffer.

pascal OSErr FSRead(short refNum, long *count, void *buffPtr);

refNum The driver reference number.

count The number of bytes to read.

buffPtr A pointer to a buffer to hold the data.

DESCRIPTION

Before calling the FSRead function, your application should allocate a data buffer large

enough to hold the data to be read. The FSRead function attempts to read the number of

bytes indicated by the count parameter and transfer them to the data buffer pointed to

by the buffPtr parameter. The refNum parameter identifies the device driver. After the

transfer is complete, the count parameter indicates the number of bytes actually read.

▲ W A R N I N G

Be sure your buffer is large enough to hold the number of bytes
specified by the count parameter, or this function may corrupt
memory. ▲

The FSRead function is a high-level synchronous version of the low-level PBRead

function. Use the PBRead function when you want to request asynchronous reading or

need to specify a drive number or a positioning mode and offset. See the next section,

which describes the PBRead function.

SPECIAL CONSIDERATIONS

Do not call the FSRead function at interrupt time. Synchronous requests at interrupt

time may block other pending I/O requests and cause the Device Manager to loop

indefinitely while it waits for the device driver to complete the interrupted requests.

C H A P T E R 1

Device Manager

1-70 Device Manager Reference

RESULT CODES

SEE ALSO

For information about the low-level function for reading from device drivers, see the

next section, which describes the PBRead function.

PBRead

You can use the PBRead function to read data from an open driver into a data buffer.

pascal OSErr PBRead(ParmBlkPtr paramBlock, Boolean async);

paramBlock A pointer to an IOParam structure of the Device Manager parameter
block.

async A Boolean value that indicates whether the request is asynchronous.

Parameter block

DESCRIPTION

Before calling the PBRead function, your application should allocate a data buffer large

enough to hold the data to be read. The PBRead function attempts to read the number of

bytes indicated by the ioReqCount field and transfer them to the data buffer pointed to

by the ioBuffer field. The ioRefNum field identifies the device driver. After the

transfer is complete, the ioActCount field indicates the number of bytes actually read.

▲ W A R N I N G

Be sure your buffer is large enough to hold the number of bytes
specified by the count parameter, or this function may corrupt
memory. ▲

noErr 0 No error
readErr –19 Driver does not respond to read requests
badUnitErr –21 Driver reference number does not match unit table
unitEmptyErr –22 Driver reference number specifies a nil handle in unit table
abortErr –27 Request aborted by KillIO
notOpenErr –28 Driver not open

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The device driver’s result code.
→ ioVRefNum short The drive number.
→ ioRefNum short The driver reference number.
→ ioBuffer Ptr A pointer to a data buffer.
→ ioReqCount long The requested number of bytes to read.
← ioActCount long The actual number of bytes read.
→ ioPosMode short The positioning mode.
↔ ioPosOffset long The positioning offset.

C H A P T E R 1

Device Manager

Device Manager Reference 1-71

For block devices such as disk drivers, the PBRead function allows you to specify a

drive number in the ioVRefNum field and specify a positioning mode and offset in

the ioPosMode and ioPosOffset fields. Bits 0 and 1 of the ioPosMode field

indicate where an operation should begin relative to the physical beginning of the

block-formatted medium. You can use the following constants to test or set the value

of these bits:

enum {

/* positioning modes */

fsAtMark = 0, /* at current position */

fsFromStart = 1, /* offset from beginning */

fsFromMark = 3 /* offset from current position */

};

The ioPosOffset field specifies the positive or negative byte offset where the data

is to be read, relative to the positioning mode. The offset must be a multiple of 512.

The ioPosOffset field is ignored when ioPosMode is set to fsAtMark.

After the transfer is complete, the ioPosOffset field indicates the current position of

the block device.

The Disk Driver allows you to use the PBRead function to verify that data written to

a block device matches the data in memory. To do this, call PBRead immediately after

writing the data, and add the read-verify constant rdVerify to the ioPosMode field

of the parameter block. The result code ioErr is returned if the data does not match.

SPECIAL CONSIDERATIONS

Do not call the PBRead function synchronously at interrupt time. Synchronous requests

at interrupt time may block other pending I/O requests and cause the Device Manager

to loop indefinitely while it waits for the device driver to complete the interrupted

requests.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for the PBRead function is _Read (0xA002). Set bit 10 of the trap word to

execute this function asynchronously. Set bit 9 to execute it immediately.

You must set up register A0 with the address of the parameter block. When _Read

returns, register D0 contains the result code. Register D0 is the only register affected by

this function.

Registers on entry

A0 Address of the parameter block

Registers on exit

D0 Result code

C H A P T E R 1

Device Manager

1-72 Device Manager Reference

RESULT CODES

SEE ALSO

For information about the high-level function for reading from device drivers, see the

description of the FSRead function beginning on page 1-69. For an example of how to

read from a device driver using the PBRead function, see Listing 1-3 on page 1-21.

FSWrite

You can use the FSWrite function to write data from a data buffer to an open driver.

pascal OSErr FSWrite(short refNum, long *count,

const void *buffPtr);

refNum The driver reference number.

count The number of bytes to write.

buffPtr A pointer to the buffer that holds the data.

DESCRIPTION

The FSWrite function attempts to write the number of bytes indicated by the count

parameter from the data buffer pointed to by the buffPtr parameter to the device

driver specified by the refNum parameter. After the transfer is complete, the count

parameter indicates the number of bytes actually written.

The FSWrite function is a high-level synchronous version of the low-level PBWrite

function. Use the PBWrite function when you want to request asynchronous writing or

need to specify a drive number or a positioning mode and offset. See the next section,

which describes the PBWrite function.

SPECIAL CONSIDERATIONS

Do not call the FSWrite function at interrupt time. Synchronous requests at interrupt

time may block other pending I/O requests and cause the Device Manager to loop

indefinitely while it waits for the device driver to complete the interrupted requests.

noErr 0 No error
readErr –19 Driver does not respond to read requests
badUnitErr –21 Driver reference number does not match unit table
unitEmptyErr –22 Driver reference number specifies a nil handle in unit table
abortErr –27 Request aborted by KillIO
notOpenErr –28 Driver not open
ioErr –36 Data does not match in read-verify mode

C H A P T E R 1

Device Manager

Device Manager Reference 1-73

RESULT CODES

SEE ALSO

For information about the low-level function for writing to device drivers, see the next

section, which describes the PBWrite function.

PBWrite

You can use the PBWrite function to write data from a data buffer to an open driver.

pascal OSErr PBWrite(ParmBlkPtr paramBlock, Boolean async);

paramBlock A pointer to an IOParam structure of the Device Manager parameter
block.

async A Boolean value that indicates whether the request is asynchronous.

Parameter block

DESCRIPTION

The PBWrite function attempts to write the number of bytes indicated by the

ioReqCount field from the data buffer pointed to by the ioBuffer field to the device

driver specified by the ioRefNum field. After the transfer is complete, the ioActCount

field indicates the number of bytes actually written.

For block devices such as disk drivers, the PBWrite function allows you to specify

a drive number in the ioVRefNum field and specify a positioning mode and offset

in the ioPosMode and ioPosOffset fields. Bits 0 and 1 of the ioPosMode field

indicate where an operation should begin relative to the physical beginning of the

block-formatted medium. You can use the following constants to test or set the value

of these bits:

noErr 0 No error
writErr –20 Driver does not respond to write requests
badUnitErr –21 Driver reference number does not match unit table
unitEmptyErr –22 Driver reference number specifies a nil handle in unit table
abortErr –27 Request aborted by KillIO
notOpenErr –28 Driver not open

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The device driver’s result code.
→ ioVRefNum short The drive number.
→ ioRefNum short The driver reference number.
→ ioBuffer Ptr A pointer to a data buffer.
→ ioReqCount long The requested number of bytes to write.
← ioActCount long The actual number of bytes written.
→ ioPosMode short The positioning mode.
↔ ioPosOffset long The positioning offset.

C H A P T E R 1

Device Manager

1-74 Device Manager Reference

enum {

/* positioning modes */

fsAtMark = 0, /* at current position */

fsFromStart = 1, /* offset from beginning */

fsFromMark = 3 /* offset from current position */

};

The ioPosOffset field specifies the positive or negative byte offset where the data is

to be written, relative to the positioning mode. The offset must be a multiple of 512. The

ioPosOffset field is ignored when ioPosMode is set to fsAtMark.

After the transfer is complete, the ioPosOffset field indicates the new current position

of a block device.

SPECIAL CONSIDERATIONS

Do not call the PBWrite function synchronously at interrupt time. Synchronous requests

at interrupt time may block other pending I/O requests and cause the Device Manager

to loop indefinitely while it waits for the device driver to complete the interrupted

requests.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for the PBWrite function is _Write (0xA003). Set bit 10 of the trap word

to execute this function asynchronously. Set bit 9 to execute it immediately.

You must set up register A0 with the address of the parameter block. When _Write

returns, register D0 contains the result code. Register D0 is the only register affected by

this function.

RESULT CODES

Registers on entry

A0 Address of the parameter block

Registers on exit

D0 Result code

noErr 0 No error
writErr –20 Driver does not respond to write requests
badUnitErr –21 Driver reference number does not match unit table
unitEmptyErr –22 Driver reference number specifies a nil handle in unit table
abortErr –27 Request aborted by KillIO
notOpenErr –28 Driver not open

C H A P T E R 1

Device Manager

Device Manager Reference 1-75

SEE ALSO

For information about the high-level function for writing to device drivers, see the

description of the FSWrite function on page 1-72. For an example of how to write to a

device driver using the PBWrite function, see Listing 1-4 on page 1-22.

Controlling and Monitoring Device Drivers

You can use either the Control or PBControl function to send control information

to a device driver, and you can use the Status or PBStatus function to obtain status

information from a device driver. The Device Manager also provides the KillIO and

PBKillIO functions for terminating all requests in a driver I/O queue.

The PBControl, PBStatus, and PBKillIO functions use the CntrlParam structure,

described on page 1-53.

Control

You can use the Control function to send control information to a device driver.

pascal OSErr Control(short refNum, short csCode,

const void *csParamPtr);

refNum The driver reference number.

csCode A driver-dependent code specifying the type of information sent.

csParamPtr A pointer to the control information.

DESCRIPTION

The Control function sends information to the device driver specified by the refNum

parameter. The value you pass in the csCode parameter and the type of information

pointed to by the csParamPtr parameter are defined by the driver you are calling. For

more information, see the appropriate chapters for the standard device drivers in this

book and other books in the Inside Macintosh series.

The Control function is a high-level synchronous version of the low-level PBControl

function. Use the PBControl function if you need to specify a drive number or if you

want the control request to be executed asynchronously.

SPECIAL CONSIDERATIONS

Do not call the Control function at interrupt time. Synchronous requests at interrupt

time may block other pending I/O requests and cause the Device Manager to loop

indefinitely while it waits for the device driver to complete the interrupted requests.

C H A P T E R 1

Device Manager

1-76 Device Manager Reference

RESULT CODES

SEE ALSO

For information about the low-level function for controlling device drivers, see the next

section, which describes the PBControl function.

PBControl

You can use the PBControl function to send control information to a device driver.

pascal OSErr PBControl(ParmBlkPtr paramBlock, Boolean async);

paramBlock A pointer to a CntrlParam structure of the Device Manager parameter
block.

async A Boolean value that indicates whether the request is asynchronous.

Parameter block

DESCRIPTION

The PBControl function sends information to the device driver specified by the

ioCRefNum field. The value you pass in the csCode field and the type of information in

the csParam field are defined by the driver you are calling. For more information, see

the appropriate chapters for the standard device drivers in this book and other books in

the Inside Macintosh series.

SPECIAL CONSIDERATIONS

Do not call the PBControl function synchronously at interrupt time. Synchronous

requests at interrupt time may block other pending I/O requests and cause the Device

Manager to loop indefinitely while it waits for the device driver to complete the

interrupted requests.

noErr 0 No error
controlErr –17 Driver does not respond to this control request
badUnitErr –21 Driver reference number does not match unit table
unitEmptyErr –22 Driver reference number specifies a nil handle in unit table
abortErr –27 Request aborted by KillIO
notOpenErr –28 Driver not open

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The device driver’s result code.
→ ioVRefNum short The drive number.
→ ioCRefNum short The driver reference number.
→ csCode short The type of control call.
→ csParam short[11] The control information.

C H A P T E R 1

Device Manager

Device Manager Reference 1-77

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for the PBControl function is _Control (0xA004). Set bit 10 of the trap

word to execute this routine asynchronously. Set bit 9 to execute it immediately.

You must set up register A0 with the address of the parameter block. When _Control

returns, register D0 contains the result code. Register D0 is the only register affected by

this routine.

RESULT CODES

SEE ALSO

For information about the high-level function for controlling device drivers, see the

description of the Control function on page 1-75. For an example of how to send

control information to a device driver using the PBControl function, see Listing 1-5

on page 1-23.

Status

You can use the Status function to obtain status information from a device driver.

pascal OSErr Status(short refNum, short csCode,

 void *csParamPtr);

refNum The driver reference number.

csCode A driver-dependent code specifying the type of information requested.

csParamPtr A pointer to a csParam array where the status information will be
returned.

DESCRIPTION

The Status function returns information about the device driver specified by the

refNum parameter. The value you pass in the csCode parameter and the received

Registers on entry

A0 Address of the parameter block

Registers on exit

D0 Result code

noErr 0 No error
controlErr –17 Driver does not respond to this control request
badUnitErr –21 Driver reference number does not match unit table
unitEmptyErr –22 Driver reference number specifies a nil handle in unit table
abortErr –27 Request aborted by KillIO
notOpenErr –28 Driver not open

C H A P T E R 1

Device Manager

1-78 Device Manager Reference

information pointed to by the csParamPtr parameter are defined by the driver you

are calling. For more information, see the appropriate chapters for the standard device

drivers in this book and other books in the Inside Macintosh series.

The Status function is a high-level synchronous version of the low-level PBStatus

function. Use the PBStatus function if you need to specify a drive number or if you

want the status request to be asynchronous.

Note

The Device Manager interprets a csCode value of 1 as a special case.
When the Device Manager receives a status request with a csCode
value of 1, it returns a handle to the driver’s device control entry.
This type of status request is not passed to the device driver. ◆

SPECIAL CONSIDERATIONS

Do not call the Status function at interrupt time. Synchronous requests at interrupt

time may block other pending I/O requests and cause the Device Manager to loop

indefinitely while it waits for the device driver to complete the interrupted requests.

RESULT CODES

SEE ALSO

For information about the low-level function for monitoring device drivers, see the next

section, which describes the PBStatus function.

PBStatus

You can use the PBStatus function to obtain status information from a device driver.

pascal OSErr PBStatus(ParmBlkPtr paramBlock, Boolean async);

paramBlock A pointer to a CntrlParam structure of the Device Manager parameter
block.

async A Boolean value that indicates whether the request is asynchronous.

noErr 0 No error
statusErr –18 Driver does not respond to this status request
badUnitErr –21 Driver reference number does not match unit table
unitEmptyErr –22 Driver reference number specifies a nil handle in unit table
abortErr –27 Request aborted by KillIO
notOpenErr –28 Driver not open

C H A P T E R 1

Device Manager

Device Manager Reference 1-79

Parameter block

DESCRIPTION

The PBStatus function returns information about the device driver specified by the

ioCRefNum field. The value you pass in the csCode field and the type of information

received in the csParam field are defined by the driver you are calling. For more

information, see the appropriate chapters for the standard device drivers in this book

and other books in the Inside Macintosh series.

Note

The Device Manager interprets a csCode value of 1 as a special case.
When the Device Manager receives a status request with a csCode
value of 1, it returns a handle to the driver’s device control entry.
This type of status request is not passed to the device driver. ◆

SPECIAL CONSIDERATIONS

Do not call the PBStatus function synchronously at interrupt time. Synchronous

requests at interrupt time may block other pending I/O requests and cause the Device

Manager to loop indefinitely while it waits for the device driver to complete the

interrupted requests.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for the PBStatus function is _Status (0xA005). Set bit 10 of the trap

word to execute this function asynchronously. Set bit 9 to execute it immediately.

You must set up register A0 with the address of the parameter block. When _Status

returns, register D0 contains the result code. Register D0 is the only register affected by

this function.

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The device driver’s result code.
→ ioVRefNum short The drive number.
→ ioCRefNum short The driver reference number.
→ csCode short The type of status call.
← csParam short[11] The status information.

Registers on entry

A0 Address of the parameter block

Registers on exit

D0 Result code

C H A P T E R 1

Device Manager

1-80 Device Manager Reference

RESULT CODES

SEE ALSO

For information about the high-level function for monitoring device drivers, see the

description of the Status function on page 1-77. For an example of how to request

status information from a device driver using the PBStatus function, see Listing 1-5

on page 1-23.

KillIO

You can use the KillIO function to terminate all current and pending I/O requests for a

device driver.

pascal OSErr KillIO(short refNum);

refNum The driver reference number.

DESCRIPTION

The KillIO function stops any current I/O request being processed by the driver

specified by the RefNum parameter, and removes all pending requests from the

I/O queue for that driver. The Device Manager calls the completion routine, if any,

for each pending request, and sets the ioResult field of each request equal to the

result code abortErr.

The Device Manager passes KillIO requests to a driver only if the driver is open and

enabled for control calls. If the driver returns an error, the I/O queue is left unchanged

and no completion routines are called.

▲ W A R N I N G

The KillIO function terminates all pending I/O requests for a driver,
including requests initiated by other applications. ▲

SPECIAL CONSIDERATIONS

The Device Manager always executes the KillIO function immediately; that is, it never

places a KillIO request in the I/O queue.

Although the Device Manager imposes no restrictions on calling KillIO at interrupt

time, you should consult a device driver’s documentation to determine if it supports this.

noErr 0 No error
statusErr –18 Driver does not respond to this status request
badUnitErr –21 Driver reference number does not match unit table
unitEmptyErr –22 Driver reference number specifies a nil handle in unit table
abortErr –27 Request aborted by KillIO
notOpenErr –28 Driver not open

C H A P T E R 1

Device Manager

Device Manager Reference 1-81

RESULT CODES

SEE ALSO

For information about the low-level function for terminating current and pending

I/O requests for a driver, see the next section, which describes the PBKillIO function.

PBKillIO

You can use the PBKillIO function to terminate all current and pending I/O requests

for a device driver.

pascal OSErr PBKillIO(ParmBlkPtr paramBlock, Boolean async);

paramBlock A pointer to a CntrlParam structure of the Device Manager parameter
block.

async A Boolean value that indicates whether the request is asynchronous. You
must set this field to false because the PBKillIO function does not
support asynchronous requests.

Parameter block

DESCRIPTION

The PBKillIO function stops any current I/O request being processed by the driver

specified by the ioCRefNum field, and removes all pending requests from the I/O queue

for that driver. The Device Manager calls the completion routine, if any, for each pending

request, and sets the ioResult field of each request equal to the result code abortErr.

The Device Manager passes PBKillIO requests to a device driver only if the driver is

open and enabled for control calls. If the driver returns an error, the I/O queue is left

unchanged and no completion routines are called.

▲ W A R N I N G

The PBKillIO function terminates all pending I/O requests for a
driver, including requests initiated by other applications. ▲

noErr 0 No error
controlErr –17 Driver does not respond to this control request
badUnitErr –21 Driver reference number does not match unit table
unitEmptyErr –22 Driver reference number specifies a nil handle in unit table
notOpenErr –28 Driver not open

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The device driver’s result code.
→ ioCRefNum short The driver reference number.

C H A P T E R 1

Device Manager

1-82 Device Manager Reference

SPECIAL CONSIDERATIONS

The Device Manager always executes the PBKillIO function immediately; that is,

it never places a PBKillIO request in the I/O queue. However, you should not call this

function immediately—always call the PBKillIO function synchronously.

Although the Device Manager imposes no restrictions on calling PBKillIO at interrupt

time, you should consult a device driver’s documentation to determine if it supports this.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for the PBKillIO function is _KillIO (0xA006). You must set up

register A0 with the address of the parameter block. When _KillIO returns, register D0

contains the result code. Register D0 is the only register affected by this function.

RESULT CODES

SEE ALSO

For information about the high-level function for terminating current and pending

I/O requests for a driver, see the description of the KillIO function on page 1-80.

Writing and Installing Device Drivers

The Device Manager includes a number of functions that provide low-level support for

device drivers.

The DriverInstall and DriverInstallReserveMem functions create a device

control entry and install it in the unit table. The DriverInstallReserveMem function

is preferred because it allocates the device control entry as low as possible in the system

heap. The DriverRemove function removes an existing device control entry.

The GetDCtlEntry function returns a handle to a driver’s device control entry.

The IODone routine notifies the Device Manager that an I/O operation is done. Driver

routines call IODone when the current request is completed and ready to be removed

from the I/O queue.

Registers on entry

A0 Address of the parameter block

Registers on exit

D0 Result code

noErr 0 No error
controlErr –17 Driver does not respond to this control request
badUnitErr –21 Driver reference number does not match unit table
unitEmptyErr –22 Driver reference number specifies a nil handle in unit table
notOpenErr –28 Driver not open

C H A P T E R 1

Device Manager

Device Manager Reference 1-83

The Fetch and Stash routines can be used to move characters into and out of data

buffers. You pass a pointer to the device control entry in the A1 register to each of these

three routines. The Device Manager uses the device control entry to locate the active

request. If no such request exists, these routines generate system error dsIOCoreErr.

In the interest of speed, you invoke the Fetch, Stash, and IODone routines with jump

vectors, stored in the global variables JFetch, JStash, and JIODone, rather than

macros. You can use a jump vector by moving its address onto the stack and executing

an RTS instruction. An example is:

MOVE.L JIODone,-(SP)

RTS

The Fetch and Stash routines do not return a result code; if an error occurs, the System

Error Handler is invoked.

DriverInstall

You can use the DriverInstall function to create a device control entry and install it

in the unit table.

pascal OSErr DriverInstall(Ptr drvrPtr, short refNum);

drvrPtr A pointer to the device driver.

refNum The driver reference number.

DESCRIPTION

The DriverInstall function allocates a device control entry (DCE) in the system heap

and installs a handle to this DCE in the unit table location specified by the refNum

parameter. You pass a pointer to the device driver in the drvrPtr parameter.

In addition, this function copies the refNum parameter to the dCtlRefNum field of the

DCE, sets the dRAMBased flag in the dCtlFlags field, and clears all the other fields.

SPECIAL CONSIDERATIONS

The DriverInstall function does not load the driver resource into memory, copy the

flags from the driver header to the dCtlFlags field, or open the driver. You can write

code to perform these tasks, or use the OpenDriver, OpenSlot, or PBOpen functions

instead.

The DriverInstall function allocates memory; you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for the DriverInstall function is _DrvrInstall (0xA03D).

C H A P T E R 1

Device Manager

1-84 Device Manager Reference

You place a pointer to the device driver in register A0, and the driver reference number

in register D0. When _DrvrInstall returns, register D0 contains the result code.

RESULT CODES

SEE ALSO

For information about the DriverInstallReserveMem function, which installs a

driver as low as possible in the system heap, see the next section.

DriverInstallReserveMem

You can use the DriverInstallReserveMem function to create a device control entry

and install it in the unit table.

pascal OSErr DriverInstallReserveMem(Ptr drvrPtr, short refNum);

drvrPtr A pointer to the device driver.

refNum The driver reference number.

DESCRIPTION

The DriverInstallReserveMem function is equivalent to the DriverInstall

function, except that it calls the Memory Manager ReserveMem function to compact

the heap before allocating memory for the device control entry (DCE).

After calling the ReserveMem function, the DriverInstallReserveMem function

allocates a DCE in the system heap and installs a handle to this DCE in the unit table

location specified by the refNum parameter. You pass a pointer to the device driver

in the drvrPtr parameter.

In addition, this function copies the refNum parameter to the dCtlRefNum field of the

DCE, sets the dRAMBased flag in the dCtlFlags field, and clears all the other fields.

Registers on entry

A0 A pointer to the device driver

D0 The driver reference number

Registers on exit

D0 Result code

noErr 0 No error
badUnitErr –21 Driver reference number does not match unit table

C H A P T E R 1

Device Manager

Device Manager Reference 1-85

SPECIAL CONSIDERATIONS

The DriverInstallReserveMem function does not load the driver resource into

memory, copy the flags from the driver header to the dCtlFlags field, or open the

driver. You can write code to perform these tasks, or use the OpenDriver, OpenSlot,

or PBOpen functions instead.

The DriverInstallReserveMem function allocates memory; you should not call it at

interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for the DriverInstallReserveMem function is _DrvrInstall

(0xA03D). You must set bit 10 of the trap word to signal the Device Manager to call the

ReserveMem function before allocating memory for the DCE.

You place a pointer to the device driver in register A0, and the driver reference number

in register D0. When _DrvrInstall returns, register D0 contains the result code.

RESULT CODES

DriverRemove

You can use the DriverRemove function to remove a device driver’s device control

entry from the unit table and release the driver resource.

pascal OSErr DriverRemove(short refNum);

refNum The driver reference number.

DESCRIPTION

The DriverRemove function removes a device driver’s device control entry from the

unit table and releases the driver resource. You specify the device driver using the

refNum parameter. You must close the device driver before calling DriverRemove.

If the driver is closed, DriverRemove calls the Memory Manager function

DisposeHandle to release the device control entry, then sets the corresponding handle

Registers on entry

A0 A pointer to the device driver

D0 The driver reference number

Registers on exit

D0 Result code

noErr 0 No error
badUnitErr –21 Driver reference number does not match unit table

C H A P T E R 1

Device Manager

1-86 Device Manager Reference

in the unit table to nil. If the driver’s dRAMBased flag is set, DriverRemove calls the

Resource Manager function ReleaseResource to release the driver resource.

SPECIAL CONSIDERATIONS

The DriverRemove function may move memory; you should not call it at interrupt

time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for the DriverRemove function is _DrvrRemove (0xA03E).

You place the driver reference number in register D0. When _DrvrRemove returns,

register D0 contains the result code.

RESULT CODES

GetDCtlEntry

You can use the GetDCtlEntry function to obtain a handle to the device control entry

of a device driver.

pascal DCtlHandle GetDCtlEntry (short refNum);

refNum The reference number of the driver.

DESCRIPTION

The GetDCtlEntry function returns a handle to the device control entry of the device

driver indicated by the refNum parameter.

SEE ALSO

For a description of the device control entry structure see page 1-56.

Registers on entry

D0 The driver reference number

Registers on exit

D0 Result code

noErr 0 No error
dRemovErr –25 Attempt to remove an open driver

C H A P T E R 1

Device Manager

Device Manager Reference 1-87

IODone

You use the IODone routine to notify the Device Manager that an I/O request has

completed.

DESCRIPTION

The IODone routine sets the ioResult field of the parameter block with the value

returned by the driver in register D0. It then removes the current request from the

driver I/O queue and marks the driver inactive. If there are no pending requests, and the

dNeedLock bit of the dCtlFlags word is not set, IODone unlocks the driver and its

device control entry. Finally, IODone executes the completion routine, if any.

The section “Entering and Exiting From Driver Routines,” beginning on page 1-29,

explains when to use this routine.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

For an example of how to call the IODone routine from an assembly-language

dispatching routine, see Listing 1-8 on page 1-29.

Fetch

You can use the Fetch routine to get the next character from the data buffer.

DESCRIPTION

The Fetch routine gets the next character from the data buffer pointed to by the

ioBuffer field of the parameter block of the pending request. It increments the

ioActCount field by 1. If the ioActCount field equals the ioReqCount field,

this routine sets bit 15 of register D0. After receiving the last byte request, the

driver should jump to the IODone routine.

Registers on entry

A1 Pointer to DCE

D0 Result code

Jump vector

JIODone

Registers on entry

A1 Pointer to the device control entry

C H A P T E R 1

Device Manager

1-88 Device Manager Reference

Stash

You can use the Stash routine to store the next character from the data buffer.

DESCRIPTION

The Stash routine places the character in register D0 into the data buffer pointed to by

the ioBuffer field of the parameter block of the pending request and increments the

ioActCount field by 1. If the ioActCount field equals the ioReqCount field, this

routine sets bit 15 of register D0. After stashing the last byte requested, the driver should

jump to the IODone routine.

ASSEMBLY-LANGUAGE INFORMATION

Registers on exit

D0 Character fetched; bit 15 = 1 if this is the last character in the buffer

Jump vector

JFetch

Registers on entry

A1 Pointer to DCE

D0 Character to stash

Registers on exit

D0 Bit 15 = 1 if this is the last character in the buffer

Jump vector

JStash

C H A P T E R 1

Device Manager

Device Manager Reference 1-89

Resources

This section describes the driver resource, which you can use to store your device drivers

and desk accessories. If your device driver requires a user interface, you can create a

Chooser extension and store your driver in a device package resource. For more

information, see “Creating a Device Package” on page 1-45.

The Driver Resource

Listing 1-15 shows the Rez format of the 'DRVR' resource type.

Listing 1-15 'DRVR' resource format

type 'DRVR' {

boolean = 0;

boolean dontNeedLock, needLock; /* lock drvr in memory */

boolean dontNeedTime, needTime; /* for periodic action */

boolean dontNeedGoodbye, needGoodbye; /* call before heap reinit */

boolean noStatusEnable, statusEnable; /* responds to Status */

boolean noCtlEnable, ctlEnable; /* responds to Control */

boolean noWriteEnable, writeEnable; /* responds to Write */

boolean noReadEnable, readEnable; /* responds to Read */

byte = 0;

integer; /* driver delay */

unsigned hex integer; /* DA event mask */

integer; /* DA menu */

unsigned hex integer; /* offset to Open */

unsigned hex integer; /* offset to Prime */

unsigned hex integer; /* offset to Control */

unsigned hex integer; /* offset to Status */

unsigned hex integer; /* offset to Close */

pstring; /* driver name */

hex string; /* driver code */

};

The driver resource begins with seven flags that specify certain characteristics of the

driver.

You need to set the dNeedLock flag if your driver’s code should be locked in memory.

You set the dNeedTime flag of the drvrFlags word if your device driver needs to

perform some action periodically.

You need to set the dNeedGoodbye flag if you want your application to receive a

goodbye control request before the heap is reinitialized.

C H A P T E R 1

Device Manager

1-90 Device Manager Reference

The last four flags indicate which Device Manager requests the driver’s routines can

respond to.

The next element of the resource specifies the time between periodic tasks.

The next two elements provide an event mask and menu ID for desk accessories. The

section “Writing a Desk Accessory” on page 1-49 describes these fields.

Offsets to the driver routines follow the desk accessory fields. See “Entering and Exiting

From Driver Routines” on page 1-29 for more information about the routine offsets.

The next element of the driver resource is the driver name. You can use uppercase and

lowercase letters when naming your driver, but the first character should be a period—

.MyDriver, for example.

Your driver routines, which follow the driver name, must be aligned on a word

boundary.

The section “Creating a Driver Resource” on page 1-24 discusses this structure in detail.

C H A P T E R 1

Device Manager

Summary of the Device Manager 1-91

Summary of the Device Manager

C Summary

Constants

enum {

/* request codes passed by the Device Manager to a driver’s

prime routine */

aRdCmd = 2, /* read operation requested */

aWrCmd = 3 /* write operation requested */

};

enum {

/* flags used in the driver header and device control entry */

dNeedLockMask = 0x4000, /* set if driver must be locked in memory as

soon as it is opened */

dNeedTimeMask = 0x2000, /* set if driver needs time for performing

periodic tasks */

dNeedGoodByeMask = 0x1000, /* set if driver needs to be called before the

application heap is initialized */

dStatEnableMask = 0x0800, /* set if driver responds to status requests */

dCtlEnableMask = 0x0400, /* set if driver responds to control requests */

dWritEnableMask = 0x0200, /* set if driver responds to write requests */

dReadEnableMask = 0x0100, /* set if driver responds to read requests */

/* run-time flags used in the device control entry */

drvrActiveMask = 0x0080, /* driver is currently processing a request */

dRAMBasedMask = 0x0040, /* dCtlDriver is a handle (1) or pointer (0) */

dOpenedMask = 0x0020 /* driver is open */

};

enum {

/* access permissions */

fsCurPerm = 0, /* retain current permission */

fsRdPerm = 1, /* allow reads only */

fsWrPerm = 2, /* allow writes only */

fsRdWrPerm = 3, /* allow reads and writes */

C H A P T E R 1

Device Manager

1-92 Summary of the Device Manager

/* positioning modes */

fsAtMark = 0, /* at current position */

fsFromStart = 1, /* offset from beginning */

fsFromMark = 3, /* offset from current position */

/* read modes */

rdVerify = 64 /* read-verify mode */

};

enum {

/* control codes */

goodbye = -1, /* heap being reinitialized */

killCode = 1, /* KillIO requested */

accEvent = 64, /* handle an event */

accRun = 65, /* time for periodic action */

accCursor = 66, /* change cursor shape */

accMenu = 67, /* handle menu item */

accUndo = 68, /* handle undo command */

accCut = 70, /* handle cut command */

accCopy = 71, /* handle copy command */

accPaste = 72, /* handle paste command */

accClear = 73 /* handle clear command */

};

enum {

/* Chooser messages */

chooserInitMsg = 11, /* the user selected this device package */

newSelMsg = 12, /* the user made new device selections */

fillListMsg = 13, /* fill the device list with choices */

getSelMsg = 14, /* mark one or more choices as selected */

selectMsg = 15, /* the user made a selection */

deselectMsg = 16, /* the user canceled a selection */

terminateMsg = 17, /* allows device package to clean up */

buttonMsg = 19 /* the user selected a button */

};

Data Types

typedef union ParamBlockRec {

IOParam ioParam;

FileParam fileParam;

VolumeParam volumeParam;

CntrlParam cntrlParam;

C H A P T E R 1

Device Manager

Summary of the Device Manager 1-93

SlotDevParam slotDevParam;

MultiDevParam multiDevParam;

} ParamBlockRec;

typedef ParamBlockRec *ParmBlkPtr;

typedef struct IOParam {

QElemPtr qLink; /* next queue entry */

short qType; /* queue type */

short ioTrap; /* routine trap */

Ptr ioCmdAddr; /* routine address */

ProcPtr ioCompletion; /* completion routine address */

OSErr ioResult; /* result code */

StringPtr ioNamePtr; /* pointer to driver name */

short ioVRefNum; /* volume reference or drive number */

short ioRefNum; /* driver reference number */

char ioVersNum; /* not used by the Device Manager */

char ioPermssn; /* read/write permission */

Ptr ioMisc; /* not used by the Device Manager */

Ptr ioBuffer; /* pointer to data buffer */

long ioReqCount; /* requested number of bytes */

long ioActCount; /* actual number of bytes completed */

short ioPosMode; /* positioning mode */

long ioPosOffset; /* positioning offset */

} IOParam;

typedef struct CntrlParam {

QElemPtr qLink; /* next queue entry */

short qType; /* queue type */

short ioTrap; /* routine trap */

Ptr ioCmdAddr; /* routine address */

ProcPtr ioCompletion; /* completion routine address */

OSErr ioResult; /* result code */

StringPtr ioNamePtr; /* pointer to driver name */

short ioVRefNum; /* volume reference or drive number */

short ioCRefNum; /* driver reference number */

short csCode; /* type of control or status request */

short csParam[11]; /* control or status information */

} CntrlParam;

typedef struct AuxDCE {

Ptr dCtlDriver; /* pointer or handle to driver */

short dCtlFlags; /* flags */

QHdr dCtlQHdr; /* I/O queue header */

long dCtlPosition; /* current R/W byte position */

C H A P T E R 1

Device Manager

1-94 Summary of the Device Manager

Handle dCtlStorage; /* handle to private storage */

short dCtlRefNum; /* driver reference number */

long dCtlCurTicks; /* used internally */

GrafPtr dCtlWindow; /* pointer to driver’s window */

short dCtlDelay; /* ticks between periodic actions */

short dCtlEMask; /* desk accessory event mask */

short dCtlMenu; /* desk accessory menu ID */

char dCtlSlot; /* slot */

char dCtlSlotId; /* sResource directory ID */

long dCtlDevBase; /* slot device base address */

Ptr dCtlOwner; /* reserved; must be 0 */

char dCtlExtDev; /* external device ID */

char fillByte; /* reserved */

} AuxDCE;

typedef AuxDCE *AuxDCEPtr, **AuxDCEHandle;

Functions

Opening and Closing Device Drivers

pascal OSErr OpenDriver (ConstStr255Param name, short *drvrRefNum);

pascal OSErr PBOpen (ParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBOpenSync (ParmBlkPtr paramBlock);

pascal OSErr OpenSlot (ParmBlkPtr paramBlock, Boolean async);

pascal short OpenDeskAcc (ConstStr255Param deskAccName);

pascal OSErr CloseDriver (short refNum);

pascal OSErr PBClose (ParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBCloseSync (ParmBlkPtr paramBlock);

pascal void CloseDeskAcc (short refNum);

Communicating With Device Drivers

pascal OSErr FSRead (short refNum, long *count, void *buffPtr);

pascal OSErr PBRead (ParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBReadSync (ParmBlkPtr paramBlock);

pascal OSErr PBReadAsync (ParmBlkPtr paramBlock);

pascal OSErr FSWrite (short refNum, long *count, const void *buffPtr);

pascal OSErr PBWrite (ParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBWriteSync (ParmBlkPtr paramBlock);

pascal OSErr PBWriteAsync (ParmBlkPtr paramBlock);

C H A P T E R 1

Device Manager

Summary of the Device Manager 1-95

Controlling and Monitoring Device Drivers

pascal OSErr Control (short refNum, short csCode, const void
*csParamPtr);

pascal OSErr PBControl (ParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBControlSync (ParmBlkPtr paramBlock);

pascal OSErr PBControlAsync (ParmBlkPtr paramBlock);

pascal OSErr Status (short refNum, short csCode, void *csParamPtr);

pascal OSErr PBStatus (ParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBStatusSync (ParmBlkPtr paramBlock);

pascal OSErr PBStatusAsync (ParmBlkPtr paramBlock);

pascal OSErr KillIO (short refNum);

pascal OSErr PBKillIO (ParmBlkPtr paramBlock, Boolean async);

pascal OSErr PBKillIOSync (ParmBlkPtr paramBlock);

pascal OSErr PBKillIOAsync (ParmBlkPtr paramBlock);

Driver Support Functions

pascal OSErr DriverInstall (Ptr drvrPtr, short refNum);

pascal OSErr DriverInstallReserveMem (Ptr drvrPtr, short refNum);

pascal OSErr DriverRemove (short refNum);

pascal DCtlHandle GetDCtlEntry (short refNum);

Pascal Summary

Constants

CONST

{request codes passed by the Device Manager to a driver’s prime routine}

aRdCmd = 2; {read operation requested}

aWrCmd = 3; {write operation requested}

{flags used in the driver header and device control entry}

dNeedLockMask = $4000; {set if driver must be locked in memory as }

{ soon as it is opened}

dNeedTimeMask = $2000; {set if driver needs time for performing }

{ periodic tasks}

dNeedGoodByeMask = $1000; {set if driver needs to be called before }

{ the application heap is initialized}

dStatEnableMask = $0800; {set if driver responds to status requests}

C H A P T E R 1

Device Manager

1-96 Summary of the Device Manager

dCtlEnableMask = $0400; {set if driver responds to control requests}

dWritEnableMask = $0200; {set if driver responds to write requests}

dReadEnableMask = $0100; {set if driver responds to read requests}

{run-time flags used in the device control entry}

drvrActiveMask = $0080; {driver is currently processing a request}

dRAMBasedMask = $0040; {dCtlDriver is a handle (1) or pointer (0)}

dOpenedMask = $0020; {driver is open}

{access permissions}

fsCurPerm = 0; {retain current permission}

fsRdPerm = 1; {allow reads only}

fsWrPerm = 2; {allow writes only}

fsRdWrPerm = 3; {allow reads and writes}

{positioning modes}

fsAtMark = 0; {at current position}

fsFromStart = 1; {offset from beginning}

fsFromMark = 3; {offset from current position}

{read modes}

rdVerify = 64; {read-verify mode}

{control codes}

goodbye = -1; {heap being reinitialized}

killCode = 1; {KillIO requested}

accEvent = 64; {handle an event}

accRun = 65; {time for periodic action}

accCursor = 66; {change cursor shape}

accMenu = 67; {handle menu item}

accUndo = 68; {handle undo command}

accCut = 70; {handle cut command}

accCopy = 71; {handle copy command}

accPaste = 72; {handle paste command}

accClear = 73; {handle clear command}

{Chooser messages}

chooserInitMsg = 11; {the user selected this device package}

newSelMsg = 12; {the user made new device selections}

fillListMsg = 13; {fill the device list with choices}

getSelMsg = 14; {mark one or more choices as selected}

selectMsg = 15; {the user made a selection}

C H A P T E R 1

Device Manager

Summary of the Device Manager 1-97

deselectMsg = 16; {the user canceled a selection}

terminateMsg = 17; {allows device package to clean up}

buttonMsg = 19; {the user selected a button}

Data Types

TYPE ParamBlkType = (IOParam, FileParam, VolumeParam, CntrlParam,

 SlotDevParam, MultiDevParam);

ParamBlockRec =

RECORD

qLink: QElemPtr; {next queue entry}

qType: Integer; {queue type}

ioTrap: Integer; {routine trap}

ioCmdAddr: Ptr; {routine address}

ioCompletion: ProcPtr; {completion routine address}

ioResult: OSErr; {result code}

ioNamePtr: StringPtr; {pointer to driver name}

ioVRefNum: Integer; {volume reference or drive number}

CASE ParamBlkType OF

IOParam:

(ioRefNum: Integer; {driver reference number}

ioVersNum: SignedByte; {not used}

ioPermssn: SignedByte; {read/write permission}

ioMisc: Ptr; {not used}

ioBuffer: Ptr; {pointer to data buffer}

ioReqCount: LongInt; {requested number of bytes}

ioActCount: LongInt; {actual number of bytes}

ioPosMode: Integer; {positioning mode}

ioPosOffset: LongInt); {positioning offset}

CntrlParam:

(ioCRefNum: Integer; {driver reference number}

csCode: Integer; {type of control or status request}

csParam: ARRAY[0..10] OF Integer); {control or status info}

END;

ParmBlkPtr = ^ParamBlockRec;

AuxDCE =

RECORD

dCtlDriver: Ptr; {pointer or handle to driver}

dCtlFlags: Integer; {flags}

dCtlQHdr: QHdr; {driver I/O queue header}

dCtlPosition: LongInt; {byte position}

C H A P T E R 1

Device Manager

1-98 Summary of the Device Manager

dCtlStorage: Handle; {handle to private storage}

dCtlRefNum: Integer; {driver reference number}

dCtlCurTicks: LongInt; {used internally}

dCtlWindow: GrafPtr; {pointer to driver’s window}

dCtlDelay: Integer; {ticks between periodic actions}

dCtlEMask: Integer; {event mask for desk accessories}

dCtlMenu: Integer; {menu ID for desk accessories}

dCtlSlot: Byte; {slot}

dCtlSlotId: Byte; {sResource directory ID}

dCtlDevBase: LongInt; {slot device base address}

dCtlOwner: Ptr; {reserved; must be 0}

dCtlExtDev: Byte; {external device ID}

fillByte: Byte; {reserved}

END;

AuxDCEPtr = ^AuxDCE;

AuxDCEHandle = ^AuxDCEPtr;

Routines

Opening and Closing Device Drivers

FUNCTION OpenDriver (name: Str255; VAR refNum: Integer): OSErr;

FUNCTION PBOpen (paramBlock: ParmBlkPtr; async: Boolean): OSErr;

FUNCTION PBOpenSync (paramBlock: ParmBlkPtr): OSErr;

FUNCTION OpenSlot (paramBlock: ParmBlkPtr; async: Boolean): OSErr;

FUNCTION OpenDeskAcc (deskAccName: Str255): INTEGER;

FUNCTION CloseDriver (refNum: Integer): OSErr;

FUNCTION PBClose (paramBlock: ParmBlkPtr; async: Boolean): OSErr;

FUNCTION PBCloseSync (paramBlock: ParmBlkPtr): OSErr;

PROCEDURE CloseDeskAcc (refNum: INTEGER);

Communicating With Device Drivers

FUNCTION FSRead (refNum: Integer; VAR count: LongInt;
buffPtr: Ptr): OSErr;

FUNCTION PBRead (paramBlock: ParmBlkPtr; async: Boolean): OSErr;

FUNCTION PBReadSync (paramBlock: ParmBlkPtr): OSErr;

FUNCTION PBReadAsync (paramBlock: ParmBlkPtr): OSErr;

FUNCTION FSWrite (refNum: Integer: VAR count: LongInt;
buffPtr: Ptr): OSErr;

FUNCTION PBWrite (paramBlock: ParmBlkPtr; async: Boolean): OSErr;

FUNCTION PBWriteSync (paramBlock: ParmBlkPtr): OSErr;

C H A P T E R 1

Device Manager

Summary of the Device Manager 1-99

FUNCTION PBWriteAsync (paramBlock: ParmBlkPtr): OSErr;

Controlling and Monitoring Device Drivers

FUNCTION Control (refNum: Integer; csCode: Integer;
csParamPtr: Ptr): OSErr;

FUNCTION PBControl (paramBlock: ParmBlkPtr; async: Boolean): OSErr;

FUNCTION PBControlSync (paramBlock: ParmBlkPtr): OSErr;

FUNCTION PBControlAsync (paramBlock: ParmBlkPtr): OSErr;

FUNCTION Status (refNum: Integer; csCode: Integer;
csParamPtr: Ptr): OSErr;

FUNCTION PBStatus (paramBlock: ParmBlkPtr; async: Boolean): OSErr;

FUNCTION PBStatusSync (paramBlock: ParmBlkPtr): OSErr;

FUNCTION PBStatusAsync (paramBlock: ParmBlkPtr): OSErr;

FUNCTION KillIO (refNum: Integer): OSErr;

FUNCTION PBKillIO (paramBlock: ParmBlkPtr; async: Boolean): OSErr;

FUNCTION PBKillIOSync (paramBlock: ParmBlkPtr): OSErr;

FUNCTION PBKillIOAsync (paramBlock: ParmBlkPtr): OSErr;

Driver Support Routines

FUNCTION DriverInstall (drvrPtr: Ptr; refNum: Integer): OSErr;

FUNCTION DriverInstallReserveMem (drvrPtr: Ptr; refNum: Integer): OSErr;

FUNCTION DriverRemove (refNum: Integer): OSErr;

FUNCTION GetDCtlEntry (refNum: Integer): DCtlHandle;

Assembly-Language Summary

Data Structures

Device Manager Parameter Block Header

0 qLink long used internally by the Device Manager
4 qType word used internally by the Device Manager
6 ioTrap word used internally by the Device Manager
8 ioCmdAddr long used internally by the Device Manager

12 ioCompletion long completion routine
16 ioResult word result code
18 ioNamePtr long driver name
22 ioVRefNum word drive number

C H A P T E R 1

Device Manager

1-100 Summary of the Device Manager

I/O Parameter Structure

Control Parameter Structure

Trap Macros

Trap Macro Names

Routines Requiring Jump Vectors

24 ioRefNum word driver reference number
26 ioVersNum byte not used
27 ioPermssn byte read/write permission
28 ioMisc long not used
32 ioBuffer long pointer to data buffer
36 ioReqCount long requested number of bytes
40 ioActCount long actual number of bytes
44 ioPosMode word positioning mode
46 ioPosOffset long positioning offset

24 ioCRefNum word driver reference number
26 csCode word type of control or status request
28 csParam 22 bytes control or status information

C and Pascal
name Trap macro name

PBOpen _Open

OpenSlot _Open

PBClose _Close

PBRead _Read

PBWrite _Write

PBControl _Control

PBStatus _Status

PBKillIO _KillIO

DriverInstall _DrvrInstall

DriverRemove _DrvrRemove

Routine Jump vector

Fetch JFetch

Stash JStash

IODone JIODone

C H A P T E R 1

Device Manager

Summary of the Device Manager 1-101

Result Codes
noErr 0 No error
controlErr –17 Driver does not respond to this control request
statusErr –18 Driver does not respond to this status request
readErr –19 Driver does not respond to read requests
writErr –20 Driver does not respond to write requests
badUnitErr –21 Driver reference number does not match unit table
unitEmptyErr –22 Driver reference number specifies a nil handle in unit table
openErr –23 Requested read/write permission does not match driver’s open permission
closErr –24 Driver unable to complete close request
dRemovErr –25 Attempt to remove an open driver
dInstErr –26 Driver resource not found
abortErr –27 Request aborted by KillIO
notOpenErr –28 Driver not open
ioErr –36 Data does not match in read-verify mode

Contents 2-1

C H A P T E R 2

Contents

Slot Manager

Introduction to Slots and Cards 2-3

Slot Address Allocations 2-5

Firmware 2-7

The sResource 2-7

Type and Name Entries 2-9

The Board sResource and Functional sResources 2-11

The sResource Directory 2-12

The Format Block 2-13

About the Slot Manager 2-15

Using the Slot Manager 2-16

Enabling and Disabling NuBus Cards 2-17

Deleting and Restoring sResources 2-17

Enabling and Disabling sResources 2-18

Searching for sResources 2-19

Obtaining Information From sResources 2-20

Installing and Removing Slot Interrupt Handlers 2-22

Slot Manager Reference 2-22

Data Structures 2-22

Slot Manager Parameter Block 2-23

Slot Information Record 2-24

Format Header Record 2-26

Slot Parameter RAM Record 2-27

Slot Execution Parameter Block 2-27

Slot Interrupt Queue Element 2-28

Slot Manager Routines 2-29

Determining the Version of the Slot Manager 2-30

Finding sResources 2-31

Getting Information From sResources 2-40

Enabling, Disabling, Deleting, and Restoring sResources 2-51

Loading Drivers and Executing Code From sResources 2-58

C H A P T E R 2

2-2 Contents

Getting Information About Expansion Cards and Declaration
ROMs 2-61

Accessing Expansion Card Parameter RAM 2-67

Managing the Slot Interrupt Queue 2-70

Low-Level Routines 2-72

Summary of the Slot Manager 2-87

Pascal Summary 2-87

Constants 2-87

Data Types 2-87

Slot Manager Routines 2-90

Low-Level Routines 2-91

C Summary 2-92

Constants 2-92

Data Types 2-92

Slot Manager Functions 2-94

Low-Level Functions 2-96

Assembly-Language Summary 2-97

Data Structures 2-97

Trap Macros 2-99

Result Codes 2-100

C H A P T E R 2

Introduction to Slots and Cards 2-3

Slot Manager

This chapter describes how your application or device driver can use the Slot Manager to

identify expansion cards and communicate with the firmware on a card.

You need to use the Slot Manager only if you are writing an application or a device

driver that must address an expansion card directly. For example, you need to use the

Slot Manager if you are writing a driver for a video card, but not if you only want to

display information on a monitor for which a device driver already exists.

The Slot Manager provides functions to help you search through the data structures that

expansion cards use to organize the information in their firmware. The meaning of the

information in the data structures varies from card to card; you need to know the

specifics of a card in order to interpret its data structures. To interpret these data

structures, you need to know the information in Designing Cards and Drivers for the
Macintosh Family, third edition, as well as information specific to the expansion card

you’re using.

This chapter begins with a brief introduction to Apple’s implementation of the NuBus
expansion interface. The NuBus interface provides a 32-bit-wide synchronous, multislot

expansion bus for adding expansion cards to Macintosh computers. This introduction

explains the firmware data structures of NuBus expansion cards, but does not provide

much detail about the information these data structures contain. If you are designing an

expansion card, you must read Designing Cards and Drivers for the Macintosh Family, third

edition. If you are writing a driver for a device on a card, you should also read the

chapter “Device Manager” in this book.

After introducing the NuBus architecture and expansion card design, this chapter

discusses how you can

■ enable and disable NuBus cards

■ delete, restore, enable, disable, and find information in an expansion card’s firmware

■ install and remove slot interrupt handlers

Introduction to Slots and Cards

The Macintosh Operating System provides a standardized interface to expansion cards

through the Slot Manager. The Slot Manager supports two types of expansion cards:

NuBus and processor-direct slot (PDS). Most Macintosh computers include one or both

of these expansion systems. Although the discussion and examples in this chapter use

NuBus, the information also applies to PDS expansion cards.

Processor-direct slot expansion cards connect directly to the processor bus, giving them

direct access to the microprocessor and therefore a speed advantage over NuBus cards.

However, because the PDS expansion interface is an extension of the processor bus, the

configuration of the slot depends on which microprocessor is used by the computer.

Refer to Designing Cards and Drivers for the Macintosh Family, third edition, for

information specific to PDS expansion cards.

C H A P T E R 2

Slot Manager

2-4 Introduction to Slots and Cards

Macintosh computers that include the NuBus expansion interface contain one or more

identical NuBus slots. Each slot is identified by slot a number in the range $1 through $E.

(Slot $0 corresponds to the main logic board, and slot $F is reserved for NuBus address

translation.)

Note

For convenience, this chapter refers to a NuBus configuration with six
slots numbered $9 through $E. Keep in mind that Macintosh computers
may have more or fewer slots. Refer to the appropriate Macintosh
Developer Note or Guide to the Macintosh Family Hardware, second
edition, for information about specific models. ◆

In Macintosh computers, the processor bus (which connects the microprocessor to RAM,

ROM, and the FPU) and the NuBus (which connects the NuBus slots) are connected by a

bus interface, as shown in Figure 2-1.

Figure 2-1 Simplified processor-bus and NuBus architecture

Both the processor bus and the NuBus are 4 bytes (32 bits) wide. The bus interface

transfers data between the buses in byte lanes. A byte lane is any of the 4 bytes that

make up the 32-bit bus. Because the processor bus and the NuBus interpret the

significance of bytes within words differently, the bus interface must perform byte-lane

swapping between the two buses.

The bus interface also performs some address translation between the two buses. It maps

certain address ranges on each bus to different address ranges on the other bus.
Designing Cards and Drivers for the Macintosh Family, third edition, discusses byte lanes

and address translation in more detail.

The next section,“Slot Address Allocations,” discusses the address ranges assigned by

the Macintosh architecture to each NuBus slot.

The section “Firmware” on page 2-7 introduces the data structures that cards use to

organize information in their firmware.

C H A P T E R 2

Slot Manager

Introduction to Slots and Cards 2-5

Slot Address Allocations
The Macintosh architecture assigns certain address ranges to each slot. The

microprocessor communicates with an expansion card in a particular slot by reading

or writing to memory in the slot’s address range. Expansion cards can also communicate

with each other in this manner.

The NuBus architecture supports 32-bit addressing, providing 4 gigabytes of address

space. All Macintosh computers that use Motorola 68030, 68040, or PowerPC processors

support 32-bit addressing under System 7. Macintosh computers that use Motorola

68000 or 68020 processors, and those running System 6, use 24-bit addressing. This

section describes address space allocation in both the 32-bit and 24-bit modes.

In 32-bit mode, the Macintosh architecture assigns two address ranges to each NuBus

slot: a 256-megabyte super slot space and a 16-megabyte standard slot space.

The 4 gigabytes of 32-bit address space contain 16 regions of 256 megabytes apiece. Each

region constitutes the super slot space for one possible slot ID. Each super slot space

spans an address range of $s000 0000 through $sFFF FFFF, where s is a hexadecimal digit

$1 through $E, corresponding to the slot ID. For example, the address range $9000 0000

through $9FFF FFFF constitutes the super slot space for slot $9.

The standard slot spaces are 16 megabytes apiece and have address ranges of the form

$Fs00 0000 through $FsFF FFFF, where s is the slot ID. The standard slot space for slot $9,

for example, is $F900 0000 through $F9FF FFFF. Figure 2-2 shows the super slot and

standard slot subdivisions of the 32-bit address space.

In 24-bit mode, software can address only a fraction of each card’s allocated address

range. In this mode, the Operating System assigns each slot a 1-megabyte minor slot
space. The bus interface translates 24-bit addresses on the processor bus with the form

$sx xxxx (where s is a slot ID and x is any hexadecimal digit) into 32-bit NuBus addresses

of the form $Fs0x xxxx, which is the first megabyte of the slot’s standard slot space.

For example, 24-bit addresses in the range $90 0000 through $9F FFFF constitute the

minor slot space corresponding to slot $9. The hardware translates these addresses into

the NuBus address range $F900 0000 through $F90F FFFF.

C H A P T E R 2

Slot Manager

2-6 Introduction to Slots and Cards

Figure 2-2 The NuBus 32-bit address space

Table 2-1 shows the address allocations for each slot ID.

Table 2-1 Slot address allocations by slot ID

Slot ID
24-bit minor
slot space (1 MB)

32-bit minor
slot space (1 MB)

Standard slot
space (16 MB)

Super slot
space (256 MB)

$1 $1x xxxx $F10x xxxx $F1xx xxxx $1xxx xxxx

$2 $2x xxxx $F20x xxxx $F2xx xxxx $2xxx xxxx

$3 $3x xxxx $F30x xxxx $F3xx xxxx $3xxx xxxx

$4 $4x xxxx $F40x xxxx $F4xx xxxx $4xxx xxxx

$5 $5x xxxx $F50x xxxx $F5xx xxxx $5xxx xxxx

$6 $6x xxxx $F60x xxxx $F6xx xxxx $6xxx xxxx

$7 $7x xxxx $F70x xxxx $F7xx xxxx $7xxx xxxx

$8 $8x xxxx $F80x xxxx $F8xx xxxx $8xxx xxxx

continued

C H A P T E R 2

Slot Manager

Introduction to Slots and Cards 2-7

Firmware
The firmware of a NuBus expansion card contains information that identifies the card

and its functions. Your application uses the Slot Manager to communicate with this

firmware. This firmware, called the declaration ROM, may also include other

information, such as initialization code or code for drivers that communicate with

devices on the card. The sole purpose of many Slot Manager routines is to provide access

to the information in the declaration ROM.

This section discusses the data structures used to store information in the declaration

ROM. You’ll need to understand these structures in order to use the Slot Manager

routines. To create firmware for an expansion card, you’ll need to read Designing Cards
and Drivers for the Macintosh Family, third edition.

The declaration ROM includes these elements:

■ The sResources. An sResource is a data structure in the firmware of an expansion
card’s declaration ROM that defines a function or capability of the card. An sResource
typically contains information about a single function or capability, although some
sResources may contain other data—for example, device drivers, icons, fonts, code,
or vendor-specific information.

■ The sResource directory. The sResource directory is a special sResource that contains
offsets to all of the other sResources in the declaration ROM.

■ The format block. The format block is a data structure that allows the Slot Manager to
find the declaration ROM and to validate it. It contains some identification
information and an offset to the sResource directory.

The next few sections discuss these data structures in more detail.

The sResource
An sResource consists of a list of 4-byte entries. The first byte of each entry is an ID field

that identifies the type of data contained in the entry. The next 3 bytes contain either data

for the sResource or an offset to additional data such as icon definitions, code, or device

drivers relating to the sResource.

$9 $9x xxxx $F90x xxxx $F9xx xxxx $9xxx xxxx

$A $Ax xxxx $FA0x xxxx $FAxx xxxx $Axxx xxxx

$B $Bx xxxx $FB0x xxxx $FBxx xxxx $Bxxx xxxx

$C $Cx xxxx $FC0x xxxx $FCxx xxxx $Cxxx xxxx

$D $Dx xxxx $FD0x xxxx $FDxx xxxx $Dxxx xxxx

$E $Ex xxxx $FE0x xxxx $FExx xxxx $Exxx xxxx

Table 2-1 Slot address allocations by slot ID (continued)

Slot ID
24-bit minor
slot space (1 MB)

32-bit minor
slot space (1 MB)

Standard slot
space (16 MB)

Super slot
space (256 MB)

C H A P T E R 2

Slot Manager

2-8 Introduction to Slots and Cards

Note
An sResource is sometimes referred to as a slot resource. Note, however,
that an sResource is a data structure in the firmware of a NuBus
expansion card and not the type of Macintosh resource associated
with the Resource Manager (which is described in Inside Macintosh:
More Macintosh Toolbox). ◆

The last entry in an sResource must contain an end-of-list marker—a 4-byte series with

the value $FF 00 00 00. Figure 2-3 shows the format of a typical sResource.

Figure 2-3 The structure of a typical sResource

The ID field of each sResource entry indicates the type of information in the offset field

of the entry. Apple reserves the range 0 through 127 for common sResource IDs.

Designing Cards and Drivers for the Macintosh Family, third edition, includes a complete list

of the Apple-defined sResource IDs and their meanings.

The offset field of each entry can contain a byte or word of data, or an offset to a larger

block of data. This field takes one of three possible forms:

■ two $00 bytes followed by an 8-bit byte of data

■ a single $00 byte followed by a 16-bit word of data

■ a signed 24-bit offset to a larger data structure; the offset is relative to the address of
the preceding ID field

C H A P T E R 2

Slot Manager

Introduction to Slots and Cards 2-9

Table 2-2 lists the kinds of large data types commonly used in sResources.

The sBlock and sExecBlock data structures begin with a size field, which contains

the physical size of the block (including the size field). In the sBlock structure, the

size field is followed by data. The sExecBlock structure includes additional fields and

a code block. Figure 2-4 shows these structures.

Figure 2-4 The format of the sBlock and sExecBlock data structures

Type and Name Entries

As shown in Figure 2-3, the Slot Manager requires that each sResource contain an

sRsrcType entry, which identifies the sResource type, and an sRsrcName entry, which

provides the sResource name.

The sRsrcType entry contains an ID value of 1 and an offset to an sRsrcType entry.

Figure 2-5 shows the format of an sRsrcType entry.

Table 2-2 Large data types used in sResources

Data type Description

Long 32 bits, signed or unsigned

Pointer 32 bits, signed or unsigned

cString One-dimensional array of bytes, ending with 0

sBlock A sized block of data (see Figure 2-4)

sExecBlock A sized block of code (see Figure 2-4)

C H A P T E R 2

Slot Manager

2-10 Introduction to Slots and Cards

Figure 2-5 The sRsrcType entry format

The fields of the sRsrcType entry are as follows:

Every card has a unique sRsrcType entry that must be assigned by Apple Computer,

Inc. If you are developing a card, refer to Designing Cards and Drivers for the Macintosh
Family, third edition, for information on obtaining an sRsrcType entry.

The sRsrcName entry in an sResource contains an ID value of 2 and an offset to a

cString data structure containing the sResource name. By convention, the sRsrcName

field is derived by stripping the prefixes from the sRsrcType values and separating

the fields by underscores. For example, the sRsrcName field for an sResource whose

sRsrcType values are catDisplay, typeVideo, DrSwApple, and DrHwTFB becomes

'Display_Video_Apple_TFB'.

Designing Cards and Drivers for the Macintosh Family, third edition, provides information

about these and other sResource entry types.

Field Description

Category The most general classification of card functions. Examples of categories
are catDisplay and catNetwork.

cType The subclass of the category. For example, within the catDisplay
category there is a typeVideo subcategory; within the catNetwork
category, there is a typeEtherNet subcategory.

DrSW The driver software interface to the card. (This provides the calling
interface for applications and system software.) For example, under the
catDisplay category and the typeVideo subcategory, there is a
drSwApple software interface that indicates the Apple-defined interface
to work with QuickDraw using Macintosh Operating System frame
buffers.

DrHW The identification of the specific hardware device associated with the
driver software interface. Generally, only the driver interacts with
the hardware specified here.

C H A P T E R 2

Slot Manager

Introduction to Slots and Cards 2-11

The Board sResource and Functional sResources

Every card must have a single board sResource that contains information about the card

as a whole. An sResource relating to a specific function is called a functional sResource,

and a card may have as many of them as necessary. For example, a video card may have

separate functional sResources for every pixel depth it supports. (See Figure 2-8 on

page 2-14 for an example of a functional sResources for a video card, and see Designing
Cards and Drivers for the Macintosh Family, third edition, for additional examples that

include code listings.)

The entries in the board sResource provide the Slot Manager with a card’s identification

number, vendor information, board flags, and initialization code. Like all sResources, the

board sResource must include an sRsrcType entry and an sRsrcName entry. The board

sRsrcType entry must contain the constants CatBoard ($0001), TypBoard ($0000),

DrSWBoard ($0000), and DrHWBoard ($0000). The sRsrcName entry for the board

sResource name does not follow the same convention as other sResources: the

sRsrcName entry for the board sResource contains the name of the entire card (for

example, 'Macintosh Display Card').

The board sResource must also contain a BoardId entry, a word that contains the card

design identification number assigned by Apple Computer, Inc. Designing Cards and
Drivers for the Macintosh Family, third edition, describes other Apple-defined entries

specifically for board sResources.

Figure 2-6 shows a sample board sResource. It shows an sRsrcType entry and an

sRsrcName entry and also includes three entry types, BoardID, PRAMInitData,

and PrimaryInit, which are discussed in Designing Cards and Drivers for the
Macintosh Family, third edition.

C H A P T E R 2

Slot Manager

2-12 Introduction to Slots and Cards

Figure 2-6 A sample board sResource

The sResource Directory

The sResource directory lists all the sResources in the declaration ROM and provides an

offset to each one. The sResource directory has the same structure as an sResource—that

is, an sResource directory consists of a series of 4-byte entries, where the first byte is an

ID field and the next 3 bytes contain an offset to additional data. Figure 2-7 shows the

format of the sResource directory.

C H A P T E R 2

Slot Manager

Introduction to Slots and Cards 2-13

Figure 2-7 The structure of the sResource directory

The sResource ID field of an entry in the sResource directory always identifies an

sResource on the card. Each sResource in the card firmware requires a unique ID defined

by the card designer, and the ID must be in the range 1 through 254. For example, an

entry for the board sResource must appear first in a card’s sResource directory, so card

designers typically assign an sResource ID value of 1 to the board sResource. The

sResource ID numbers must appear in the sResource directory in ascending order. An

sResource directory must conclude with the end-of-list marker ($FF 00 00 00).

The offset field of each entry contains a signed 24-bit offset to the sResource

corresponding to the sResource ID field. The offset value counts only those bytes

accessible by valid byte lanes, and is relative to the address of the sResource ID field.

The Format Block
The format block always resides at the highest address in the standard slot space of a

declaration ROM. At startup, the Slot Manager locates installed cards by searching each

slot space for a valid format block. The format block contains information about the

declaration ROM and an offset to the sResource directory. The Slot Manager uses the

format block to validate the declaration ROM and locate the sResources.

The format block also contains a value that specifies which of the four byte lanes are

occupied by the declaration ROM. These byte lanes are called the valid byte lanes. Some

declaration ROMs do not appear on all four byte lanes, so software cannot read

meaningful data at every memory location in the address space for the byte lanes.

C H A P T E R 2

Slot Manager

2-14 Introduction to Slots and Cards

IMPORTANT

The format block defines which byte lanes are valid for the declaration
ROM only. The valid byte lanes are determined by card design, and may
be different for other memory-mapped devices on the card. ▲

Designing Cards and Drivers for the Macintosh Family, third edition, defines the structure of

the format block and gives examples of how the valid byte lanes affect communication

with a declaration ROM.

Figure 2-8 illustrates the relationship of the format block, the sResource directory,

and the sResources for a sample video card. For every entry in the sResource directory

and in the sResources, its ID number is shown on the left side of the entry. As shown in

this figure, the board sResource is the first sResource listed in the sResource directory.

Each functional sResource that follows in turns defines a display capability provided by

the card. (To simplify this figure, only one complete functional sResource is shown.)

Figure 2-8 The format block and sResources for a sample video card

C H A P T E R 2

Slot Manager

About the Slot Manager 2-15

About the Slot Manager

The Slot Manager provides three basic services:

■ On startup, it examines each slot and initializes any expansion cards it finds.

■ It maintains data structures that contain information about each slot and every
available sResource.

■ It provides functions that allow you to get information about expansion cards and
their sResources.

There are two variations of the System 7 Slot Manager: version 1 and version 2. Version 1

of the Slot Manager is RAM based and is installed by the user with the System 7 upgrade

kit. Version 2 is included in the ROM of newer Macintosh computers.

At startup, the version of the Slot Manager in ROM searches each slot for a declaration

ROM and creates a slot information record for each slot. See “Slot Information Record”

on page 2-24 for the definition of the SInfoRecord data type.

As the Slot Manager searches the slots, it identifies all of the sResources in each

declaration ROM and creates a table—the slot resource table (SRT)—that lists all of the

sResources currently available to the system. The slot resource table is a private data

structure maintained by the Slot Manager. Applications and device drivers use Slot

Manager routines to get information from the slot resource table.

After building the slot resource table, the Slot Manager initializes the 6 bytes reserved for

each slot in parameter RAM. If the slot has an expansion card with a PRAMInitData

entry in its board sResource, the Slot Manager uses the values in that entry to initialize

the parameter RAM; otherwise, it clears those bytes in parameter RAM.

Next, the Slot Manager disables interrupts and executes the code in the PrimaryInit

entry of the board sResource for each card. Note that at this point in the startup, the

keyboard and the mouse are not initialized and that a card’s PrimaryInit code has

only limited control over the functionality of the card itself.

If certain values (defined by the Start Manager) are set in a card’s parameter RAM, a

card with an sRsrcBootRec entry may take over the system startup process. The Start

Manager passes control to the code in the sRsrcBootRec early in the startup sequence,

before system patches are installed. Refer to the chapter “Start Manager” in Inside
Macintosh: Operating System Utilities for more information about the startup process.

Designing Cards and Drivers for the Macintosh Family, third edition, describes the

PRAMInitData, PrimaryInit, and sRsrcBootRec entry types.

If no card takes over, the normal system startup continues. After version 1 of the Slot

Manager is loaded, it conducts a second search for declaration ROMs, this time in 32-bit

mode. If the Slot Manager finds any additional NuBus cards, it adds their sResources to

the slot resource table and executes the code in their PrimaryInit entries. (Version 2 of

the Slot Manager, which resides in ROM, does not need to conduct a second search.)

C H A P T E R 2

Slot Manager

2-16 Using the Slot Manager

Note
Some versions of the Slot Manager prior to System 7 address NuBus
cards in 24-bit mode and may not be able to identify all cards. After
version 1 of the Slot Manager is loaded, it locates these cards. ◆

After all system patches have been installed, version 1 or later of the Slot Manager

executes the code in any SecondaryInit entries it finds in the declaration ROMs.

It does not reexecute the code from PrimaryInit entries, reinitialize parameter RAM,

or restore any sResources deleted by the PrimaryInit code.

Note

Most versions of the Slot Manager prior to System 7 do not execute code
from SecondaryInit entries. ◆

After the Slot Manager executes SecondaryInit code, it searches for sResources that

have an sRsrcFlags entry with the fOpenAtStart flag set. When the Slot Manager

finds an sResource with this flag set, it loads the device driver from the sRsrcDrvrDir

entry of the sResource, or calls the code in the sResource’s sRsrcLoadRec entry, which

loads the sResource’s device driver.

Finally, the system executes initialization resources of type 'INIT'.

See Designing Cards and Drivers for the Macintosh Family, third edition, for details about

the sRsrcFlags, sRsrcDrvrDir, and sRsrcLoadRec entry types.

Using the Slot Manager

The Slot Manager allows you to enable and disable NuBus cards, manipulate the slot

resource table, get information from slot information records, get status information,

and read and change expansion cards’ parameter RAM. However, the majority of Slot

Manager routines search for sResources in the slot resource table or provide information

from these structures.

The Slot Manager provides a variety of methods to find an sResource. These methods

include searching for an sResource with a particular sResource ID, searching for an

sResource with a particular sResource type, searching through all sResources, searching

through only the enabled sResources, and so on.

The Slot Manager also provides a number of routines that return information from

sResources. Some of these routines, like the SReadByte and SGetCString functions,

return one particular type of data structure. Others, like the SFindStruct function, can

return information about any data structure. Functions such as SGetDriver and SExec

not only return information from an sResource, they also perform additional operations

like loading the sResource’s driver or executing the code of an sExecBlock data

structure.

You can use the SVersion function, described on page 2-30, to determine if the Slot

Manager is version 1, version 2, or a version that predates System 7.

C H A P T E R 2

Slot Manager

Using the Slot Manager 2-17

Enabling and Disabling NuBus Cards
Version 1 and later of the Slot Manager allows you to temporarily disable your NuBus

card. You might want to do this if, for example, you are designing a NuBus card that

must be addressed in 32-bit mode or that requires RAM-based system software patches

to be loaded into memory before the card is initialized. Your PrimaryInit code can

disable the card temporarily and the SecondaryInit code can reenable it.

To disable a NuBus card temporarily, the initialization routine in your PrimaryInit

record should return in the seStatus field of the SEBlock data structure (described in

“Slot Execution Parameter Block” on page 2-27) an error code with a value in the range

svTempDisable ($8000) through svDisabled ($8080). The Slot Manager places this

code in the siInitStatusV field of the slot information record for the slot, and places

the fatal error smInitStatVErr (–316) in the siInitStatusA field of the slot

information record. The card and its sResources are then unavailable for use by the

Operating System.

After the Operating System loads RAM patches, the Slot Manager checks the value of the

siInitStatusA field of each slot information record. If this value is greater than or

equal to 0, indicating no error, the Slot Manager executes the SecondaryInit code for

the slot, if any. If the value in the siInitStatusA field is smInitStatVErr, the Slot

Manager checks the siInitStatusV field. If the value of the siInitStatusV field is

in the range svTempDisable through svDisabled, the Slot Manager sets the

siInitStatusA field to 0 and runs the SecondaryInit code.

For examples of PrimaryInit and SecondaryInit code, see Designing Cards and
Drivers for the Macintosh Family, third edition.

Deleting and Restoring sResources
Some NuBus cards have sResources to support a variety of system configurations or

modes. The Slot Manager loads all of the sResources during system initialization, and

then the card’s PrimaryInit code can delete from the slot resource table any

sResources that are not appropriate for the system as configured. If the user changes the

system configuration or selects a different mode of operation, your card can reinstall a

deleted sResource. The SDeleteSRTRec function deletes sResources; the

InsertSRTRec function reinstalls them.

Because none of the Slot Manager functions can search for sResources that have been

deleted from the slot resource table, you must keep a record of all sResources you delete

so that you will have the appropriate parameter values when you want to reinstall one.

When you reinstall an sResource, it may be necessary to update the dCtlSlotId and

dCtlDevBase fields in the slot device driver’s device control entry. You need to update

the dCtlSlotId field if you change the sResource ID. The dCtlDevBase field holds

the base address of the slot device. For a video card this is the base address for the pixel

map in the card’s GDevice record (which is described in Inside Macintosh: Imaging With
QuickDraw). The InsertSRTRec function updates the dCtlDevBase field

automatically if you supply a valid driver reference number.

C H A P T E R 2

Slot Manager

2-18 Using the Slot Manager

Enabling and Disabling sResources
Under certain circumstances, you might want to disable an sResource while it remains

listed in the slot resource table. For example, a NuBus card might provide several modes

of operation, only one of which can be active at a given time. Your application might

want to disable the sResources associated with all but the active mode, but still list all

available modes in a menu. When the user selects a new mode, your application can

then disable the currently active sResource and enable the one the user selected.

You use the SetSRsrcState function to enable or disable an sResource. Listing 2-1

disables the sResource in slot $A with an sResource ID of 128 and enables the sResource

in the same slot with an sResource ID of 131.

Listing 2-1 Disabling and enabling an sResource

PROCEDURE MyDisableAndEnableSResource;

VAR

mySpBlk: SpBlock;

myErr: OSErr;

BEGIN

WITH mySpBlk DO {set required values in parameter block}

BEGIN

spParamData := 1; {disable}

spSlot := $A; {slot number}

spID := 128; {sResource ID}

spExtDev := 0; {ID of external device}

END;

myErr := SetSRsrcState(@mySpBlk);

IF myErr = noErr THEN

BEGIN

WITH mySpBlk DO

BEGIN

spParamData := 0; {enable}

spSlot := $A; {slot number}

spID := 131; {sResource ID}

spExtDev := 0; {ID of external device}

END;

myErr := SetSRsrcState(@mySpBlk);

END;

END;

C H A P T E R 2

Slot Manager

Using the Slot Manager 2-19

Searching for sResources
The Slot Manager provides several functions that search for sResources in the slot

resource table. These functions allow you to specify which sResources to search, but

each function provides slightly different options.

The SNextSRsrc and SNextTypeSRsrc functions allow you to search for enabled

sResources by slot. The SGetSRsrc and SGetTypeSRsrc functions, available only with

the System 7 Slot Manager (that is, version 1 and version 2 of the Slot Manager), allow

you to search for disabled sResources as well as enabled ones. Table 2-3 summarizes the

Slot Manager search routines and the options available for each.

Listing 2-2 shows how to use the SGetTypeSRsrc function to search all slots for both

enabled and disabled sResources with an sResource type category of catDisplay and

an sResource type subcategory of typeVideo.

Listing 2-2 Searching for a specified type of sResource

PROCEDURE MySResourceSearch;

VAR

mySpBlk: SpBlock;

myErr: OSErr;

* Available only with the System 7 Slot Manager (that is, version 1 and version 2 of the Slot Manager)

Table 2-3 The Slot Manager search routines

Function

State of
sResources for
which it
searches

Slots it
searches

Which
sResources it
searches for

Type of
sResource it
searches for

SNextSRsrc Enabled only Specified slot
and higher slots

Next sResource
only

Any type

SGetSRsrc* Your choice of
enabled only or
both enabled
and disabled

Your choice of
one slot only or
specified slot
and higher slots

Your choice
of specified
sResource or
next sResource

Any type

SNextTypeSRsrc Enabled only Specified slot
and higher slots

Next sResource
only

Specified type
only

SGetTypeSRsrc* Your choice of
enabled only or
both enabled
and disabled

Your choice of
one slot only or
specified slot
and higher slots

Next sResource
only

Specified type
only

C H A P T E R 2

Slot Manager

2-20 Using the Slot Manager

BEGIN

WITH mySpBlk DO {set required values in parameter block}

BEGIN

spParamData := fAll; {fAll flag = 1: search all sResources}

spCategory := catDisplay; {search for Category catDisplay}

spCType := typeVideo; {search for cType typeVideo}

spDrvrSW := 0; {this field not being matched}

spDrvrHW := 0; {this field not being matched}

spTBMask := 3; {match only Category and cType fields}

spSlot := 1; {start search from slot 1}

spID := 1; {start search from sResource ID 1}

spExtDev := 0; {external device ID (card-specific)}

END;

myErr := noErr;

WHILE myErr = noErr DO {loop to search sResources}

BEGIN

myErr := SGetTypeSRsrc(@mySpBlk);

MySRsrcProcess(mySpBlk); {routine to process results}

END;

IF myErr <> smNoMoresRsrcs THEN {all search functions return this value }

MyHandleError(myErr); { when search is complete}

END;

Obtaining Information From sResources
If you are writing a driver for a card device, you will most likely want access to the

information in an sResource.

The Slot Manager provides many functions that return information from the entries

of an sResource. The SOffsetData, SReadByte, and SReadWord functions return

information from the offset field of an sResource entry. The SReadLong, SGetCString,

and SGetBlock functions return copies of the standard data structures pointed to by the

offset field of an sResource entry. The SFindStruct and SReadStruct functions allow

access to other data structures pointed to by sResource entries.

Listing 2-3 shows an example of searching for a board sResource and obtaining its

name. This example starts at a particular slot number and then searches for the board

sResource in that slot or, if necessary, in higher slots. Once it finds the board sResource,

Listing 2-3 calls the SGetCString function, which returns a pointer to a buffer

containing the name string for the card.

C H A P T E R 2

Slot Manager

Using the Slot Manager 2-21

Listing 2-3 Searching for the name of a board sResource

PROCEDURE FindBoardsResource (VAR slotNumber: Integer;

 VAR finished: Boolean);

VAR

mySpBlk: SpBlock;

myErr: OSErr;

BEGIN

{First, get a pointer to the board sResource for the slot.}

WITH mySpBlk DO BEGIN

spSlot := slotNumber; {start searching in this slot, }

 { and continue until found}

spID := 0;

spCategory := 1; {sRsrcType values for a board sResource}

spCType := 0;

spDrvrSw := 0;

spDrvrHw := 0;

END;

myErr := SNextTypeSRsrc(@mySpBlk);

IF myErr <> noErr THEN

MyHandleError(myErr) {quit searching if no more sResources}

ELSE

gTheSlot := mySpBlk.spSlot; {the slot in which the sResource was found}

{The spsPointer field of mySpBlock now contains a pointer to the }

{ board sResource list. The SGetCString function uses this field }

{ as one of two input fields.}

mySpBlk.spID := 2; {sRsrcName entry}

myErr := SGetCString(@mySpBlk);

IF myErr <> noErr THEN

MyHandleError(myErr)

ELSE BEGIN

{The spResult field now points to a copy of the cString.}

MyProcessCardName(gTheSlot, Ptr(mySpBlk.spResult));

{Free memory allocated by SGetCString.}

DisposePtr(Ptr(mySpBlk.spResult));

END;

END;

Because the SGetCString function allocates memory for a buffer, your application

must dispose of the buffer afterward, using the Memory Manager procedure

DisposePtr (which is described in Inside Macintosh: Memory).

C H A P T E R 2

Slot Manager

2-22 Slot Manager Reference

Installing and Removing Slot Interrupt Handlers

If your card generates hardware interrupts, you can install a slot interrupt handler to

process interrupts from the card. The Slot Manager maintains an interrupt queue for

each slot. You use the SIntInstall function, described on page 2-70, to install an

interrupt handler in the slot interrupt queue. The SIntRemove function, described

on page 2-71, removes an interrupt handler from the slot interrupt queue.

The SlotIntQElement data type, described on page 2-28, defines a slot interrupt

queue element. The queue elements are ordered by priority and contain pointers

to interrupt handlers. When a slot interrupt occurs, the Slot Manager calls the

highest-priority interrupt handler in the slot’s interrupt queue. If the interrupt

handler returns without servicing the interrupt, the Slot Manager calls the next

interrupt handler in the queue, in order of priority, until the interrupt is serviced.

If the interrupt is not serviced by any interrupt handler, a system error dialog box

is displayed.

Before returning to the Slot Manager, your interrupt handler should set a result code

in register D0 to indicate whether the interrupt was serviced. If the interrupt was not

serviced, your interrupt handler must return 0. Any value other than 0 indicates that

the interrupt was serviced.

The Slot Manager returns to the interrupted task when your interrupt handler indicates

that the interrupt was serviced; otherwise, it calls the next lower-priority interrupt

handler for that slot. A system error is generated if the last interrupt handler returns

to the Slot Manager without servicing the interrupt.

Slot Manager Reference

This section describes the data structures and routines you use to get information about

the Slot Manager, expansion cards, and sResources.

Data Structures

This section describes the Slot Manager parameter block structure, the slot information

record, the format header record, the slot parameter RAM record, the slot execution

parameter block, and the slot interrupt queue element.

Many Slot Manager routines return information from data structures contained in the

firmware of cards. See “Firmware,” beginning on page 2-7, for a general discussion of

these data structures, and see Designing Cards and Drivers for the Macintosh Family, third

edition, for more detailed information.

C H A P T E R 2

Slot Manager

Slot Manager Reference 2-23

Slot Manager Parameter Block

Every Slot Manager function requires a pointer to a Slot Manager parameter block as a

parameter and returns an OSErr result code. Each routine uses only a subset of the fields

of the parameter block. See the individual routine descriptions for a list of the fields used

with each routine. The Slot Manager parameter block is defined by the SpBlock data

type.

TYPE SpBlock =

PACKED RECORD {Slot Manager parameter block}

spResult: LongInt; {result}

spsPointer: Ptr; {structure pointer}

spSize: LongInt; {size of structure}

spOffsetData: LongInt; {offset or data}

spIOFileName: Ptr; {reserved for Slot Manager}

spsExecPBlk: Ptr; {pointer to SEBlock data structure}

spParamData: LongInt; {flags}

spMisc: LongInt; {reserved for Slot Manager}

spReserved: LongInt; {reserved for Slot Manager}

spIOReserved: Integer; {ioReserved field from SRT}

spRefNum: Integer; {driver reference number}

spCategory: Integer; {Category field of sRsrcType entry}

spCType: Integer; {cType field of sRsrcType entry}

spDrvrSW: Integer; {DrSW field of sRsrcType entry}

spDrvrHW: Integer; {DrHW field of sRsrcType entry}

spTBMask: SignedByte; {sRsrcType entry bit mask}

spSlot: SignedByte; {slot number}

spID: SignedByte; {sResource ID}

spExtDev: SignedByte; {external device ID}

spHwDev: SignedByte; {hardware device ID}

spByteLanes: SignedByte; {valid byte lanes}

spFlags: SignedByte; {flags used by Slot Manager}

spKey: SignedByte; {reserved for Slot Manager}

END;

Field descriptions

spResult A general-purpose field used to contain the results returned by
several different routines.

spsPointer A pointer to a data structure. The field can point to an sResource, a
data block, or a declaration ROM, depending on the routine being
executed.

spSize The size of the data pointed to in the spsPointer field.

spOffsetData The contents of the offset field of an sResource entry. Some routines
use this field for other offsets or data.

spIOFileName Reserved for use by the Slot Manager.

C H A P T E R 2

Slot Manager

2-24 Slot Manager Reference

spsExecPBlk A pointer to an SEBlock data structure, which is described on
page 2-27.

spParamData On input, a long word containing flags that determine what
sResources the Slot Manager searches. When set, bit 0 (the fAll
flag) indicates that disabled sResources should be included. When
set, bit 1 (the fOneSlot flag) restricts the search to sResources on
a single card. Bit 2 (the fNext flag) indicates when set that the
routine finds the next sResource. The rest of the bits must be cleared
to 0.

On output, this field indicates whether the sResource is enabled or
disabled (if 0, the sResource is enabled; if 1, it is disabled).

spMisc Reserved for use by the Slot Manager.

spReserved Reserved for future use.

spIOReserved The value of the ioReserved field from the sResource’s entry in
the slot resource table.

spRefNum The driver reference number of the driver associated with an
sResource, if there is one.

spCategory The Category field of the sRsrcType entry (which is described
on page 2-10).

spCType The cType field of the sRsrcType entry.

spDrvrSW The DrSW field of the sRsrcType entry.

spDrvrHW The DrHW field of the sRsrcType entry.

spTBMask A mask that determines which sRsrcType fields the Slot Manager
examines when searching for sResources.

spSlot The number of the slot with the NuBus card containing the
requested, or returned, sResource.

spID The sResource ID of the requested, or returned, sResource.

spExtDev The external device identifier. This field allows you to distinguish
between devices on a card.

spHwDev The hardware device identifier from the sRsrcHWDevID field of the
sResource.

spByteLanes The byte lanes used by a declaration ROM.

spFlags Flags typically used by the Slot Manager.

spKey Reserved for use by the Slot Manager.

Listing 2-1 on page 2-18 illustrates how to set values in an SpBlock record to disable

and enable an sResource. Listing 2-2 on page 2-19 illustrates how to use the values in an

SpBlock record for searching for sResources.

Slot Information Record

The Slot Manager creates a slot information record for each slot. This structure is defined

by the SInfoRecord data type.

C H A P T E R 2

Slot Manager

Slot Manager Reference 2-25

TYPE SInfoRecord = {slot information record}

PACKED RECORD

siDirPtr: Ptr; {pointer to sResource directory}

siInitStatusA: Integer; {initialization status}

siInitStatusV: Integer; {status returned by vendor }

{ initialization routine}

siState: SignedByte; {initialization state}

siCPUByteLanes: SignedByte; {byte lanes used}

siTopOfROM: SignedByte; {highest valid address in ROM}

siStatusFlags: SignedByte; {status flags}

siTOConstant: Integer; {timeout constant for bus error}

siReserved: PACKED ARRAY [0..1] OF SignedByte;

{reserved}

siROMAddr: Ptr; {address of top of ROM}

siSlot: Char; {slot number}

siPadding: PACKED ARRAY [0..2] OF SignedByte; {reserved}

END;

Field descriptions

siDirPtr A pointer to the sResource directory (described in “The sResource
Directory” on page 2-12).

siInitStatusA The initialization status code set by the Slot Manager. A value of 0
indicates the card is installed and operational. Any other value is a
Slot Manager error code indicating why the initialization failed.

siInitStatusV The initialization status code returned by the card’s PrimaryInit
routine in the seStatus field of the SEBlock parameter block
(described on page 2-27). Negative values cause the card
initialization to fail. Values in the range svTempDisable ($8000)
through svDisabled ($8080) are used to temporarily disable a
card. See “Enabling and Disabling NuBus Cards” on page 2-17 for
more information.

siState Reserved for use by the Slot Manager.

siCPUByteLanes The byte lanes used by the declaration ROM.

siTopOfROM The least significant byte of the address stored in siROMAddr.

siStatusFlags Slot status flag field set by the Slot Manager. If the
fCardIsChanged flag (bit 1) is set, the board ID of the installed
card does not match the board ID stored in parameter RAM. Other
flag bits are reserved.

siTOConstant The number of retries that will be performed when a bus error
occurs while accessing the declaration ROM. The default is 100.

siReserved Reserved for use by the Slot Manager.

siROMAddr The highest address in the declaration ROM.

siSlot The slot number.

siPadding Reserved for use by the Slot Manager.

C H A P T E R 2

Slot Manager

2-26 Slot Manager Reference

Format Header Record

The Slot Manager uses a format header record to describe the structure of a card’s format

block, which is located at the highest address in the slot’s NuBus address space. By

reading information from the format header record, the Slot Manager can locate and

validate the card’s declaration ROM. The format header record is defined by the

FHeaderRec data type.

Note

For more information about the format block, see Designing Cards and
Drivers for the Macintosh Family, third edition. ◆

TYPE FHeaderRec = {format header record}

PACKED RECORD

fhDirOffset: LongInt; {offset to sResource directory}

fhLength: LongInt; {length in bytes of declaration ROM}

fhCRC: LongInt; {cyclic redundancy check}

fhROMRev: SignedByte; {declaration ROM revision}

fhFormat: SignedByte; {declaration ROM format}

fhTstPat: LongInt; {test pattern}

fhReserved: SignedByte; {reserved; must be 0}

fhByteLanes: SignedByte; {byte lanes used by declaration ROM}

END;

Field descriptions

fhDirOffset A self-relative signed offset to the sResource directory. This field
specifies only bytes accessible by valid byte lanes; as a result, the
value in this field might not be the absolute address difference.

fhLength The number of valid bytes in the declaration ROM. The Slot
Manager uses this value when computing the checksum.

fhCRC A checksum that allows the Slot Manager to validate the entire
declaration ROM.

fhROMRev The current ROM revision level. This field should contain a value
in the range 1–9; values greater than 9 cause the Slot Manager to
generate the error smRevisionErr.

fhFormat The format of the declaration ROM. A value of 1 designates the
Apple format.

fhTstPat A test pattern. This field must contain the value $5A932BC7.

fhReserved Reserved. This field must be 0.

fhByteLanes A signed byte that specifies which of the four byte lanes to use
when communicating with the declaration ROM. Refer to Designing
Cards and Drivers for the Macintosh Family, third edition, for a list of
valid values.

C H A P T E R 2

Slot Manager

Slot Manager Reference 2-27

Slot Parameter RAM Record

The Macintosh Operating System reserves eight bytes of parameter RAM for each

slot. Six of these bytes are available for card designers to store information. The

SPRAMRecord data type defines the organization of these bytes of data in parameter

RAM. This data structure includes the Apple-defined BoardID and six bytes of

vendor-specific information.

TYPE SPRAMRecord = {slot parameter RAM record}

PACKED RECORD

boardID: Integer; {Apple-defined board ID}

vendorUse1: SignedByte; {available for vendor use}

vendorUse2: SignedByte; {available for vendor use}

vendorUse3: SignedByte; {available for vendor use}

vendorUse4: SignedByte; {available for vendor use}

vendorUse5: SignedByte; {available for vendor use}

vendorUse6: SignedByte; {available for vendor use}

END;

Field descriptions

boardID The card identification number assigned by Apple Computer, Inc.

vendorUse General-purpose fields that may be used by the card designer.

Slot Execution Parameter Block

The SGetDriver and SExec functions load and execute code from an sResource. These

routines use the slot execution parameter block to exchange information with this code.

The slot execution parameter block is defined by the SEBlock data type.

TYPE SEBlock = {slot execution parameter block}

PACKED RECORD

seSlot: SignedByte; {slot number}

sesRsrcID: SignedByte; {sResource ID}

seStatus: Integer; {status of sExecBlock code}

seFlags: SignedByte; {flags}

seFiller0: SignedByte; {filler for word alignment}

seFiller1: SignedByte; {filler}

seFiller2: SignedByte; {filler}

seResult: LongInt; {result of SLoadDriver}

seIOFileName: LongInt; {pointer to driver name}

seDevice: SignedByte; {device to read from}

sePartition: SignedByte; {the partition}

seOSType: SignedByte; {type of OS}

seReserved: SignedByte; {reserved}

seRefNum: SignedByte; {driver reference number}

C H A P T E R 2

Slot Manager

2-28 Slot Manager Reference

seNumDevices: SignedByte; {number of devices to load}

seBootState: SignedByte; {state of StartBoot code}

END;

Field descriptions

seSlot The slot number containing the code to be executed.

sesRsrcID The sResource containing the code to be executed.

seStatus The status returned by the executed code. A card’s PrimaryInit
routine returns its initialization status in this field, and the value is
stored in the siInitStatusV field of the slot information record.

seFlags Flags passed to or returned by the executed code.

seFiller0–2 Reserved.

seResult A result value returned by the executed code. Normally used to
return a pointer or handle to a device driver.

seIOFileName An optional pointer to a device driver name.

seDevice The device number containing the code to be executed. This field is
used when loading code from a device attached to a card.

sePartition The partition number containing the code to be executed. This field
is used when loading code from a device attached to a card.

seOSType The operating system type identifier obtained from parameter RAM.
This field is used when loading code from a device attached to a card.

seReserved Additional information from parameter RAM, used when loading
code from a device attached to a card.

seRefNum The driver reference number returned by the loaded device driver.

seNumDevices Unused.

seBootState A value indicating the relative state of the boot process. During
initialization, the Slot Manager passes one of the following constant
values in this field:

Slot Interrupt Queue Element

The Slot Manager maintains a queue of interrupt handlers for each slot. You use the

SIntInstall and SIntRemove functions (described on page 2-70 and page 2-71,

respectively) to install and remove routines in the queue. The SlotIntQElement

data type defines a slot interrupt queue element.

Name Bit Meaning

fWarmStart 2 Set if a restart is being performed.

dRAMBased 6 Set if the seResult field contains a
handle to a device driver.

Name Value Meaning

sbState0 0 State 0 of the boot process.

sbState1 1 State 1 the boot process.

C H A P T E R 2

Slot Manager

Slot Manager Reference 2-29

TYPE SlotIntQElement = {slot interrupt queue element}

RECORD

sqLink: Ptr; {pointer to next queue element}

sqType: Integer; {queue type ID; must be sIQType}

sqPrio: Integer; {priority value in low byte}

sqAddr: ProcPtr; {interrupt handler}

sqParm: LongInt; {optional A1 parameter}

END;

Field descriptions

sqLink A pointer to the next queue element. This field is maintained by the
Slot Manager.

sqType The queue type identifier, which you set to the defined type
sIQType.

sqPrio The relative priority level of the interrupt handler. Only the low-
order byte of this field is used. The high-order byte must be set to 0.
Valid priority levels are 0 through 199. Priority levels 200 through
255 are reserved for Apple devices.

sqAddr A pointer to the interrupt handler.

sqParm An optional value that the Slot Manager places in register A1 before
calling the interrupt handler. This field is typically used to store a
handle to a driver’s device control entry.

Slot Manager Routines

This section describes the routines provided by the Slot Manager. Most of the routines in

this section are used to locate sResources or read information from an entry in an

sResource. Some of the routines allow you to read and set information about expansion

cards, such as their parameter RAM values, and others allow you to manipulate Slot

Manager data structures, like the slot resource table.

Because the SGetCString, SGetBlock, SGetDriver, SExec, InitSDeclMgr,

SInitPRAMRecs, SInitSRsrcTable, and SPrimaryInit functions may allocate

memory, your application should not call them at interrupt time; however, your can call

any other Slot Manager function at interrupt time.

Because each routine uses a subset of the Slot Manager parameter block fields, each

routine reference section includes a list of pertinent fields and how they are used.

Parameter block

The arrows show whether you provide a value in the field, the routine returns a value in

the field, or both. The ✕ symbol designates fields that may be affected by the execution

→ fieldName FieldType Input field.
← fieldName FieldType Output field.
↔ fieldName FieldType Input/output field.

✕ fieldName FieldType Affected field.

C H A P T E R 2

Slot Manager

2-30 Slot Manager Reference

of the routine. Any value you store in one of these affected fields may be lost. Also, the

meaning of these fields upon completion of the routine is undefined; your application

should not depend on these values.

Assembly-Language Note

You can call Slot Manager routines using either the _SlotManager trap
macro with a selector or an individual macro name consisting of the
routine name preceded by an underscore. For example, you can call the
SVersion function using the _SVersion macro. Because every routine
name macro is equivalent to the _SlotManager trap macro that specifies
the corresponding routine selector, you will need to know the routine
selectors to trace your code in MacsBug. The _SlotManager trap macro
selector for each routine is included in the routine description and
summarized in “Trap Macros,” beginning on page 2-99. ◆

Determining the Version of the Slot Manager

Unlike other system software managers, which use the Gestalt function to return

version information, the Slot Manager includes its own function for providing this

information.

SVersion

You can use the SVersion function to determine which version of the Slot Manager is in

use by the Macintosh Operating System.

FUNCTION SVersion (spBlkPtr: SpBlockPtr): OSErr;

spBlkPtr A pointer to a Slot Manager parameter block.

Parameter block

DESCRIPTION

The SVersion function returns the version number of the Slot Manager in the

spResult field of the Slot Manager parameter block that you point to in the spBlkPtr

parameter. Version number 1 corresponds to the RAM-based Slot Manager and version

number 2 corresponds to the ROM-based Slot Manager. Versions of the Slot Manager

prior to System 7 do not recognize the SVersion function and return the result code

smSelOOBErr. The spsPointer field is reserved for future use as a pointer to

additional information.

← spResult LongInt The Slot Manager version number.
← spsPointer Ptr A pointer to additional information.

C H A P T E R 2

Slot Manager

Slot Manager Reference 2-31

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SVersion function are

You must set up register D0 with the routine selector and register A0 with the address of

the Slot Manager parameter block. When _SlotManager returns, register D0 contains

the result code.

RESULT CODES

SEE ALSO

For more information on the different versions of the Slot Manager, see “About the Slot

Manager” on page 2-15.

Finding sResources

The functions in this section locate sResources in the slot resource table and return

pointers to them and additional information about them. The SRsrcInfo function is

useful for finding the driver reference number of an SResource. The SGetSRsrc and

SGetTypeSRsrc functions are the preferred routines for searching sResources. You can

use these functions to step through the sResources and to find disabled as well as

enabled sResources. Use the SNextSRsrc and SNextTypeSRsrc functions with

System 6 and earlier versions of the Slot Manager.

SRsrcInfo

You can use the SRsrcInfo function to find an sResource. This function also provides

additional information about the sResource, such as the driver reference number of the

slot device driver.

FUNCTION SRsrcInfo (spBlkPtr: SpBlockPtr): OSErr;

spBlkPtr A pointer to a Slot Manager parameter block.

Trap macro Selector

_SlotManager $0008

Registers on entry

A0 Address of the parameter block

D0 $0008

Registers on exit

D0 Result code

noErr 0 No error
smSelOOBErr –338 Selector out of bounds or function not implemented

C H A P T E R 2

Slot Manager

2-32 Slot Manager Reference

Parameter block

DESCRIPTION

The SRsrcInfo function allows you to find an sResource from the slot resource table

and provides additional information, including its driver reference number and the

values contained in its sRsrcType entry.

You specify an sResource with the spSlot, spID, and spExtDev fields of the Slot

Manager parameter block you point to in the spBlkPtr parameter.

The SRsrcInfo function returns a pointer to the sResource in the spsPointer field

and returns information about the sResource type in the spRefNum, spCType,

spDrvrSW, spDrvrHW fields. The function returns other information about the

sResource in the spIOReserved, spRefNum, and spHwDev fields.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SRsrcInfo function are

You must set up register D0 with the routine selector and register A0 with the address of

the Slot Manager parameter block. When _SlotManager returns, register D0 contains

the result code.

← spsPointer Ptr A pointer to an sResource (described in
“The sResource,” beginning on page 2-7).

← spIOReserved Integer The value of the slot resource table
ioReserved field.

← spRefNum Integer The device driver reference number.
← spCategory Integer The Category field of the sRsrcType

entry (described on page 2-10).
← spCType Integer The cType field of the sRsrcType entry.
← spDrvrSW Integer The DrSW field of the sRsrcType entry.
← spDrvrHW Integer The DrHW field of the sRsrcType entry.
→ spSlot SignedByte The slot number of the requested sResource.
→ spId SignedByte The sResource ID of the requested

sResource.
→ spExtDev SignedByte The external device identifier.
← spHwDev SignedByte The hardware device identifier.

Trap macro Selector

_SlotManager $0016

Registers on entry

A0 Address of the parameter block

D0 $0016

Registers on exit

D0 Result code

C H A P T E R 2

Slot Manager

Slot Manager Reference 2-33

RESULT CODES

SEE ALSO

For more control in finding sResources, you can use the SGetSRsrc function, described

next, and the SGetTypeSRsrc function, described on page 2-35.

SGetSRsrc

You can use the SGetSRsrc function to find any sResource, even one that has been

disabled.

FUNCTION SGetSRsrc (spBlkPtr: SpBlockPtr): OSErr;

spBlkPtr A pointer to a Slot Manager parameter block.

Parameter block

DESCRIPTION

The SGetSRsrc function allows you to specify whether the function should

include disabled sResources, whether it should continue looking for sResources in

higher-numbered slots, and whether it should return information about the specified

sResource or the one that follows it.

You specify an sResource with the spSlot, spID, and spExtDev fields of the Slot

Manager parameter block you point to in the spBlkPtr parameter. You must also

include flags in bits 0, 1, and 2 of the spParamData field as follows:

■ Set the fAll flag (bit 0) to search both enabled and disabled sResources. Clear this
flag to search only enabled sResources.

noErr 0 No error
smNoMoresRsrcs –344 Requested sResource not found

← spsPointer Ptr A pointer to an sResource (described in
“The sResource,” beginning on page 2-7).

↔ spParamData LongInt On input: parameter flags.
On output: 0 if the sResource is enabled or
1 if disabled.

← spRefNum Integer The slot resource table reference number.
← spCategory Integer The Category field of the sRsrcType

entry (described on page 2-10).
← spCType Integer The cType field of the sRsrcType entry.
← spDrvrSW Integer The DrSW field of the sRsrcType entry.
← spDrvrHW Integer The DrHW field of the sRsrcType entry.
↔ spSlot SignedByte The slot number.
↔ spId SignedByte The sResource ID.
↔ spExtDev SignedByte The external device identifier.
← spHWDev SignedByte The hardware device identifier.

C H A P T E R 2

Slot Manager

2-34 Slot Manager Reference

■ Set the fOneSlot flag (bit 1) to search only the specified slot. Clear this flag to search
all slots.

■ Set the fNext flag (bit 2) to return information about the sResource with the next
higher sResource ID than the specified sResource (or the first one on the next card if
the fAll flag is set). Clear this flag to return data about the specified sResource.

The SGetSRsrc function returns values in the spSlot, spID, and spExtDev fields

corresponding to the sResource that it found. If you cleared the fNext flag, these fields

retain the values you specified when calling the function. In addition, the function

returns 0 in the spParamData field if the sResource is enabled or 1 if it is disabled.

If you cleared the fAll bit, the spParamData field always returns the value 0.

The SGetSRsrc function also returns a pointer to the sResource in the spsPointer

field and returns other information about the sResource in the spRefNum, spCategory,

spCType, spDrvrSW, spDrvrHW, and spHwDev fields.

SPECIAL CONSIDERATIONS

The SGetSRsrc function is available only with version 1 or later of the Slot Manager.

You can use the SVersion function, described on page 2-30, to determine whether the

Slot Manager is version 1 or later.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SGetSRsrc function are

You must set up register D0 with the routine selector and register A0 with the address of

the Slot Manager parameter block. When _SlotManager returns, register D0 contains

the result code.

RESULT CODES

SEE ALSO

For more control in finding sResources, you can also use the SGetTypeSRsrc function,

described next.

Trap macro Selector

_SlotManager $000B

Registers on entry

A0 Address of the parameter block

D0 $000B

Registers on exit

D0 Result code

noErr 0 No error
smNoMoresRsrcs –344 Requested sResource not found

C H A P T E R 2

Slot Manager

Slot Manager Reference 2-35

SGetTypeSRsrc

You can use the SGetTypeSRsrc function to step through sResources of one type,

including disabled ones.

FUNCTION SGetTypeSRsrc (spBlkPtr: SpBlockPtr): OSErr;

spBlkPtr A pointer to a Slot Manager parameter block.

Parameter block

DESCRIPTION

The SGetTypeSRsrc function allows you to find the next sResource of a certain type, as

does the SNextTypeSRsrc function, but the SGetTypeSRsrc function also allows you

to find disabled sResources and to limit searching to a single slot.

You specify an sResource with the spSlot, spID, and spExtDev fields of the Slot

Manager parameter block you point to in the spBlkPtr parameter, and you specify the

type of the sResource with the spCategory, spCType, spDrvrSW, and spDrvrHW

fields. You must also use the spTBMask field to specify which of these sRsrcType fields

should not be included in the search:

■ Set bit 0 to ignore the DrHW field.

■ Set bit 1 to ignore the DrSW field.

■ Set bit 2 to ignore the cType field.

■ Set bit 3 to ignore the Category field.

You must also set the fAll flag of the spParamData field (bit 0) to search both enabled

and disabled sResources or clear this flag to search only enabled ones. Set the fOneSlot

flag (bit 1) to search only the specified slot, or clear this flag to search all slots. The

← spsPointer Ptr A pointer to an sResource (described in
“The sResource,” beginning on page 2-7).

↔ spParamData LongInt On input: parameter flags.
On output: 0 if the sResource is enabled or
1 if disabled.

← spRefNum Integer The slot resource table reference number.
↔ spCategory Integer The Category field of the sRsrcType

entry (described on page 2-10).
↔ spCType Integer The cType field of the sRsrcType entry.
↔ spDrvrSW Integer The DrSW field of the sRsrcType entry.
↔ spDrvrHW Integer The DrHW field of the sRsrcType entry.
→ spTBMask SignedByte The type bit mask for sRsrcType fields.
↔ spSlot SignedByte The slot number.
↔ spId SignedByte The sResource ID.
↔ spExtDev SignedByte The external device identifier.
← spHWDev SignedByte The hardware device identifier.

C H A P T E R 2

Slot Manager

2-36 Slot Manager Reference

SGetTypeSRsrc function does not use the fNext flag (bit 2) because it always searches

for the next sResource of the given type.

The SGetTypeSRsrc function returns values in the spSlot, spID, and spExtDev

fields corresponding to the sResource that it found, and it returns 0 in the spParamData

field if that sResource is enabled or 1 if it is disabled.

The SGetTypeSRsrc function also returns a pointer to the sResource in the

spsPointer field and returns other information about the sResource in the spRefNum,

spCategory, spCType, spDrvrSW, spDrvrHW, and spHwDev fields.

SPECIAL CONSIDERATIONS

The SGetTypeSRsrc function is available only with version 1 or later of the Slot

Manager. You can use the SVersion function, described on page 2-30, to determine

whether the Slot Manager is version 1 or later.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SGetTypeSRsrc function are

You must set up register D0 with the routine selector and register A0 with the address of

the Slot Manager parameter block. When _SlotManager returns, register D0 contains

the result code.

RESULT CODES

SEE ALSO

For information on enabling and disabling sResources, see “Enabling and Disabling

sResources” on page 2-18 and the description of the SetSRsrcState function in the

next section.

Trap macro Selector

_SlotManager $000C

Registers on entry

A0 Address of the parameter block

D0 $000C

Registers on exit

D0 Result code

noErr 0 No error
smNoMoresRsrcs –344 Requested sResource not found

C H A P T E R 2

Slot Manager

Slot Manager Reference 2-37

SNextSRsrc

You can use the SNextSRsrc function to step through the sResources on a card or from

one card to the next.

FUNCTION SNextSRsrc (spBlkPtr: SpBlockPtr): OSErr;

spBlkPtr A pointer to a Slot Manager parameter block.

Parameter block

DESCRIPTION

The SNextSRsrc function is similar to the SRsrcInfo function, except the

SNextSRsrc function returns information about the sResource that follows the

requested one—that is, the one with the next entry in the sResource directory or the first

sResource on the next card. The SNextSRsrc function skips disabled sResources.

You specify a particular sResource with the spSlot, spID, and spExtDev fields of the

Slot Manager parameter block you point to in the spBlkPtr parameter. The

SNextSRsrc function finds the next sResource, returns a pointer to it in the

spsPointer field, and updates the spSlot, spID, and spExtDev fields to correspond

to the sResource it found. If there are no more sResources, the SNextSRsrc function

returns the smNoMoresRsrcs result code.

The SNextSRsrc function returns other information about the sResource in the

spRefNum, spCategory, spCType, spDrvrSW, and spDrvrHW fields.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SNextSRsrc function are

← spsPointer Ptr A pointer to an sResource (described in
“The sResource,” beginning on page 2-7).

← spIOReserved Integer The value of the slot resource table
ioReserved field.

← spRefNum Integer The driver reference number.
← spCategory Integer The Category field of the sRsrcType

entry (described on page 2-10).
← spCType Integer The cType field of the sRsrcType entry.
← spDrvrSW Integer The DrSW field of the sRsrcType entry.
← spDrvrHW Integer The DrHW field of the sRsrcType entry.
↔ spSlot SignedByte The slot number.
↔ spId SignedByte The sResource ID.
↔ spExtDev SignedByte The external device identifier.
← spHWDev SignedByte The hardware device identifier.

Trap macro Selector

_SlotManager $0014

C H A P T E R 2

Slot Manager

2-38 Slot Manager Reference

You must set up register D0 with the routine selector and register A0 with the address of

the Slot Manager parameter block. When _SlotManager returns, register D0 contains

the result code.

RESULT CODES

SEE ALSO

For more control in finding sResources, you can use the SGetSRsrc function, described

on page 2-33, and the SGetTypeSRsrc function, described on page 2-35.

SNextTypeSRsrc

You can use the SNextTypeSRsrc function to step through sResources of one type.

FUNCTION SNextTypeSRsrc (spBlkPtr: SpBlockPtr): OSErr;

spBlkPtr A pointer to a Slot Manager parameter block.

Parameter block

Registers on entry

A0 Address of the parameter block

D0 $0014

Registers on exit

D0 Result code

noErr 0 No error
smNoMoresRsrcs –344 Requested sResource not found

← spsPointer Ptr A pointer to an sResource (described in
“The sResource,” beginning on page 2-7).

← spRefNum Integer The slot resource table reference number.
↔ spCategory Integer The Category field of the sRsrcType

entry (described on page 2-10).
↔ spCType Integer The cType field of the sRsrcType entry.
↔ spDrvrSW Integer The DrSW field of the sRsrcType entry.
↔ spDrvrHW Integer The DrHW field of the sRsrcType entry.
→ spTBMask SignedByte The type bit mask for sRsrcType fields.
↔ spSlot SignedByte The slot number.
↔ spId SignedByte The sResource ID.
↔ spExtDev SignedByte The external device identifier.
← spHWDev SignedByte The hardware device identifier.

C H A P T E R 2

Slot Manager

Slot Manager Reference 2-39

DESCRIPTION

The SNextTypeSRsrc function allows you to find the next sResource, as does the

SNextSRsrc function, but the SNextTypeSRsrc function skips disabled sResources.

You indicate the sResource you want returned by identifying the slot number, sResource

ID, and device ID in the spSlot, spID, and spExtDev fields of the Slot Manager

parameter block you point to in the spBlkPtr parameter. You specify the type of the

sResource with the spCategory, spCType, spDrvrSW, and spDrvrHW fields. You must

also use the spTBMask to specify which of these sRsrcType entry fields should not be

included in the search:

■ Set bit 0 to ignore the DrHW field.

■ Set bit 1 to ignore the DrSW field.

■ Set bit 2 to ignore the cType field.

■ Set bit 3 to ignore the Category field.

The SNextTypeSRsrc function returns values in the spSlot, spID, and spExtDev

fields corresponding to the sResource that it found.

The SNextTypeSRsrc function also returns a pointer to the sResource in the

spsPointer field and returns other information about the sResource in the

spIOReserved, spRefNum, spCategory, spCType, spDrvrSW, and spDrvrHW fields.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SNextTypeSRsrc function are

You must set up register D0 with the routine selector and register A0 with the address of

the Slot Manager parameter block. When _SlotManager returns, register D0 contains

the result code.

RESULT CODES

Trap macro Selector

_SlotManager $0015

Registers on entry

A0 Address of the parameter block

D0 $0015

Registers on exit

D0 Result code

noErr 0 No error
smNoMoresRsrcs –344 Requested sResource not found

C H A P T E R 2

Slot Manager

2-40 Slot Manager Reference

SEE ALSO

For information on enabling and disabling sResources, see “Enabling and Disabling

sResources” on page 2-18 and the description of the SetSRsrcState function on

page 2-51.

Getting Information From sResources

The Slot Manager provides a number of routines that simplify access to the information

in sResources. Most of these routines simply return the value of an sResource entry.

The SReadDrvrName function returns the name of an sResource, formatted as a Pascal

string and prefixed with a period. You can pass this string to the Device Manager’s

OpenSlot function to open the driver.

The SReadByte, SReadWord, and SReadLong functions return byte, word, or long

values from an sResource entry. The SGetCString, SGetBlock, SReadStruct, and

SFindStruct functions return pointers to larger data types.

SReadDrvrName

You can use the SReadDrvrName function to read the name of an sResource in a format

you can use to open the driver with Device Manager routines.

FUNCTION SReadDrvrName (spBlkPtr: SpBlockPtr): OSErr;

spBlkPtr A pointer to a Slot Manager parameter block.

Parameter block

DESCRIPTION

The SReadDrvrName function reads the name of an sResource, prefixes a period to the

value, and converts it to type Str255. The final driver name is compatible with the

Device Manager’s OpenDriver function.

You indicate an sResource by identifying the slot number and sResource ID in the

spSlot and spID fields of the Slot Manager parameter block you point to in the

spBlkPtr parameter. In your program, you should declare a Pascal string variable

and pass a pointer to it in the spResult field.

The SReadDrvrName function returns the driver name by copying it into the string

pointed to by the spResult field.

→ spSlot SignedByte The slot number.
→ spID SignedByte The sResource ID.
→ spResult Ptr A pointer to the driver name.

✕ spSize LongInt
✕ spsPointer Ptr

C H A P T E R 2

Slot Manager

Slot Manager Reference 2-41

SPECIAL CONSIDERATIONS

This function may alter the values of the spSize and spsPointer fields of the

parameter block. Your application should not depend on the values returned in these

fields.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SReadDrvrName function are

You must set up register D0 with the routine selector and register A0 with the address of

the Slot Manager parameter block. When _SlotManager returns, register D0 contains

the result code.

RESULT CODES

SEE ALSO

For more information about the device control entry and device driver reference

numbers, see the chapter “Device Manager” in this book.

SReadByte

You can use the SReadByte function to determine the value of the low-order byte of an

sResource entry.

FUNCTION SReadByte (spBlkPtr: SpBlockPtr): OSErr;

spBlkPtr A pointer to a Slot Manager parameter block.

Trap macro Selector

_SlotManager $0019

Registers on entry

A0 Address of the parameter block

D0 $0019

Registers on exit

D0 Result code

noErr 0 No error
smNoMoresRsrcs –344 Requested sResource not found

C H A P T E R 2

Slot Manager

2-42 Slot Manager Reference

Parameter block

DESCRIPTION

The SReadByte function returns the low-order byte of the offset field of an entry in an

sResource. You provide a pointer to the sResource in the spsPointer field and the ID

of the entry in the spID field. The SReadByte function returns the value in the low-

order byte of the spResult field.

SPECIAL CONSIDERATIONS

This function may alter the values of the spOffsetData and spByteLanes fields of

the parameter block. Your application should not depend on the values returned in these

fields.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SReadByte function are

You must set up register D0 with the routine selector and register A0 with the address of

the Slot Manager parameter block. When _SlotManager returns, register D0 contains

the result code.

RESULT CODES

← spResult LongInt The contents of the entry byte.
→ spsPointer Ptr A pointer to an sResource (described in

“The sResource,” beginning on page 2-7).
→ spID SignedByte The ID of the sResource entry.

✕ spOffsetData LongInt
✕ spByteLanes SignedByte

Trap macro Selector

_SlotManager $0000

Registers on entry

A0 Address of the parameter block

D0 $0000

Registers on exit

D0 Result code

noErr 0 No error
smNoMoresRsrcs –344 Requested sResource not found

C H A P T E R 2

Slot Manager

Slot Manager Reference 2-43

SReadWord

You can use the SReadWord function to determine the value of the low-order word of an

sResource entry.

FUNCTION SReadWord (spBlkPtr: SpBlockPtr): OSErr;

spBlkPtr A pointer to a Slot Manager parameter block.

Parameter block

DESCRIPTION

The SReadWord function returns the low-order word of the offset field of an entry in an

sResource. You provide a pointer to the sResource in the spsPointer field of the Slot

Manager parameter block you point to in the spBlkPtr parameter, and you provide the

ID of the entry in the spID field. The SReadWord function returns the value in the low-

order word of the spResult field.

SPECIAL CONSIDERATIONS

This function may alter the values of the spOffsetData and spByteLanes fields of

the parameter block. Your application should not depend on the values returned in these

fields.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SReadWord function are

You must set up register D0 with the routine selector and register A0 with the address of

the Slot Manager parameter block. When _SlotManager returns, register D0 contains

the result code.

← spResult LongInt The contents of the entry word.
→ spsPointer Ptr A pointer to an sResource (described in

“The sResource,” beginning on page 2-7).
→ spID SignedByte The ID of the sResource entry.
✕ spOffsetData LongInt
✕ spByteLanes SignedByte

Trap macro Selector

_SlotManager $0001

Registers on entry

A0 Address of the parameter block

D0 $0001

Registers on exit

D0 Result code

C H A P T E R 2

Slot Manager

2-44 Slot Manager Reference

RESULT CODES

SReadLong

You can use the SReadLong function to determine the value of a long word pointed to

by the offset field of an sResource entry.

FUNCTION SReadLong (spBlkPtr: SpBlockPtr): OSErr;

spBlkPtr A pointer to a Slot Manager parameter block.

Parameter block

DESCRIPTION

The SReadLong function returns the 32-bit value pointed to by the offset field of an

sResource entry. In the Slot Manager parameter block you point to in the spBlkPtr

parameter, you provide a pointer to the sResource in the spsPointer field and specify

the ID of the entry in the spID field. The SReadLong function returns the long word

value in the spResult field.

SPECIAL CONSIDERATIONS

This function may alter the values of the spSize, spOffsetData, and spByteLanes

fields of the parameter block. Your application should not depend on the values returned

in these fields.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SReadLong function are

noErr 0 No error
smNoMoresRsrcs –344 Requested sResource not found

← spResult LongInt The contents of the long word.
→ spsPointer Ptr A pointer to an sResource (described in

“The sResource,” beginning on page 2-7).
→ spID SignedByte The ID of the sResource entry.

✕ spSize LongInt
✕ spOffsetData LongInt
✕ spByteLanes SignedByte

Trap macro Selector

_SlotManager $0002

C H A P T E R 2

Slot Manager

Slot Manager Reference 2-45

You must set up register D0 with the routine selector and register A0 with the address of

the Slot Manager parameter block. When _SlotManager returns, register D0 contains

the result code.

RESULT CODES

SGetCString

You can use the SGetCString function to determine the value of a string pointed to by

the offset field of an sResource entry.

FUNCTION SGetCString (spBlkPtr: SpBlockPtr): OSErr;

spBlkPtr A pointer to a Slot Manager parameter block.

Parameter block

DESCRIPTION

The SGetCString function returns a copy of the cString data structure pointed to by

the offset field of an sResource entry.

You provide a pointer to the sResource in the spsPointer field and specify the ID of

the entry in the spID field.

The SGetCString function allocates a memory buffer, copies the value of the cString

data structure into it, and returns a pointer to it in the spResult field. You should

dispose of this pointer by using the Memory Manager procedure DisposePtr.

Registers on entry

A0 Address of the parameter block

D0 $0002

Registers on exit

D0 Result code

noErr 0 No error
smNoMoresRsrcs –344 Requested sResource not found

← spResult Ptr A pointer to a copy of the cString data
structure.

→ spsPointer Ptr A pointer to an sResource (described in
“The sResource,” beginning on page 2-7).

→ spID SignedByte The ID of the sResource entry.

✕ spSize LongInt
✕ spOffsetData LongInt
✕ spByteLanes SignedByte
✕ spFlags SignedByte

C H A P T E R 2

Slot Manager

2-46 Slot Manager Reference

SPECIAL CONSIDERATIONS

The SGetCString function may alter the values of the spSize, spOffsetData,

spByteLanes, and spFlags fields of the parameter block. Your application should not

depend on the values returned in these fields.

SPECIAL CONSIDERATIONS

The SGetCString function allocates memory; your application should not call this

function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SGetCString function are

You must set up register D0 with the routine selector and register A0 with the address of

the Slot Manager parameter block. When _SlotManager returns, register D0 contains

the result code.

RESULT CODES

SEE ALSO

For more information about the cString data structure, see “Firmware,” beginning on

page 2-7.

Trap macro Selector

_SlotManager $0003

Registers on entry

A0 Address of the parameter block

D0 $0003

Registers on exit

D0 Result code

noErr 0 No error
smNoMoresRsrcs –344 Requested sResource not found

C H A P T E R 2

Slot Manager

Slot Manager Reference 2-47

SGetBlock

You can use the SGetBlock function to obtain a copy of an sBlock data structure

pointed to by the offset field of an sResource entry.

FUNCTION SGetBlock (spBlkPtr: SpBlockPtr): OSErr;

spBlkPtr A pointer to a Slot Manager parameter block.

Parameter block

DESCRIPTION

The SGetBlock function returns a copy of the sBlock data structure pointed to by the

offset field of an sResource entry.

In the parameter block you point to in the spBlkPtr parameter, you provide a pointer

to the sResource in the spsPointer field and specify the ID of the entry in the spID

field.

The SGetBlock function allocates a memory buffer, copies the contents of the sBlock

data structure into it, and returns a pointer to it in the spResult field. You should

dispose of this pointer by using the Memory Manager procedure DisposePtr.

SPECIAL CONSIDERATIONS

The SGetBlock function may alter the values of the spSize, spOffsetData,

spByteLanes, and spFlags fields of the parameter block. Your application should not

depend on the values returned in these fields.

The SGetBlock function allocates memory; your application should not call this

function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SGetBlock function are

← spResult Ptr A pointer to a copy of an sBlock data
structure (described on page 2-9).

→ spsPointer Ptr A pointer to an sResource (described in
“The sResource,” beginning on page 2-7).

→ spID SignedByte The ID of the sResource entry.

✕ spSize LongInt
✕ spOffsetData LongInt
✕ spByteLanes SignedByte
✕ spFlags SignedByte

Trap macro Selector

_SlotManager $0005

C H A P T E R 2

Slot Manager

2-48 Slot Manager Reference

You must set up register D0 with the routine selector and register A0 with the address of

the Slot Manager parameter block. When _SlotManager returns, register D0 contains

the result code.

RESULT CODES

SFindStruct

You can use the SFindStruct function to obtain a pointer to any data structure pointed

to by the offset field of an sResource entry. You might want to use this function, for

example, when the data structure type is defined by the card designer.

FUNCTION SFindStruct (spBlkPtr: SpBlockPtr): OSErr;

spBlkPtr A pointer to a Slot Manager parameter block.

Parameter block

DESCRIPTION

You provide a pointer to the sResource in the spsPointer field, and the ID of the entry

in the spID field. The SFindStruct function returns a pointer to the data structure in

the spResult field.

SPECIAL CONSIDERATIONS

This function may alter the value of the spByteLanes field of the parameter block. Your

application should not depend on the value returned in this field.

Registers on entry

A0 Address of the parameter block

D0 $0005

Registers on exit

D0 Result code

noErr 0 No error
smNoMoresRsrcs –344 Requested sResource not found

↔ spsPointer Ptr On input: a pointer to an sResource.
On output: a pointer to a data structure.

→ spID SignedByte The ID of the sResource entry.

✕ spByteLanes SignedByte

C H A P T E R 2

Slot Manager

Slot Manager Reference 2-49

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SFindStruct function are

You must set up register D0 with the routine selector and register A0 with the address of

the Slot Manager parameter block. When _SlotManager returns, register D0 contains

the result code.

RESULT CODES

SEE ALSO

For information about obtaining a copy of a data structure pointed to by the offset field

of an sResource entry, rather than a pointer to the data structure, see the next section,

which describes the SReadStruct function.

SReadStruct

You can use the SReadStruct function to obtain a copy of any data structure pointed to

by an sResource entry. You might want to use this function, for example, when the data

structure type is defined by the card designer.

FUNCTION SReadStruct (spBlkPtr: SpBlockPtr): OSErr;

spBlkPtr A pointer to a Slot Manager parameter block.

Parameter block

Trap macro Selector

_SlotManager $0006

Registers on entry

A0 Address of the parameter block

D0 $0006

Registers on exit

D0 Result code

noErr 0 No error
smNoMoresRsrcs –344 Requested sResource not found

→ spResult Ptr A pointer to a memory block.
→ spsPointer Ptr A pointer to the structure.
→ spSize LongInt The length in bytes of the structure.

✕ spByteLanes SignedByte

C H A P T E R 2

Slot Manager

2-50 Slot Manager Reference

DESCRIPTION

The SReadStruct function copies any arbitrary data structure from the declaration

ROM of an expansion card into memory.

You provide a pointer to the structure in the spsPointer field and specify the size of

the structure in the spSize field. You must also allocate a memory block for the result

and send a pointer to it in the spResult field.

The SReadStruct function copies the data structure into the memory block pointed to

by the spResult field.

SPECIAL CONSIDERATIONS

This function may alter the value of the spByteLanes field of the parameter block. Your

application should not depend on the value returned in this field.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SReadStruct function are

You must set up register D0 with the routine selector and register A0 with the address of

the Slot Manager parameter block. When _SlotManager returns, register D0 contains

the result code.

RESULT CODES

SEE ALSO

For information about obtaining a pointer to a data structure pointed to by the offset

field of an sResource entry, rather than a copy of the data structure, see the description of

the SFindStruct function on page 2-48.

Trap macro Selector

_SlotManager $0007

Registers on entry

A0 Address of the parameter block

D0 $0007

Registers on exit

D0 Result code

noErr 0 No error
smNoMoresRsrcs –344 Requested sResource not found

C H A P T E R 2

Slot Manager

Slot Manager Reference 2-51

Enabling, Disabling, Deleting, and Restoring sResources

The functions in this section are primarily for use by device drivers. The

SetSRsrcState function enables and disables sResources. The next two functions,

SDeleteSRTRec and InsertSRTRec, delete sResources from and restore them to the

slot resource table. The SUpdateSRT function updates the slot resource table record for

an existing sResource.

SetSRsrcState

You can use the SetSRsrcState function to select which sResources are enabled.

FUNCTION SetSRsrcState (spBlkPtr: SpBlockPtr): OSErr;

spBlkPtr A pointer to a Slot Manager parameter block.

Parameter block

DESCRIPTION

The SetSRsrcState function enables or disables an sResource. All of the Slot Manager

functions recognize enabled sResources, while only the SGetSRsrc and

SGetTypeSRsrc functions (described on page 2-33 and page 2-35, respectively)

can recognize disabled ones.

You specify the sResource to enable or disable with the spSlot, spID, and spExtDev

fields of the Slot Manager parameter block you point to in the spBlkPtr parameter, and

you specify whether to enable or disable it in the spParamData field. The Slot Manager

enables the sResource when the spParamData field has a value of 0 and disables it

when the field has a value of 1.

SPECIAL CONSIDERATIONS

The SetSRsrcState function is available only with version 1 or later of the Slot

Manager. You can use the SVersion function, described on page 2-30, to determine

whether the Slot Manager is version 1 or later.

→ spParamData LongInt Either a value of 0 to enable the sResource or
a value of 1 to disable it.

→ spSlot SignedByte The slot number.
→ spId SignedByte The sResource ID.
→ spExtDev SignedByte The external device identifier.

C H A P T E R 2

Slot Manager

2-52 Slot Manager Reference

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SetSRsrcState function are

You must set up register D0 with the routine selector and register A0 with the address of

the Slot Manager parameter block. When _SlotManager returns, register D0 contains

the result code.

RESULT CODES

SEE ALSO

For more information on enabling and disabling sResources, see “Enabling and

Disabling sResources” on page 2-18.

For information on finding disabled sResources, see the description of the SGetSRsrc

function on page 2-33 and the description of the SGetTypeSRsrc function on page 2-35.

SDeleteSRTRec

You can use the SDeleteSRTRec function to remove an sResource from the slot

resource table.

FUNCTION SDeleteSRTRec (spBlkPtr: SpBlockPtr): OSErr;

spBlkPtr A pointer to a Slot Manager parameter block.

Parameter block

Trap macro Selector

_SlotManager $0009

Registers on entry

A0 Address of the parameter block

D0 $0009

Registers on exit

D0 Result code

noErr 0 No error
smNoMoresRsrcs –344 Requested sResource not found

→ spSlot SignedByte The slot number.
→ spId SignedByte The sResource ID.
→ spExtDev SignedByte The external device identifier.

C H A P T E R 2

Slot Manager

Slot Manager Reference 2-53

DESCRIPTION

The SDeleteSRTRec function deletes an sResource from the slot resource table. This

routine is typically called by a card’s PrimaryInit code to delete any sResources that

are not appropriate for the system as configured.

SPECIAL CONSIDERATIONS

The SDeleteSRTRec function is available only with Manager. You can use the

SVersion function, described on page 2-30, to determine whether the Slot Manager is

version 1 or later.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SDeleteSRTRec function are

You must set up register D0 with the routine selector and register A0 with the address of

the Slot Manager parameter block. When _SlotManager returns, register D0 contains

the result code.

SEE ALSO

For more information about the slot resource table, see “About the Slot Manager” on

page 2-15. For information about restoring an sResource to the slot resource table, see

the InsertSRTRec function, described next. For more information on deleting and

restoring sResources, see “Deleting and Restoring sResources” on page 2-17.

Trap macro Selector

_SlotManager $0031

Registers on entry

A0 Address of the parameter block

D0 $0031

Registers on exit

D0 Result code

C H A P T E R 2

Slot Manager

2-54 Slot Manager Reference

InsertSRTRec

You can use the InsertSRTRec function to add an sResource to the slot resource table.

FUNCTION InsertSRTRec (spBlkPtr: SpBlockPtr): OSErr;

spBlkPtr A pointer to a Slot Manager parameter block.

Parameter block

DESCRIPTION

The InsertSRTRec function installs an sResource from the firmware of a NuBus card

into the slot resource table. For example, if the user makes a selection in the Monitors

control panel that requires your video card to switch to a new sResource that was

deleted by PrimaryInit code, you can use the InsertSRTRec function to restore

that sResource.

You specify an sResource with the spSlot, spID, and spExtDev fields of the Slot

Manager parameter block you point to in the spBlkPtr parameter. You must set the

spsPointer field to NIL. Set the spParamData field to 1 to disable the restored

sResource or to 0 to enable it.

If you place a valid device driver reference number in the spRefNum field, the

Slot Manager updates the dCtlDevBase field in that device driver’s device control

entry (that is, in the device control entry that has that driver reference number in the

dCtlRefNum field). The dCtlDevBase field contains the base address of the slot device.

For a video card this is the base address for the pixel map in the card’s GDevice record

(which is described in Inside Macintosh: Imaging With QuickDraw). For other types of

cards the base address is optional and defined by the card designer.

The base address consists of the card’s slot address plus an optional offset that the card

designer can specify using the MinorBaseOS or MajorBaseOS entries of the sResource.

The Slot Manager calculates the base address by using bit 2 (the f32BitMode flag)

of the sRsrcFlags entry of the sResource. As shown in Table 2-4, the Slot Manager

first checks the value of bit 2 of the sRsrcFlags field, and then it checks for a

MinorBaseOS entry. If it finds one, it uses this value to create a 32-bit value to store

in the dCtlDevBase field. If it does not find a MinorBaseOS entry, it uses the value in

the MajorBaseOS entry, if any.

→ spsPointer Ptr A NIL pointer.
→ spParamData LongInt Either a value of 0 to enable the sResource

or a value of 1 to disable it.
→ spRefNum Integer The device driver reference number.
→ spSlot SignedByte The slot number.
→ spId SignedByte The sResource ID.
→ spExtDev SignedByte The external device identifier.

C H A P T E R 2

Slot Manager

Slot Manager Reference 2-55

Note

In this table, x represents any hexadecimal digit and s represents a slot
number. ◆

SPECIAL CONSIDERATIONS

The InsertSRTRec function is available only with version 1 or later of the Slot

Manager. You can use the SVersion function, described on page 2-30, to determine

whether the Slot Manager is version 1 or later.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the InsertSRTRec function are

You must set up register D0 with the routine selector and register A0 with the address of

the Slot Manager parameter block. When _SlotManager returns, register D0 contains

the result code.

Table 2-4 How the Slot Manager determines the base address of a slot device

sRsrcFlags MinorBaseOS MajorBaseOS Address format

Field missing $x xxxx Any or none $Fs0x xxxx

Field missing None $xx xxxx $sxxx xxxx

Bit 2 is 0 $x xxxx Any or none $Fs0x xxxx

Bit 2 is 0 None $xx xxxx $sxxx xxxx

Bit 2 is 1 $x xxxx Any or none $Fsxx xxxx

Bit 2 is 1 None $xx xxxx $sxxx xxxx

Trap macro Selector

_SlotManager $000A

Registers on entry

A0 Address of the parameter block

D0 $000A

Registers on exit

D0 Result code

C H A P T E R 2

Slot Manager

2-56 Slot Manager Reference

RESULT CODES

SEE ALSO

For more information about the slot resource table, see “About the Slot Manager” on

page 2-15.

For information about deleting an sResource from the slot resource table, see the

SDeleteSRTRec function, described on page 2-52. For more information on deleting

and restoring sResources, see “Deleting and Restoring sResources” on page 2-17.

For more information about the device control entry and device driver reference

numbers, see the chapter “Device Manager” in this book.

SUpdateSRT

For system software versions earlier than System 7, you can use the SUpdateSRT

function to update the slot resource table record for an existing sResource. A new record

will be added if the sResource does not already exist in the slot resource table.

FUNCTION SUpdateSRT (spBlkPtr: SpBlockPtr): OSErr;

spBlkPtr A pointer to a Slot Manager parameter block.

Parameter block

DESCRIPTION

The SUpdateSRT function adds or updates an record in the slot resource table. You

specify an sResource with the spSlot, spID, and spExtDev fields of the Slot Manager

parameter block you point to in the spBlkPtr parameter. If a matching record is found

noErr 0 No error
memFullErr –108 Not enough room in heap
smUnExBusErr –308 Bus error
smBadRefId –330 Reference ID not found in list
smBadsList –331 Bad sResource: Id1 < Id2 < Id3 ... format is not followed
smReservedErr –332 Reserved field not zero
smSlotOOBErr –337 Slot number out of bounds
smNoMoresRsrcs –344 Specified sResource not found
smBadsPtrErr –346 Bad pointer was passed to SCalcSPointer
smByteLanesErr –347 ByteLanes field in card’s format block was determined

to be zero

→ spIOReserved Integer The value to be stored in the IOReserved
field of the slot resource table.

→ spRefNum Integer The device driver reference number.
→ spSlot SignedByte The slot number.
→ spId SignedByte The sResource ID.
→ spExtDev SignedByte The external device identifier.

C H A P T E R 2

Slot Manager

Slot Manager Reference 2-57

in the slot resource table, the RefNum and IOReserved fields of the table are updated. If

the record is not found, the sResource is added to the table by reading the appropriate

declaration ROM. Updates may be made to enabled sResources only.

SPECIAL CONSIDERATIONS

In System 7, this function was replaced by the InsertSRTRec function (described on

page 2-54). You should use the SUpdateSRT function only if version 1 or later of the Slot

Manager is not available. You can use the SVersion function, described on page 2-30, to

determine whether the Slot Manager is version 1 or later.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SUpdateSRT function are

You must set up register D0 with the routine selector and register A0 with the address of

the Slot Manager parameter block. When _SlotManager returns, register D0 contains

the result code.

RESULT CODES

SEE ALSO

For more information about the slot resource table, see “About the Slot Manager” on

page 2-15.

For information about the preferred routine for adding an sResource to the slot resource

table, see the InsertSRTRec function, described on page 2-54. For information about

deleting an sResource from the slot resource table, see the SDeleteSRTRec function,

described on page 2-52.

Trap macro Selector

_SlotManager $002B

Registers on entry

A0 Address of the parameter block

D0 $002B

Registers on exit

D0 Result code

noErr 0 No error
memFullErr –108 Not enough room in heap
smEmptySlot –300 No card in this slot
smUnExBusErr –308 Bus error
smBadRefId –330 Reference ID not found in list
smSlotOOBErr –337 Slot number out of bounds
smNoMoresRsrcs –344 Specified sResource not found

C H A P T E R 2

Slot Manager

2-58 Slot Manager Reference

Loading Drivers and Executing Code From sResources

The functions in this section allow you to load the device driver associated with an

sResource or execute code from an sExecBlock data structure. Both of the functions in

this section require you to provide extra information in a structure of type SEBlock. See

“Slot Execution Parameter Block” on page 2-27 for information about the fields of this

structure.

SGetDriver

You can use the SGetDriver function to load an sResource’s device driver.

FUNCTION SGetDriver (spBlkPtr: SpBlockPtr): OSErr;

spBlkPtr A pointer to a Slot Manager parameter block.

Parameter block

DESCRIPTION

The SGetDriver function loads a device driver from an sResource into a relocatable

block in the system heap.

You specify an sResource with the spSlot, spID, and spExtDev fields of the Slot

Manager parameter block you point to in the spBlkPtr parameter, and provide a

pointer to a slot execution parameter block in the spsExecPBlk field.

The SGetDriver function searches the sResource for an sRsrcLoadRec entry. If it

finds one, it loads the sLoadDriver record and executes it. If no sRsrcLoadRec entry

exists, the SGetDriver function looks for an sRsrcDrvrDir entry. If it finds one, it

loads the driver into memory.

The SGetDriver function returns a handle to the driver in the spResult field of the

parameter block.

SPECIAL CONSIDERATIONS

The SGetDriver function allocates memory; your application should not call this

function at interrupt time.

← spResult Handle A handle to the device driver.
→ spsExecPBlk Ptr A pointer to the SEBlock.
→ spSlot SignedByte The slot number.
→ spID SignedByte The sResource ID.
→ spExtDev SignedByte The external device ID.

✕ spSize SignedByte
✕ spFlags SignedByte

C H A P T E R 2

Slot Manager

Slot Manager Reference 2-59

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SGetDriver function are

You must set up register D0 with the routine selector and register A0 with the address of

the Slot Manager parameter block. When _SlotManager returns, register A0 contains a

handle to the loaded driver, and register D0 contains the result code.

RESULT CODES

SEE ALSO

For more information about sResources, including the sRsrcDrvrDir and

sRsrcLoadRec entry types, see Designing Cards and Drivers for the Macintosh Family,

third edition.

SExec

You can use the SExec function to execute code stored in an sExecBlock data structure.

FUNCTION SExec (spBlkPtr: SpBlockPtr): OSErr;

spBlkPtr A pointer to a Slot Manager parameter block.

Parameter block

Trap macro Selector

_SlotManager $002D

Registers on entry

A0 Address of the parameter block

D0 $002D

Registers on exit

A0 Handle to loaded driver

D0 Result code

noErr 0 No error
smNoMoresRsrcs –344 Requested sResource not found

→ spsPointer Ptr A pointer to an sResource (described in
“The sResource,” beginning on page 2-7).

→ spsExecPBlk Ptr A pointer to the SEBlock.
→ spID SignedByte The ID of the sExecBlock entry in the

sResource.

✕ spResult LongInt

C H A P T E R 2

Slot Manager

2-60 Slot Manager Reference

DESCRIPTION

The SExec function loads sExecBlock code from an sResource into the current heap

zone, checks its revision level, and executes the code.

You specify the sExecBlock by providing a pointer to the sResource in the

spsPointer field and the ID of the sExecBlock entry in the spID field. You must also

provide in the spsExecPBlk field a pointer to a slot execution parameter block. The

SEBlock structure allows you to provide information about the execution of the

sExecBlock code.

The SExec function passes the sExecBlock code a pointer to the SEBlock structure in

register A0.

SPECIAL CONSIDERATIONS

The SExec function allocates memory; your application should not call this function at

interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SExec function are

You must set up register D0 with the routine selector and register A0 with the address of

the Slot Manager parameter block. When _SlotManager returns, register D0 contains

the result code.

RESULT CODES

SEE ALSO

For more information about the sExecBlock data structure, see page 2-9.

Trap macro Selector

_SlotManager $0023

Registers on entry

A0 Address of the parameter block

D0 $0023

Registers on exit

D0 Result code

noErr 0 No error
smCodeRevErr –333 The revision of the code to be executed by sExec was

wrong
smCPUErr –334 The CPU field of the code to be executed by sExec was

wrong
smNoMoresRsrcs –344 Requested sResource not found

C H A P T E R 2

Slot Manager

Slot Manager Reference 2-61

Getting Information About Expansion Cards and Declaration ROMs

The functions in this section return information about slot status or about entire

declaration ROMs, instead of single sResources. The SReadInfo function returns

information from the slot information record maintained by the Slot Manager for a

particular slot. See “Slot Information Record,” beginning on page 2-24 for a description

of the slot information record.

The SReadFHeader functions returns a copy of the information in the format block of

a card’s declaration ROM. The SCkCardStat function returns a card’s initialization

status. The SCardChanged function reports whether the card in a particular slot has

changed.

The SFindDevBase function returns the base address of a slot device.

SReadInfo

You can use the SReadInfo function to obtain a copy of the slot information record for a

particular slot.

FUNCTION SReadInfo (spBlkPtr: SpBlockPtr): OSErr;

spBlkPtr A pointer to a Slot Manager parameter block.

Parameter block

DESCRIPTION

The Slot Manager maintains a slot information record for each slot. The SReadInfo

function copies the information from this data structure for the requested slot.

You specify the slot with the spSlot parameter. You must also allocate a slot

information record, and provide a pointer to it in the spResult field. The SReadInfo

function copies the information in the slot information record maintained by the Slot

Manager into the data structure pointed to by the spResult field.

SPECIAL CONSIDERATIONS

This function may alter the contents of the spSize field. Your application should not

depend on the value returned in this field.

→ spResult Pointer A pointer to a slot information record.
→ spSlot SignedByte The slot number.

✕ spSize LongInt

C H A P T E R 2

Slot Manager

2-62 Slot Manager Reference

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SReadInfo function are

You must set up register D0 with the routine selector and register A0 with the address of

the Slot Manager parameter block. When _SlotManager returns, register D0 contains

the result code.

RESULT CODES

SEE ALSO

For general information about the slot information record, see “About the Slot Manager”

on page 2-15. To obtain a pointer to the SInfoRecord data structure, instead of a copy

of it, see the next section, which describes the SReadFHeader function.

SReadFHeader

You can use the SReadFHeader function to obtain a copy of the information in the

format block of a declaration ROM.

FUNCTION SReadFHeader (spBlkPtr: SpBlockPtr): OSErr;

spBlkPtr A pointer to a Slot Manager parameter block.

Parameter block

Trap macro Selector

_SlotManager $0010

Registers on entry

A0 Address of the parameter block

D0 $0010

Registers on exit

D0 Result code

noErr 0 No error
smEmptySlot –300 No card in this slot

→ spResult Pointer A pointer to an FHeaderRec data
structure (described on page 2-26).

→ spSlot SignedByte The slot number.

✕ spsPointer Ptr
✕ spSize LongInt
✕ spOffsetData LongInt
✕ spByteLanes SignedByte

C H A P T E R 2

Slot Manager

Slot Manager Reference 2-63

DESCRIPTION

The SReadFHeader function copies the information from the format block of the

expansion card in the requested slot to an FHeaderRec data structure you provide.

You specify the slot with the spSlot parameter. You must also allocate an FHeaderRec

data structure and provide a pointer to it in the spResult field.

The SReadInfo function copies the information in the format block into the data

structure pointed to by the spResult field.

SPECIAL CONSIDERATIONS

This function may alter the contents of the spsPointer, spSize, spOffsetData, and

spByteLanes fields. Your application should not depend on the values returned in

these fields.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SReadFHeader function are

You must set up register D0 with the routine selector and register A0 with the address of

the Slot Manager parameter block. When _SlotManager returns, register D0 contains

the result code.

RESULT CODES

SEE ALSO

For general information about the format block, see “The Format Block,” beginning on

page 2-13. For information about the fields of the format block, see Designing Cards and
Drivers for the Macintosh Family, third edition.

Trap macro Selector

_SlotManager $0013

Registers on entry

A0 Address of the parameter block

D0 $0013

Registers on exit

D0 Result code

noErr 0 No error
smEmptySlot –300 No card in this slot

C H A P T E R 2

Slot Manager

2-64 Slot Manager Reference

SCkCardStat

You can use the SCkCardStat function to check the initialization status of an expansion

card.

FUNCTION SCkCardStat (spBlkPtr: SpBlockPtr): OSErr;

spBlkPtr A pointer to a Slot Manager parameter block.

Parameter block

DESCRIPTION

The SCkCardStat function checks the InitStatusA field of the slot information

record for the expansion card in the designated slot. You specify the slot in the spSlot

field of the Slot Manager parameter block you point to in the spBlkPtr parameter. The

SCkCardStat function returns the noErr result code if the InitStatusA field

contains a nonzero value.

SPECIAL CONSIDERATIONS

This function may alter the contents of the spResult field. Your application should not

depend on the values returned in this field.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SCkCardStat function are

You must set up register D0 with the routine selector and register A0 with the address of

the Slot Manager parameter block. When _SlotManager returns, register D0 contains

the result code.

RESULT CODES

→ spSlot SignedByte The slot number.

✕ spResult LongInt

Trap macro Selector

_SlotManager $0018

Registers on entry

A0 Address of the parameter block

D0 $0018

Registers on exit

D0 Result code

noErr 0 No error
smEmptySlot –300 No card in this slot

C H A P T E R 2

Slot Manager

Slot Manager Reference 2-65

SEE ALSO

For more information about card initialization, see “About the Slot Manager,” beginning

on page 2-15.

SCardChanged

You can use the SCardChanged function to determine if the card in a particular slot has

been changed.

FUNCTION SCardChanged (spBlkPtr: SpBlockPtr): OSErr;

spBlkPtr A pointer to a Slot Manager parameter block.

Parameter block

DESCRIPTION

The SCardChanged function checks if the expansion card in a slot has been changed

(that is, if the card’s sPRAMInit record has been initialized). You specify the slot in the

spSlot field of the Slot Manager parameter block you point to in the spBlkPtr

parameter.

The SCardChanged function returns a value of TRUE in the spResult field of the

parameter block if the card has been changed.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SCardChanged function are

You must set up register D0 with the routine selector and register A0 with the address of

the Slot Manager parameter block. When _SlotManager returns, register D0 contains

the result code.

→ spSlot SignedByte The slot number.
← spResult LongInt A Boolean signifying whether the card was

changed.

Trap macro Selector

_SlotManager $0022

Registers on entry

A0 Address of the parameter block

D0 $0022

Registers on exit

D0 Result code

C H A P T E R 2

Slot Manager

2-66 Slot Manager Reference

RESULT CODES

SFindDevBase

You can use the SFindDevBase function to determine the base address of a slot device.

FUNCTION SFindDevBase (spBlkPtr: SpBlockPtr): OSErr;

spBlkPtr A pointer to a Slot Manager parameter block.

Parameter block

DESCRIPTION

The SFindDevBase function returns the base address of a device, using information

contained in the sResource. Use of the base address is optional (except for video cards)

and device-specific. For a video card this must be the base address for the pixel map in

the card’s GDevice record (which is described in Inside Macintosh: Imaging With
QuickDraw.) For other types of cards, the base address is defined by the card designer.

The Slot Manager makes no use of this information.

The base address consists of the card’s slot address plus an optional offset that the card

designer can specify using the MinorBaseOS or MajorBaseOS entries of the sResource.

See Table 2-4 on page 2-55 for a description of how the Slot Manager calculates the base

address.

You specify the slot in the spSlot field of the Slot Manager parameter block you

point to in the spBlkPtr parameter, and the sResource ID with the spId field.

The SFindDevBase function returns the base address in the spResult field of the

parameter block.

Note
The base address of a slot device is also stored in the dCtlDevBase
field of the device control entry. The InsertSRTRec function
automatically updates the dCtlDevBase field when a new record is
added to the slot resource table. You need to call SFindDevBase only
if you used the SUpdateSRTRec function to update the slot resource
table. ◆

noErr 0 No error
smEmptySlot –300 No card in this slot

→ spSlot SignedByte The slot number.
→ spId SignedByte The sResource ID.
← spResult LongInt The device base address.

C H A P T E R 2

Slot Manager

Slot Manager Reference 2-67

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SFindDevBase function are

You must set up register D0 with the routine selector and register A0 with the address of

the Slot Manager parameter block. When _SlotManager returns, register D0 contains

the result code.

RESULT CODES

SEE ALSO

For more information about how the device base address is calculated, see the

description of the InsertSRTRec function on page 2-54.

Accessing Expansion Card Parameter RAM

The Macintosh Operating System reserves six bytes of parameter RAM per slot for any

card-specific information that the card designer chooses to store. The functions in this

section allow you to read or change the value of these bytes. Both of the functions in

this section use the slot parameter RAM record to return the parameter RAM values.

SReadPRAMRec

You can use the SReadPRAMRec function to read the parameter RAM information for a

particular slot.

FUNCTION SReadPRAMRec (spBlkPtr: SpBlockPtr): OSErr;

spBlkPtr A pointer to a Slot Manager parameter block.

Trap macro Selector

_SlotManager $001B

Registers on entry

A0 Address of the parameter block

D0 $001B

Registers on exit

D0 Result code

noErr 0 No error
smEmptySlot –300 No card in this slot

C H A P T E R 2

Slot Manager

2-68 Slot Manager Reference

Parameter block

DESCRIPTION

The Macintosh Operating System allocates one SPRAMRecord data structure for each

slot in the system parameter RAM. The Slot Manager initializes this structure with the

data from the sPRAMInit record on the firmware of the expansion card. The

SReadPRAMRec function provides a copy of this information to your application.

You specify the slot number in the spSlot field of the Slot Manager parameter block

you point to in the spBlkPtr parameter. You must also allocate a SPRAMRecord data

structure and store a pointer to it in the spResult field. The SReadPRAMRec function

copies the appropriate parameter RAM information into this data structure.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SReadPRAMRec function are

You must set up register D0 with the routine selector and register A0 with the address of

the Slot Manager parameter block. When _SlotManager returns, register D0 contains

the result code.

RESULT CODES

SEE ALSO

For more information about the sPRAMInit record, see Designing Cards and Drivers for
the Macintosh Family, third edition.

→ spSlot SignedByte The slot number.
→ spResult Pointer A pointer to an SPRAMRecord data structure

(described on page 2-27).

✕ spSize LongInt

Trap macro Selector

_SlotManager $0011

Registers on entry

A0 Address of the parameter block

D0 $0011

Registers on exit

D0 Result code

noErr 0 No error
smEmptySlot –300 No card in this slot

C H A P T E R 2

Slot Manager

Slot Manager Reference 2-69

SPutPRAMRec

You can use the SPutPRAMRec function to change the values stored in a slot’s parameter

RAM.

FUNCTION SPutPRAMRec (spBlkPtr: SpBlockPtr): OSErr;

spBlkPtr A pointer to a Slot Manager parameter block.

Parameter block

DESCRIPTION

The SPutPRAMRec function allows you to change the values stored in the parameter

RAM of a slot.

In the parameter block you point to in the spBlkPtr parameter, you specify the slot

number with the spSlot field and provide the new parameter RAM values in a

SPRAMRecord data structure pointed to by the spsPointer field.

The SPutPRAMRec function copies the information from the six vendor-use fields into

the parameter RAM for the slot. This function does not copy the boardID field, which is

Apple-defined.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SPutPRAMRec function are

You must set up register D0 with the routine selector and register A0 with the address of

the Slot Manager parameter block. When _SlotManager returns, register D0 contains

the result code.

RESULT CODES

→ spsPointer Ptr A pointer to an SPRAMRecord data structure
(described on page 2-27).

→ spSlot SignedByte The slot number.

Trap macro Selector

_SlotManager $0012

Registers on entry

A0 Address of the parameter block

D0 $0012

Registers on exit

D0 Result code

noErr 0 No error
smEmptySlot –300 No card in this slot

C H A P T E R 2

Slot Manager

2-70 Slot Manager Reference

Managing the Slot Interrupt Queue

The Slot Manager maintains an interrupt queue for each slot. If your card generates

interrupts, you can install a slot interrupt handler to process the interrupts. You use the

SIntInstall function to install an interrupt handler in the slot interrupt queue, and

the SIntRemove function to remove an interrupt handler from the queue.

SIntInstall

You use the SIntInstall function to install an interrupt handler in the slot interrupt

queue for a designated slot.

FUNCTION SIntInstall (sIntQElemPtr: SQElemPtr;

 theSlot: Integer) : OsErr;

sIntQElemPtr
A pointer to a slot interrupt queue element record, described on page 2-28.

theSlot The slot number.

DESCRIPTION

The SIntInstall function adds a new element to the interrupt queue for a slot. You

provide a pointer to a slot interrupt queue element in the sIntQElemPtr parameter and

specify the slot number in theSlot.

The Slot Manager calls your interrupt handler using a JSR instruction. Your routine

must preserve the contents of all registers except A1 and D0, and return to the Slot

Manager with an RTS instruction. Register D0 should be set to 0 if your routine did

not service the interrupt, or any other value if the interrupt was serviced. Your routine

should not set the processor priority below 2, and must return with the processor

priority equal to 2.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for the SIntInstall function is _SIntInstall ($A075).

You must set up register D0 with the slot number and register A0 with the address of the

slot queue element. When _SIntInstall returns, register D0 contains the result code.

Registers on entry

A0 address of the slot queue element

D0 slot number

Registers on exit

D0 Result code

C H A P T E R 2

Slot Manager

Slot Manager Reference 2-71

RESULT CODES

SIntRemove

You use the SIntRemove function to remove an interrupt handler from a slot’s interrupt

queue.

FUNCTION SIntRemove (sIntQElemPtr: SQElemPtr;

theSlot: Integer) : OsErr;

sIntQElemPtr
A pointer to a slot interrupt queue element record, described on page 2-28.

theSlot The slot number.

DESCRIPTION

The SIntRemove function removes an element from the interrupt queue for a slot. You

provide a pointer to a slot interrupt queue element in the sIntQElemPtr parameter and

specify the slot number in theSlot.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for the SIntRemove function is _SIntRemove ($A076).

You must set up register D0 with the slot number and register A0 with the address of the

slot queue element. When _SIntRemove returns, register D0 contains the result code.

RESULT CODES

SEE ALSO

For a description of the slot interrupt queue element record, see “Slot Interrupt Queue

Element” on page 2-28.

noErr 0 No error

Registers on entry

A0 address of the slot queue element

D0 slot number

Registers on exit

D0 Result code

noErr 0 No error

C H A P T E R 2

Slot Manager

2-72 Slot Manager Reference

Low-Level Routines

The routines in this section are used internally by the Macintosh Operating System

during startup, and as needed by the Slot Manager. They are included here for reference

only, and as an aid to debugging. These routines are not required or supported for

application-level programming. Applications and device drivers should rely only on

the high-level routines described in the previous section, “Slot Manager Routines.”

▲ W A R N I N G

The routines in this section are internal Macintosh Operating System
functions that may be changed without notice by Apple Computer, Inc.
These routines may not be supported by future versions of the
Operating System. ▲

InitSDeclMgr

This function is used only by the Macintosh Operating System.

FUNCTION InitSDeclMgr (spBlkPtr: SpBlockPtr): OSErr;

spBlkPtr A pointer to a Slot Manager parameter block.

DESCRIPTION

The InitSDeclMgr function initializes the Slot Manager. The contents of the parameter

block are undefined. This function allocates the slot information record and checks each

slot for a card. If a card is present, the Slot Manager validates the card’s firmware and the

resulting information is placed in the slot’s sInfoRecord. For empty slots, or cards that

fail to initialize, the Slot Manager stores the appropriate error code in the initStatusA

field of the sInfoRecord for the slot.

SPECIAL CONSIDERATIONS

The InitSDeclMgr function allocates memory.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the InitSDeclMgr function are

Trap macro Selector

_SlotManager $0020

C H A P T E R 2

Slot Manager

Slot Manager Reference 2-73

On entry, register D0 contains the routine selector and register A0 contains the address of

the Slot Manager parameter block. When _SlotManager returns, register D0 contains

the result code.

RESULT CODES

SEE ALSO

For more information about Slot Manager initialization, see “About the Slot Manager,”

beginning on page 2-15.

SCalcSPointer

This function is used only by the Macintosh Operating System.

FUNCTION SCalcSPointer (spBlkPtr: SpBlockPtr): OSErr;

spBlkPtr A pointer to a Slot Manager parameter block.

Parameter block

DESCRIPTION

The SCalcSPointer function returns a pointer to a given byte in the declaration ROM

of an expansion card.

Registers on entry

A0 Address of the parameter block

D0 $0020

Registers on exit

D0 Result code

noErr 0 No error
smUnExBusErr –308 A bus error occurred
smDisposePErr –312 An error occurred during execution of DisposePtr
smBadsPtrErr –346 Bad spsPointer value
smByteLanesErr –347 Bad spByteLanes value

↔ spsPointer Ptr A pointer to a byte in declaration ROM.
→ spOffsetData LongInt The offset in bytes to desired pointer.
→ spByteLanes SignedByte The byte lanes used.

C H A P T E R 2

Slot Manager

2-74 Slot Manager Reference

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SCalcSPointer function are

On entry, register D0 contains the routine selector and register A0 contains the address of

the Slot Manager parameter block. When _SlotManager returns, register D0 contains

the result code.

RESULT CODES

SCalcStep

This function is used only by the Macintosh Operating System.

FUNCTION SCalcStep (spBlkPtr: SpBlockPtr): OSErr;

spBlkPtr A pointer to a Slot Manager parameter block.

Parameter block

DESCRIPTION

The SCalcStep function calculates the field sizes in the block pointed to by spBlkPtr.

It is used for stepping through the card firmware one field at a time. If the

fConsecBytes flag is set the function calculates the step value for consecutive bytes;

otherwise it calculates it for consecutive IDs.

Trap macro Selector

_SlotManager $002C

Registers on entry

A0 Address of the parameter block

D0 $002C

Registers on exit

D0 Result code

noErr 0 No error
smNoMoresRsrcs –344 Requested sResource not found

← spResult LongInt The function result.
→ spsPointer Ptr A pointer to a byte in declaration ROM.
→ spByteLanes SignedByte The byte lanes used.
→ spFlags SignedByte Flags.

C H A P T E R 2

Slot Manager

Slot Manager Reference 2-75

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SCalcStep function are

On entry, register D0 contains the routine selector and register A0 contains the address of

the Slot Manager parameter block. When _SlotManager returns, register D0 contains

the result code.

RESULT CODES

SFindBigDevBase

This function is obsolete.

FUNCTION SFindBigDevBase (spBlkPtr: SpBlockPtr): OSErr;

spBlkPtr A pointer to a Slot Manager parameter block.

Parameter block

DESCRIPTION

The SFindBigDevBase function has been superseded by the SFindDevBase function.

Currently, both functions execute the same code and return the same result. However,

for future compatibility you should use only the SFindDevBase function described on

page 2-66.

Trap macro Selector

_SlotManager $0028

Registers on entry

A0 Address of the parameter block

D0 $0028

Registers on exit

D0 Result code

noErr 0 No error
smNoMoresRsrcs –344 Requested sResource not found

→ spSlot SignedByte The slot number.
→ spId SignedByte The sResource ID.
← spResult LongInt The device base address.

C H A P T E R 2

Slot Manager

2-76 Slot Manager Reference

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SFindBigDevBase function are

On entry, register D0 contains the routine selector and register A0 contains the address of

the Slot Manager parameter block. When _SlotManager returns, register D0 contains

the result code.

RESULT CODES

SEE ALSO

For information about the supported function for finding a device base address, see the

description of the SFindDevBase function on page 2-66.

SFindSInfoRecPtr

This function is used only by the Macintosh Operating System.

FUNCTION SFindSInfoRecPtr (spBlkPtr: SpBlockPtr): OSErr;

spBlkPtr A pointer to a Slot Manager parameter block.

Parameter block

DESCRIPTION

The SFindSInfoRecPtr function returns a pointer to the slot information record for a

particular slot.

Trap macro Selector

_SlotManager $001C

Registers on entry

A0 Address of the parameter block

D0 $001C

Registers on exit

D0 Result code

noErr 0 No error
smEmptySlot –300 No card in this slot

← spResult LongInt A pointer to the slot information record.
→ spSlot SignedByte The slot number.

C H A P T E R 2

Slot Manager

Slot Manager Reference 2-77

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SFindSInfoRecPtr function are

On entry, register D0 contains the routine selector and register A0 contains the address of

the Slot Manager parameter block. When _SlotManager returns, register D0 contains

the result code.

RESULT CODES

SEE ALSO

For information about the high-level routine for reading the slot information record, see

the description of the SReadInfo function on page 2-61.

SFindSRsrcPtr

This function is used only by the Macintosh Operating System.

FUNCTION SFindSRsrcPtr (spBlkPtr: SpBlockPtr): OSErr;

spBlkPtr A pointer to a Slot Manager parameter block.

Parameter block

DESCRIPTION

The SFindSRsrcPtr function finds an sResource given its slot number and sResource

ID. This function ignores disabled sResources.

Trap macro Selector

_SlotManager $002F

Registers on entry

A0 Address of the parameter block

D0 $002F

Registers on exit

D0 Result code

noErr 0 No error
smNoMoresRsrcs –344 Requested sResource not found

← spsPointer Ptr A pointer to an sResource (described in “The
sResource,” beginning on page 2-7).

→ spSlot SignedByte The slot number of the requested sResource.
→ spId SignedByte The sResource ID of the requested sResource.

✕ spResult LongInt

C H A P T E R 2

Slot Manager

2-78 Slot Manager Reference

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SFindSRsrcPtr function are

On entry, register D0 contains the routine selector and register A0 contains the address of

the Slot Manager parameter block. When _SlotManager returns, register D0 contains

the result code.

RESULT CODES

SEE ALSO

For information about the high-level routines for locating sResources, see “Finding

sResources,” beginning on page 2-31.

SGetSRsrcPtr

This function is used only by the Macintosh Operating System.

FUNCTION SGetSRsrcPtr (spBlkPtr: SpBlockPtr): OSErr;

spBlkPtr A pointer to a Slot Manager parameter block.

Parameter block

DESCRIPTION

The SGetSRsrcPtr function finds an sResource given its slot number and sResource ID.
This function can search disabled sResources.

Trap macro Selector

_SlotManager $0030

Registers on entry

A0 Address of the parameter block

D0 $0030

Registers on exit

D0 Result code

noErr 0 No error
smNoMoresRsrcs –344 Requested sResource not found

← spsPointer Ptr A pointer to an sResource (described in “The
sResource,” beginning on page 2-7).

→ spParamData LongInt The parameter flags.
→ spSlot SignedByte The slot number of the requested sResource.
→ spID SignedByte The sResource ID of the requested sResource.
→ spExtDev SignedByte The external device identifier.

C H A P T E R 2

Slot Manager

Slot Manager Reference 2-79

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SGetSRsrcPtr function are

On entry, register D0 contains the routine selector and register A0 contains the address of

the Slot Manager parameter block. When _SlotManager returns, register D0 contains

the result code.

RESULT CODES

SEE ALSO

For information about the high-level routines for locating sResources, see “Finding

sResources,” beginning on page 2-31.

SInitPRAMRecs

This function is used only by the Macintosh Operating System.

FUNCTION SInitPRAMRecs (spBlkPtr: SpBlockPtr): OSErr;

spBlkPtr A pointer to a Slot Manager parameter block.

DESCRIPTION

The SInitPRAMRecs function scans every slot and checks its BoardId value against

the value stored in PRAM. If the values do not match, the fCardIsChanged flag is

set and the board sResource is searched for a PRAMInitData entry. If one is found, the

sPRAMRecord for the slot is initialized with the data from the card’s sPRAMInit record;

otherwise it is initialized to 0. The contents of the parameter block are undefined.

SPECIAL CONSIDERATIONS

The SInitPRAMRecs function may move memory.

Trap macro Selector

_Slot Manager $001D

Registers on entry

A0 Address of the parameter block

D0 $001D

Registers on exit

D0 Result code

noErr 0 No error
smNoMoresRsrcs –344 Requested sResource not found

C H A P T E R 2

Slot Manager

2-80 Slot Manager Reference

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SInitPRAMRecs function are

On entry, register D0 contains the routine selector and register A0 contains the address of

the Slot Manager parameter block. When _SlotManager returns, register D0 contains

the result code.

RESULT CODES

SEE ALSO

For more information about Slot Manager initialization, see “About the Slot Manager,”

beginning on page 2-15.

SInitSRsrcTable

This function is used only by the Macintosh Operating System.

FUNCTION SInitSRsrcTable (spBlkPtr: SpBlockPtr): OSErr;

spBlkPtr A pointer to a Slot Manager parameter block.

DESCRIPTION

The SInitSRsrcTable function initializes the slot resource table. The contents of the

parameter block are undefined.

SPECIAL CONSIDERATIONS

The SInitSRsrcTable function allocates memory.

Trap macro Selector

_SlotManager $0025

Registers on entry

A0 Address of the parameter block

D0 $0025

Registers on exit

D0 Result code

noErr 0 No error
smUnExBusErr –308 A bus error occurred
smDisposePErr –312 An error occurred during execution of DisposePtr

C H A P T E R 2

Slot Manager

Slot Manager Reference 2-81

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SInitSRsrcTable function are

On entry, register D0 contains the routine selector and register A0 contains the address of

the Slot Manager parameter block. When _SlotManager returns, register D0 contains

the result code.

RESULT CODES

SEE ALSO

For more information about Slot Manager initialization, see “About the Slot Manager,”

beginning on page 2-15.

SOffsetData

This function is used only by the Macintosh Operating System.

FUNCTION SOffsetData (spBlkPtr: SpBlockPtr): OSErr;

spBlkPtr A pointer to a Slot Manager parameter block.

Parameter block

DESCRIPTION

The SOffsetData function returns the value of the offset field of an sResource entry.

Trap macro Selector

_SlotManager $0029

Registers on entry

A0 Address of the parameter block

D0 $0029

Registers on exit

D0 Result code

noErr 0 No error
smUnExBusErr –308 A bus error occurred
smDisposePErr –312 An error occurred during execution of DisposePtr

↔ spsPointer Ptr On output: A pointer to the sResource
entry.

← spOffsetData LongInt The contents of the offset field.
→ spID SignedByte The ID of the sResource entry.
← spByteLanes SignedByte The byte lanes from the card’s format block.

C H A P T E R 2

Slot Manager

2-82 Slot Manager Reference

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SOffsetData function are

On entry, register D0 contains the routine selector and register A0 contains the address of

the Slot Manager parameter block. When _SlotManager returns, register D0 contains

the result code.

RESULT CODES

SEE ALSO

For information about high-level routines for getting information from sResources, see

the descriptions of the SReadByte, SReadWord, SReadLong, SGetCString,

SGetBlock, SReadStruct, and SFindStruct functions in “Getting Information From

sResources,” beginning on page 2-40.

SPrimaryInit

This function is used only by the Macintosh Operating System.

FUNCTION SPrimaryInit (spBlkPtr: SpBlockPtr): OSErr;

spBlkPtr A pointer to a Slot Manager parameter block.

Parameter block

DESCRIPTION

Called by the Slot Manager during system startup, the SPrimaryInit function

executes the code in the PrimaryInit entry of each card’s board sResource. It passes

the spFlags byte to the PrimaryInit code via the seFlags field of the SEBlock. The

fWarmStart bit is set if a restart is being performed.

Trap macro Selector

_SlotManager $0024

Registers on entry

A0 Address of the parameter block

D0 $0024

Registers on exit

D0 Result code

noErr 0 No error
smNoMoresRsrcs –344 Requested sResource not found

→ spFlags SignedByte Flags passed to the card’s PrimaryInit code.

C H A P T E R 2

Slot Manager

Slot Manager Reference 2-83

SPECIAL CONSIDERATIONS

The SPrimaryInit function may move memory.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SPrimaryInit function are

On entry, register D0 contains the routine selector and register A0 contains the address of

the Slot Manager parameter block. When _SlotManager returns, register D0 contains

the result code.

RESULT CODES

SEE ALSO

For more information about Slot Manager initialization, see “About the Slot Manager,”

beginning on page 2-15.

SPtrToSlot

This function is used only by the Macintosh Operating System.

FUNCTION SPtrToSlot (spBlkPtr: SpBlockPtr): OSErr;

spBlkPtr A pointer to a Slot Manager parameter block.

Parameter block

Trap macro Selector

_SlotManager $0021

Registers on entry

A0 Address of the parameter block

D0 $0021

Registers on exit

D0 Result code

noErr 0 No error
smUnExBusErr –308 A bus error occurred
smDisposePErr –312 An error occurred during execution of DisposePtr
smBadsPtrErr –346 Bad spsPointer value
smByteLanesErr –347 Bad spByteLanes value

→ spsPointer Ptr A pointer to a byte in declaration ROM.
← spSlot SignedByte The slot number.

C H A P T E R 2

Slot Manager

2-84 Slot Manager Reference

DESCRIPTION

The SPtrToSlot function returns the slot number of the card whose declaration ROM

is pointed to by spsPointer. The value of spsPointer must have the form

$Fsxx xxxx, where s is a slot number and x is a hexadecimal number.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SPtrToSlot function are

On entry, register D0 contains the routine selector and register A0 contains the address of

the Slot Manager parameter block. When _SlotManager returns, register D0 contains

the result code.

RESULT CODES

SReadPBSize

This function is used only by the Macintosh Operating System.

FUNCTION SReadPBSize (spBlkPtr: SpBlockPtr): OSErr;

spBlkPtr A pointer to a Slot Manager parameter block.

Parameter block

Trap macro Selector

_SlotManager $002E

Registers on entry

A0 Address of the parameter block

D0 $002E

Registers on exit

D0 Result code

noErr 0 No error
smUnExBusErr –308 A bus error occurred
smBadsPtrErr –346 Bad spsPointer value

↔ spsPointer Ptr A pointer to an sResource (described in “The
sResource,” beginning on page 2-7).

← spSize LongInt The size of the sBlock data structure.
→ spID SignedByte The ID of the sBlock in the sResource.
← spByteLanes SignedByte The byte lanes from the card’s format block.
→ spFlags SignedByte Flags.

C H A P T E R 2

Slot Manager

Slot Manager Reference 2-85

DESCRIPTION

The SReadPBSize function returns the size of an sBlock data structure.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SReadPBSize function are

On entry, register D0 contains the routine selector and register A0 contains the address of

the Slot Manager parameter block. When _SlotManager returns, register D0 contains

the result code.

RESULT CODES

SEE ALSO

For more information about the high-level routine for obtaining information from an

sBlock data structure, see the description of the SGetBlock function on page 2-47.

SSearchSRT

This function is used only by the Macintosh Operating System.

FUNCTION SSearchSRT (spBlkPtr: SpBlockPtr): OSErr;

spBlkPtr A pointer to a Slot Manager parameter block.

Parameter block

Trap macro Selector

_SlotManager $0026

Registers on entry

A0 Address of the parameter block

D0 $00026

Registers on exit

D0 Result code

noErr 0 No error
smNoMoresRsrcs –344 Requested sResource not found

← spsPointer Ptr A pointer to a record in the slot resource table.
→ spID SignedByte The ID of the sResource entry.
→ spExtDev SignedByte The external device identifier.
→ spSlot SignedByte The slot.
→ spFlags SignedByte Flags.

C H A P T E R 2

Slot Manager

2-86 Slot Manager Reference

DESCRIPTION

The SSearchSRT function searches the slot resource table for the record corresponding

to the sResource in slot spSlot with list spId and external device identifier spExtDev,

and returns a pointer to it in spsPointer. If the fCkForNext bit of spFlags is 0, the

function searches for the specified record; if the flag is 1, it searches for the next record.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SSearchSRT function are

On entry, register D0 contains the routine selector and register A0 contains the address of

the Slot Manager parameter block. When _SlotManager returns, register D0 contains

the result code.

RESULT CODES

Trap macro Selector

_SlotManager $002A

Registers on entry

A0 Address of the parameter block

D0 $002A

Registers on exit

D0 Result code

noErr 0 No error
smNoMoresRsrcs –344 Requested sResource not found
smRecNotFnd –351 Record not found in the slot resource table

C H A P T E R 2

Slot Manager

Summary of the Slot Manager 2-87

Summary of the Slot Manager

Pascal Summary

Constants

CONST

{siStatusFlags field of SInfoRecord}

fCardIsChanged = 1; {card has changed}

{flags for SSearchSRT}

fCkForSame = 0; {check for same sResource in table}

fCkForNext = 1; {check for next sResource in table}

{flag passed to card by SPrimaryInit during startup or restart}

fWarmStart = 2; {warm start if set; else cold start}

{constants for siState field of sInfoRecord}

stateNil = 0; {state}

stateSDMInit = 1; {slot declaration manager init}

statePRAMInit = 2; {sPRAM record init}

statePInit = 3; {primary init}

stateSInit = 4; {secondary init}

{bit flags for spParamData field of SpBlock}

fAll = 0; {if set, search all sResources}

fOneSlot = 1; {if set, search in given slot only}

fNext = 2; {if set, search for next sResource}

Data Types

TYPE SpBlock = {Slot Manager parameter block}

PACKED RECORD

spResult: LongInt; {function result}

spsPointer: Ptr; {structure pointer}

spSize: LongInt; {size of structure}

spOffsetData: LongInt; {offset or data}

spIOFileName: Ptr; {reserved for Slot Manager}

spsExecPBlk: Ptr; {pointer to SEBlock data structure}

spParamData: LongInt; {flags}

C H A P T E R 2

Slot Manager

2-88 Summary of the Slot Manager

spMisc: LongInt; {reserved for Slot Manager}

spReserved: LongInt; {reserved for Slot Manager}

spIOReserved: Integer; {ioReserved field from SRT}

spRefNum: Integer; {driver reference number}

spCategory: Integer; {Category field of sRsrcType entry}

spCType: Integer; {cType field of sRsrcType entry}

spDrvrSW: Integer; {DrSW field of sRsrcType entry}

spDrvrHW: Integer; {DrHW field of sRsrcType entry}

spTBMask: SignedByte; {sRsrcType entry bit mask}

spSlot: SignedByte; {slot number}

spID: SignedByte; {sResource ID}

spExtDev: SignedByte; {external device ID}

spHwDev: SignedByte; {hardware device ID}

spByteLanes: SignedByte; {valid byte lanes}

spFlags: SignedByte; {flags used by Slot Manager}

spKey: SignedByte; {reserved for Slot Manager}

END;

SpBlockPtr = ^SpBlock;

SInfoRecord = {slot information record}

PACKED RECORD

siDirPtr: Ptr; {pointer to sResource directory}

siInitStatusA: Integer; {initialization error}

siInitStatusV: Integer; {status returned by vendor }

{ initialization routine}

siState: SignedByte; {initialization state}

siCPUByteLanes: SignedByte; {byte lanes used}

siTopOfROM: SignedByte; {highest valid address in ROM}

siStatusFlags: SignedByte; {status flags}

siTOConstant: Integer; {timeout constant for bus error}

siReserved: PACKED ARRAY [0..1] OF SignedByte; {reserved}

siROMAddr: Ptr; {address of top of ROM}

siSlot: Char; {slot number}

siPadding: PACKED ARRAY [0..2] OF SignedByte; {reserved}

END;

SInfoRecPtr = ^SInfoRecord;

FHeaderRec = {format header record}

PACKED RECORD

fhDirOffset: LongInt; {offset to sResource directory}

fhLength: LongInt; {length in bytes of declaration ROM}

fhCRC: LongInt; {cyclic redundancy check}

fhROMRev: SignedByte; {declaration ROM revision}

fhFormat: SignedByte; {declaration ROM format}

C H A P T E R 2

Slot Manager

Summary of the Slot Manager 2-89

fhTstPat: LongInt; {test pattern}

fhReserved: SignedByte; {reserved; must be 0}

fhByteLanes: SignedByte; {byte lanes used by declaration ROM}

END;

FHeaderRecPtr = ^FHeaderRec;

SPRAMRecord = {slot parameter RAM record}

PACKED RECORD

boardID: Integer; {Apple-defined card ID}

vendorUse1: SignedByte; {reserved for vendor use}

vendorUse2: SignedByte; {reserved for vendor use}

vendorUse3: SignedByte; {reserved for vendor use}

vendorUse4: SignedByte; {reserved for vendor use}

vendorUse5: SignedByte; {reserved for vendor use}

vendorUse6: SignedByte; {reserved for vendor use}

END;

SPRAMRecPtr = ^SPRAMRecord;

SEBlock = {slot execution parameter block}

PACKED RECORD

seSlot: SignedByte; {slot number}

sesRsrcId: SignedByte; {sResource ID}

seStatus: Integer; {status of sExecBlock code}

seFlags: SignedByte; {flags}

seFiller0: SignedByte; {filler for word alignment}

seFiller1: SignedByte; {filler}

seFiller2: SignedByte; {filler}

seResult: LongInt; {result of SLoadDriver}

seIOFileName: LongInt; {pointer to driver name}

seDevice: SignedByte; {device to read from}

sePartition: SignedByte; {partition}

seOSType: SignedByte; {type of OS}

seReserved: SignedByte; {reserved}

seRefNum: SignedByte; {driver reference number}

seNumDevices: SignedByte; {number of devices to load}

seBootState: SignedByte; {state of StartBoot code}

END;

C H A P T E R 2

Slot Manager

2-90 Summary of the Slot Manager

SlotIntQElement = {slot interrupt queue element}

RECORD

sqLink: Ptr; {pointer to next queue element}

sqType: Integer; {queue type ID; must be sIQType}

sqPrio: Integer; {priority value in low byte}

sqAddr: ProcPtr; {interrupt handler}

sqParm: LongInt; {optional A1 parameter}

END;

SQElemPtr = ^SlotIntQElement;

Slot Manager Routines

Determining the Version of the Slot Manager

FUNCTION SVersion (spBlkPtr: SpBlockPtr): OSErr;

Finding sResources
FUNCTION SRsrcInfo (spBlkPtr: SpBlockPtr): OSErr;

FUNCTION SGetSRsrc (spBlkPtr: SpBlockPtr): OSErr;

FUNCTION SGetTypeSRsrc (spBlkPtr: SpBlockPtr): OSErr;

FUNCTION SNextSRsrc (spBlkPtr: SpBlockPtr): OSErr;

FUNCTION SNextTypeSRsrc (spBlkPtr: SpBlockPtr): OSErr;

Getting Information From sResources

FUNCTION SReadDrvrName (spBlkPtr: SpBlockPtr): OSErr;

FUNCTION SReadByte (spBlkPtr: SpBlockPtr): OSErr;

FUNCTION SReadWord (spBlkPtr: SpBlockPtr): OSErr;

FUNCTION SReadLong (spBlkPtr: SpBlockPtr): OSErr;

FUNCTION SGetCString (spBlkPtr: SpBlockPtr): OSErr;

FUNCTION SGetBlock (spBlkPtr: SpBlockPtr): OSErr;

FUNCTION SFindStruct (spBlkPtr: SpBlockPtr): OSErr;

FUNCTION SReadStruct (spBlkPtr: SpBlockPtr): OSErr;

Enabling, Disabling, Deleting, and Restoring sResources

FUNCTION SetSRsrcState (spBlkPtr: SpBlockPtr): OSErr;

FUNCTION SDeleteSRTRec (spBlkPtr: SpBlockPtr): OSErr;

FUNCTION InsertSRTRec (spBlkPtr: SpBlockPtr): OSErr;

FUNCTION SUpdateSRT (spBlkPtr: SpBlockPtr): OSErr;

C H A P T E R 2

Slot Manager

Summary of the Slot Manager 2-91

Loading Drivers and Executing Code From sResources

FUNCTION SGetDriver (spBlkPtr: SpBlockPtr): OSErr;

FUNCTION SExec (spBlkPtr: SpBlockPtr): OSErr;

Getting Information About Expansion Cards and Declaration ROMs
FUNCTION SReadInfo (spBlkPtr: SpBlockPtr): OSErr;

FUNCTION SReadFHeader (spBlkPtr: SpBlockPtr): OSErr;

FUNCTION SCkCardStat (spBlkPtr: SpBlockPtr): OSErr;

FUNCTION SCardChanged (spBlkPtr: SpBlockPtr): OSErr;

FUNCTION SFindDevBase (spBlkPtr: SpBlockPtr): OSErr;

Accessing Expansion Card Parameter RAM

FUNCTION SReadPRAMRec (spBlkPtr: SpBlockPtr): OSErr;

FUNCTION SPutPRAMRec (spBlkPtr: SpBlockPtr): OSErr;

Managing the Slot Interrupt Queue

FUNCTION SIntInstall (sIntQElemPtr: SQElemPtr;
theSlot: Integer) : OsErr;

FUNCTION SIntRemove (sIntQElemPtr: SQElemPtr;
theSlot: Integer) : OsErr;

Low-Level Routines

FUNCTION InitSDeclMgr (spBlkPtr: SpBlockPtr): OSErr;

FUNCTION SCalcSPointer (spBlkPtr: SpBlockPtr): OSErr;

FUNCTION SCalcStep (spBlkPtr: SpBlockPtr): OSErr;

FUNCTION SFindBigDevBase (spBlkPtr: SpBlockPtr): OSErr;

FUNCTION SFindSInfoRecPtr (spBlkPtr: SpBlockPtr): OSErr;

FUNCTION SFindSRsrcPtr (spBlkPtr: SpBlockPtr): OSErr;

FUNCTION SGetSRsrcPtr (spBlkPtr: SpBlockPtr): OSErr;

FUNCTION SInitPRAMRecs (spBlkPtr: SpBlockPtr): OSErr;

FUNCTION SInitSRsrcTable (spBlkPtr: SpBlockPtr): OSErr;

FUNCTION SOffsetData (spBlkPtr: SpBlockPtr): OSErr;

FUNCTION SPrimaryInit (spBlkPtr: SpBlockPtr): OSErr;

FUNCTION SPtrToSlot (spBlkPtr: SpBlockPtr): OSErr;

FUNCTION SReadPBSize (spBlkPtr: SpBlockPtr): OSErr;

FUNCTION SSearchSRT (spBlkPtr: SpBlockPtr): OSErr;

C H A P T E R 2

Slot Manager

2-92 Summary of the Slot Manager

C Summary

Constants

enum {

/* StatusFlags field of sInfoArray */

fCardIsChanged = 1, /* card has changed */

/* flags for SearchSRT */

fCkForSame = 0, /* check for same sResource in table */

fCkForNext = 1, /* check for next sResource in table */

/* flag passed to card by SPrimaryInit during startup or restart */

fWarmStart = 2, /* warm start if set; else cold start */

/* constants for siState field of sInfoRecord */

stateNil = 0, /* state */

stateSDMInit = 1, /* slot declaration manager init */

statePRAMInit = 2, /* sPRAM record init */

statePInit = 3, /* primary init */

stateSInit = 4, /* secondary init */

/* bit flags for spParamData field of SpBlock */

fall = 0, /* if set, search all sResources */

foneslot = 1, /* if set, search in given slot only */

fnext = 2 /* if set, search for next sResource */

};

Data Types

typedef struct SpBlock { /* Slot Manager parameter block */

long spResult; /* function result */

Ptr spsPointer; /* structure pointer */

long spSize; /* size of structure */

long spOffsetData; /* offset or data */

Ptr spIOFileName; /* reserved for Slot Manager */

Ptr spsExecPBlk; /* pointer to SEBlock structure */

long spParamData; /* flags */

long spMisc; /* reserved for Slot Manager */

long spReserved; /* reserved for Slot Manager */

short spIOReserved; /* ioReserved field from SRT */

short spRefNum; /* driver reference number */

C H A P T E R 2

Slot Manager

Summary of the Slot Manager 2-93

short spCategory; /* Category field of sRsrcType entry */

short spCType; /* cType field of sRsrcType entry */

short spDrvrSW; /* DrSW field of sRsrcType entry */

short spDrvrHW; /* DrHW field of sRsrcType entry */

char spTBMask; /* sRsrcType entry bit mask */

char spSlot; /* slot number */

char spID; /* sResource ID */

char spExtDev; /* external device ID */

char spHwDev; /* hardware device ID */

char spByteLanes; /* valid byte lanes */

char spFlags; /* flags used by Slot Manager */

char spKey; /* reserved for Slot Manager */

} SpBlock;

typedef SpBlock *SpBlockPtr;

typedef struct SInfoRecord { /* slot information record */

Ptr siDirPtr; /* pointer to sResource directory */

short siInitStatusA; /* initialization error */

short siInitStatusV; /* status returned by vendor

initialization routine */

char siState; /* initialization state */

char siCPUByteLanes; /* byte lanes used */

char siTopOfROM; /* highest valid address in ROM */

char siStatusFlags; /* status flags */

short siTOConst; /* timeout constant for bus error */

char siReserved[2]; /* reserved */

Ptr siROMAddr; /* address of top of ROM */

char siSlot; /* slot number */

char siPadding[3]; /* reserved */

} SInfoRecord;

typedef SInfoRecord *SInfoRecPtr;

typedef struct FHeaderRec { /* format header record */

long fhDirOffset; /* offset to sResource directory */

long fhLength; /* length in bytes of declaration ROM */

long fhCRC; /* cyclic redundancy check */

char fhROMRev; /* declaration ROM revision */

char fhFormat; /* declaration ROM format */

long fhTstPat; /* test pattern */

char fhReserved; /* reserved; must be 0 */

char fhByteLanes; /* byte lanes used by declaration ROM */

} FHeaderRec;

typedef FHeaderRec *FHeaderRecPtr;

C H A P T E R 2

Slot Manager

2-94 Summary of the Slot Manager

typedef struct SPRAMRecord { /* slot parameter RAM record */

short boardID; /* Apple-defined card ID */

char vendorUse1; /* reserved for vendor use */

char vendorUse2; /* reserved for vendor use */

char vendorUse3; /* reserved for vendor use */

char vendorUse4; /* reserved for vendor use */

char vendorUse5; /* reserved for vendor use */

char vendorUse6; /* reserved for vendor use */

} SPRAMRecord;

typedef SPRAMRecord *SPRAMRecPtr;

typedef struct SEBlock { /* slot execution parameter block */

unsigned char seSlot; /* slot number */

unsigned char sesRsrcId; /* sResource ID */

short seStatus; /* status of sExecBlock code */

unsigned char seFlags; /* flags */

unsigned char seFiller0; /* filler for word alignment */

unsigned char seFiller1; /* filler */

unsigned char seFiller2; /* filler */

long seResult; /* result of SLoadDriver */

long seIOFileName; /* pointer to driver name */

unsigned char seDevice /* device to read from */

unsigned char sePartition; /* partition */

unsigned char seOSType; /* type of OS */

unsigned char seReserved; /* reserved */

unsigned char seRefNum; /* driver reference number */

unsigned char seNumDevices; /* number of devices to load */

unsigned char seBootState; /* state of StartBoot code */

} SEBlock;

typedef struct SlotIntQElement { /* slot interrupt queue element */

Ptr sqLink; /* pointer to next queue element */

short sqType; /* queue type ID; must be sIQType */

short sqPrio; /* priority value in low byte */

ProcPtr sqAddr; /* interrupt handler */

long sqParm; /* optional A1 parameter */

} SlotIntQElement;

typedef SlotIntQElement *SQElemPtr;

Slot Manager Functions

Determining the Version of the Slot Manager

pascal OSErr SVersion (SpBlockPtr spBlkPtr);

C H A P T E R 2

Slot Manager

Summary of the Slot Manager 2-95

Finding sResources

pascal OSErr SRsrcInfo (SpBlockPtr spBlkPtr);

pascal OSErr SGetSRsrc (SpBlockPtr spBlkPtr);

pascal OSErr SGetTypeSRsrc (SpBlockPtr spBlkPtr);

pascal OSErr SNextSRsrc (SpBlockPtr spBlkPtr);

pascal OSErr SNextTypeSRsrc (SpBlockPtr spBlkPtr);

Getting Information From sResources

pascal OSErr SReadDrvrName (SpBlockPtr spBlkPtr);

pascal OSErr SReadByte (SpBlockPtr spBlkPtr);

pascal OSErr SReadWord (SpBlockPtr spBlkPtr);

pascal OSErr SReadLong (SpBlockPtr spBlkPtr);

pascal OSErr SGetCString (SpBlockPtr spBlkPtr);

pascal OSErr SGetBlock (SpBlockPtr spBlkPtr);

pascal OSErr SFindStruct (SpBlockPtr spBlkPtr);

pascal OSErr SReadStruct (SpBlockPtr spBlkPtr);

Enabling, Disabling, Deleting, and Restoring sResources

pascal OSErr SetSRsrcState (SpBlockPtr spBlkPtr);

pascal OSErr SDeleteSRTRec (SpBlockPtr spBlkPtr);

pascal OSErr InsertSRTRec (SpBlockPtr spBlkPtr);

pascal OSErr SUpdateSRT (SpBlockPtr spBlkPtr);

Loading Drivers and Executing Code From sResources

pascal OSErr SGetDriver (SpBlockPtr spBlkPtr);

pascal OSErr SExec (SpBlockPtr spBlkPtr);

Getting Information About Expansion Cards and Declaration ROMs

pascal OSErr SReadInfo (SpBlockPtr spBlkPtr);

pascal OSErr SReadFHeader (SpBlockPtr spBlkPtr);

pascal OSErr SCkCardStat (SpBlockPtr spBlkPtr);

pascal OSErr SCardChanged (SpBlockPtr spBlkPtr);

pascal OSErr SFindDevBase (SpBlockPtr spBlkPtr);

Accessing Expansion Card Parameter RAM

pascal OSErr SReadPRAMRec (SpBlockPtr spBlkPtr);

pascal OSErr SPutPRAMRec (SpBlockPtr spBlkPtr);

C H A P T E R 2

Slot Manager

2-96 Summary of the Slot Manager

Managing the Slot Interrupt Queue

pascal OSErr SIntInstall (SQElemPtr sIntQElemPtr, short theSlot);

pascal OSErr SIntRemove (SQElemPtr sIntQElemPtr, short theSlot);

Low-Level Functions

pascal OSErr InitSDeclMgr (SpBlockPtr spBlkPtr);

pascal OSErr SCalcSPointer (SpBlockPtr spBlkPtr);

pascal OSErr SCalcStep (SpBlockPtr spBlkPtr);

pascal OSErr SFindBigDevBase (SpBlockPtr spBlkPtr);

pascal OSErr SFindSInfoRecPtr(SpBlockPtr spBlkPtr);

pascal OSErr SFindSRsrcPtr (SpBlockPtr spBlkPtr);

pascal OSErr SGetSRsrcPtr (SpBlockPtr spBlkPtr);

pascal OSErr SInitPRAMRecs (SpBlockPtr spBlkPtr);

pascal OSErr SInitSRsrcTable (SpBlockPtr spBlkPtr);

pascal OSErr SOffsetData (SpBlockPtr spBlkPtr);

pascal OSErr SPrimaryInit (SpBlockPtr spBlkPtr);

pascal OSErr SPtrToSlot (SpBlockPtr spBlkPtr);

pascal OSErr SReadPBSize (SpBlockPtr spBlkPtr);

pascal OSErr SSearchSRT (SpBlockPtr spBlkPtr);

C H A P T E R 2

Slot Manager

Summary of the Slot Manager 2-97

Assembly-Language Summary

Data Structures

Slot Manager Parameter Block

Slot Information Record

0 spResult long function result
4 spsPointer long structure pointer
8 spSize long size of structure

12 SpOffsetData long offset or data
16 spIOFileName long reserved for Slot Manager
20 spsExecPBlk long pointer to SEBlock data structure
24 spParamData long flags
28 spMisc long reserved for Slot Manager
32 spReserved long reserved for Slot Manager
36 spIOReserved word ioReserved field from SRT
38 spRefNum word driver reference number
40 spCategory word Category field of sRsrcType entry
42 spCType word cType field of sRsrcType entry
44 spDrvrSW word DrSW field of sRsrcType entry
46 spDrvrHW word DrHW field of sRsrcType entry
48 spTBMask byte sRsrcType entry bit mask
49 spSlot byte slot number
50 spID byte sResource ID
51 spExtDev byte external device ID
52 spHwDev byte hardware device ID
53 spByteLanes byte valid byte lanes
54 spFlags byte flags used by Slot Manager
55 spKey byte reserved for Slot Manager

0 siDirPtr long pointer to sResource directory
4 siInitStatusA word initialization error
6 siInitStatusV word status returned by vendor initialization routine
8 siState byte initialization state
9 siCPUByteLanes byte byte lanes used

10 siTopOfROM byte highest valid address in ROM
11 siStatusFlags byte status flags
12 siTOConst word timeout constant for bus error
14 siReserved word reserved
16 siROMAddr long address of top of ROM
20 siSlot byte slot number
21 siPadding 3 bytes reserved

C H A P T E R 2

Slot Manager

2-98 Summary of the Slot Manager

Format Header Record

Slot Parameter RAM Record

Slot Execution Parameter Block

Slot Interrupt Queue Element

0 fhDirOffset long offset to sResource directory
4 fhLength long length in bytes of declaration ROM
8 fhCRC long cyclic redundancy check

12 fhROMRev byte declaration ROM revision
13 fhFormat byte declaration ROM format
14 fhTstPat long test pattern
18 fhReserved byte reserved; must be 0
19 fhByteLanes byte byte lanes used by declaration ROM

0 boardID word Apple-defined card ID
2 vendorUse1 byte reserved for vendor use
3 vendorUse2 byte reserved for vendor use
4 vendorUse3 byte reserved for vendor use
5 vendorUse4 byte reserved for vendor use
6 vendorUse5 byte reserved for vendor use
7 vendorUse6 byte reserved for vendor use

0 seSlot byte slot number
1 sesRsrcId byte sResource ID
2 seStatus word status of sExecBlock code
4 seFlags byte flags
5 seFiller0 byte filler for word alignment
6 seFiller1 byte filler
7 seFiller2 byte filler
8 seResult long result of SLoadDriver

12 seIOFileName long pointer to driver name
16 seDevice byte device to read from
17 sePartition byte partition
18 seOSType byte type of operating system
19 seReserved byte reserved
20 seRefNum byte driver reference number
21 seNumDevices byte number of devices to load
22 seBootState byte state of StartBoot code

0 sqLink long pointer to next queue element
4 sqType word queue type ID; must be sIQType
6 sqPrio word priority value in low byte
8 sqAddr long pointer to interrupt handler

12 sqParm long optional A1 parameter

C H A P T E R 2

Slot Manager

Summary of the Slot Manager 2-99

Trap Macros

Trap Macros Requiring Routine Selectors

_SlotManager

Selector Routine

$0000 SReadByte

$0001 SReadWord

$0002 SReadLong

$0003 SGetCString

$0005 SGetBlock

$0006 SFindStruct

$0007 SReadStruct

$0008 SVersion

$0009 SetSRsrcState

$000A InsertSRTRec

$000B SGetSRsrc

$000C SGetTypeSRsrc

$0010 SReadInfo

$0011 SReadPRAMRec

$0012 SPutPRAMRec

$0013 SReadFHeader

$0014 SNextSRsrc

$0015 SNextTypeSRsrc

$0016 SRsrcInfo

$0018 SCkCardStat

$0019 SReadDrvrName

$001B SFindDevBase

$001C SFindBigDevBase

$001D SGetSRsrcPtr

$0020 InitSDeclMgr

$0021 SPrimaryInit

$0022 SCardChanged

$0023 SExec

$0024 SOffsetData

$0025 SInitPRAMRecs

$0026 SReadPBSize

$0028 SCalcStep

C H A P T E R 2

Slot Manager

2-100 Summary of the Slot Manager

Result Codes

$0029 SInitSRsrcTable

$002A SSearchSRT

$002B SUpdateSRT

$002C SCalcSPointer

$002D SGetDriver

$002E SPtrToSlot

$002F SFindSInfoRecPtr

$0030 SFindSRsrcPtr

$0031 SDeleteSRTRec

noErr 0 No error
memFullErr –108 Not enough room in heap
smEmptySlot –300 No card in this slot
smCRCFail –301 CRC check failed
smFormatErr –302 The format of the declaration ROM is wrong
smUnExBusErr –308 A bus error occurred
smBLFieldBad –309 A valid fhByteLanes field was not found
smDisposePErr –312 An error occurred during execution of DisposePtr
smNoBoardsRsrc –313 There is no board sResource
smNoBoardId –315 There is no board ID
smInitStatVErr –316 The InitStatusV field was negative after PrimaryInit
smBadRefId –330 Reference ID was not found in the given list
smBadsList –331 The IDs are not in ascending order
smReservedErr –332 A reserved field was not zero
smCodeRevErr –333 The revision of the code to be executed by sExec was wrong
smCPUErr –334 The CPU field of the code to be executed by sExec was wrong
smsPointerNil –335 The spsPointer value is NIL: no list is specified
smNilsBlockErr –336 The physical block size of an sBlock was zero
smSlotOOBErr –337 The given slot was out of bounds or does not exist
smSelOOBErr –338 Selector out of bounds or function not implemented
smCkStatusErr –341 Status of slot is bad
smGetDrvrNamErr –342 An error occurred during execution of _sGetDrvrName
smNoMoresRsrcs –344 Requested sResource not found
smBadsPtrErr –346 Bad spsPointer value
smByteLanesErr –347 Bad spByteLanes value
smRecNotFnd –351 Record not found in the slot resource table

Selector Routine

Contents 3-1

C H A P T E R 3

Contents

SCSI Manager

Introduction to SCSI Concepts 3-3

SCSI Bus Signals 3-4

SCSI Bus Phases 3-5

SCSI Commands 3-7

SCSI Messages 3-7

SCSI Handshaking 3-7

About the SCSI Manager 3-8

Conformance With the SCSI Specification 3-9

Overview of SCSI Manager Data Structures 3-10

The Structure of Block Devices 3-12

The Driver Descriptor Record 3-12

The Partition Map 3-13

Using the SCSI Manager 3-15

Reading Data From a SCSI Device 3-15

Using CDB and TIB Structures 3-17

Using the SCSIComplete Function 3-21

Choosing Polled or Blind Transfers 3-22

SCSI Manager Reference 3-23

Data Structures 3-23

Driver Descriptor Record 3-23

Partition Map Entry Record 3-25

SCSI Manager TIB Instructions 3-27

SCSI Manager Routines 3-31

Summary of the SCSI Manager 3-43

Pascal Summary 3-43

Constants 3-43

Data Types 3-43

Routines 3-44

C Summary 3-45

Constants 3-45

C H A P T E R 3

3-2 Contents

Data Types 3-45

Functions 3-46

Assembly-Language Summary 3-47

Data Structures 3-47

Trap Macros 3-48

Result Codes 3-48

C H A P T E R 3

Introduction to SCSI Concepts 3-3

SCSI Manager

This chapter describes the original Macintosh SCSI Manager. The SCSI Manager is the

part of the Macintosh Operating System that controls the transfer of data between a

Macintosh computer and peripheral devices connected through the Small Computer

System Interface (SCSI).

In 1993, Apple Computer introduced SCSI Manager 4.3, an enhanced version of the

SCSI Manager that provides new features as well as compatibility with the original

version. SCSI Manager 4.3 is described in the chapter “SCSI Manager 4.3” in this book.

SCSI Manager 4.3 Note

Throughout this chapter, notes like this one are used to point out areas
where SCSI Manager 4.3 differs from the original SCSI Manager. ◆

You should read this chapter if you are writing a SCSI device driver or other program

that needs to be compatible with the original SCSI Manager. To make best use of this

chapter, you should understand the Device Manager and how device drivers are

implemented in Macintosh computers. You should also be familiar with the SCSI-1

specification established by the American National Standards Institute (ANSI).

The SCSI-1 specification appears in ANSI document X3.131-1986, entitled Small Computer
System Interface. Unless otherwise noted, all mentions of a SCSI specification in this

chapter refer to the SCSI-1 specification.

If you are designing a SCSI peripheral device for Macintosh computers, you should read

Designing Cards and Drivers for the Macintosh Family, third edition, and Guide to the
Macintosh Family Hardware, second edition.

This chapter provides a brief introduction to SCSI concepts and then explains

■ how the SCSI standard is implemented on Macintosh computers

■ how data is structured on SCSI disk drives and other block devices

■ how you can use SCSI Manager routines and data structures to transfer data to and
from SCSI peripheral devices

Introduction to SCSI Concepts

The Small Computer System Interface (SCSI) is a computer industry standard for

connecting computers to peripheral devices such as hard disk drives, CD-ROM drives,

printers, scanners, magnetic tape drives, and any other device that needs to transfer

large amounts of data quickly.

The SCSI standard specifies the hardware and software interface at a level that

minimizes dependencies on any specific hardware implementation. The specification

allows a wide variety of peripheral devices to be connected to many types of computers.

A SCSI bus is a bus that conforms to the physical and electrical specifications of the SCSI

standard. A SCSI device refers to any unit connected to the SCSI bus, either a peripheral

device or a computer. Each SCSI device on the bus is assigned a SCSI ID, which is an

integer value from 0 to 7 that uniquely identifies the device during SCSI transactions.

C H A P T E R 3

SCSI Manager

3-4 Introduction to SCSI Concepts

The Macintosh computer is always assigned the SCSI ID value of 7, and its internal hard

disk drive is normally assigned the SCSI ID value of 0. In general, only one Macintosh

computer can be connected to a SCSI bus at a given time, and most Macintosh models

support only a single SCSI bus.

SCSI Manager 4.3 Note

Under the original SCSI Manager, the dual SCSI buses in
high-performance computers such as the Macintosh Quadra 950 are
treated as though they were a single physical bus. SCSI Manager 4.3
supports multiple SCSI buses and treats each bus separately. ◆

When two SCSI devices communicate, one device acts as the initiator and the other

as the target. The initiator begins a transaction by selecting a target device. The target

responds to the selection and requests a command. The initiator then sends a SCSI

command, and the target carries out the action. After acknowledging the command, the

target controls the remainder of the transaction. The role of initiator and target is fixed

for each device, and does not usually change. Under the original SCSI Manager, the

Macintosh computer always acts as initiator, and peripheral devices are always targets.

SCSI Manager 4.3 Note

SCSI Manager 4.3 allows multiple initiators, meaning that intelligent
peripheral devices can initiate SCSI transactions without involving the
computer. ◆

SCSI transactions involve interaction between bus signals, bus phases, SCSI commands,

and SCSI messages. Although the SCSI Manager masks much of the underlying

complexity of SCSI transactions, an understanding of these elements and how they

interact will help you understand the role of the SCSI Manager.

The following sections briefly summarize the elements of a SCSI transaction.

SCSI Bus Signals
The SCSI specification defines 50 bus signals, half of which are tied to ground. Table 3-1

describes the 18 SCSI bus signals that are relevant to understanding SCSI transactions.

Nine of these signals are used to initiate and control transactions, and nine are used for

data transfer (8 data bits plus a parity bit).

C H A P T E R 3

SCSI Manager

Introduction to SCSI Concepts 3-5

SCSI Bus Phases
A SCSI bus phase is an interval in time during which, by convention, certain control

signals are allowed or expected, and others are not. The SCSI bus can never be in more

than one phase at any given time.

For each of the bus phases, there is a set of allowable phases that can follow. For

example, the bus free phase can only be followed by the arbitration phase, or by another

bus free phase. A data phase can be followed by a command, status, message, or bus free

phase.

Control signals direct the transition from one phase to another. For example, the reset

signal invokes the bus free phase, while the attention signal invokes the message phase.

Table 3-1 SCSI bus signals

Signal Name Description

/BSY Busy Indicates that the bus is in use.

/SEL Select The initiator uses this signal to select a target.

/C/D Control/Data The target uses this signal to indicate whether the
information being transferred is control information
(signal asserted) or data (signal negated).

/I/O Input/Output The target uses this signal to specify the direction of
the data movement with respect to the initiator.
When the signal is asserted, data flows to the
initiator; when negated, data flows to the target.

/MSG Message This signal is used by the target during the message
phase.

/REQ Request The target uses this signal to start a request/
acknowledge handshake.

/ACK Acknowledge This signal is used by the initiator to end a request/
acknowledge handshake.

/ATN Attention The initiator uses this signal to inform the target
that the initiator has a message ready. The target
retrieves the message, at its convenience, by
transitioning to a message-out bus phase

/RST Reset This signal is used to clear all devices and
operations from the bus, and force the bus into the
bus free phase. The Macintosh computer asserts this
signal at startup. SCSI peripheral devices should
never assert this signal.

/DB0–/DB7,
/DBP

Data Eight data signals, numbered 0 to 7, and the parity
signal. Macintosh computers generate proper SCSI
parity, but the original SCSI Manager does not
detect parity errors in SCSI transactions.

C H A P T E R 3

SCSI Manager

3-6 Introduction to SCSI Concepts

The SCSI standard specifies eight distinct phases for the SCSI bus:

■ Bus free. This phase means that no SCSI devices are using the bus, and that the bus is
available for another SCSI operation.

■ Arbitration. This phase is preceded by the bus free phase and permits a SCSI device
to gain control of the SCSI bus. During this phase, all devices wishing to use the bus
assert the /BSY signal and put their SCSI ID onto the bus (using the data signals). The
device with highest SCSI ID wins the arbitration.

■ Selection. This phase follows the arbitration phase. The device that won arbitration
uses this phase to select another device to communicate with.

■ Reselection. This optional phase is used by systems that allow peripheral devices to
disconnect and reconnect from the bus during lengthy operations. This phase is not
supported by the original Macintosh SCSI Manager, but is by SCSI Manager 4.3.

■ Command. During this phase, the target requests a command from the initiator.

■ Data. The data phase occurs when the target requests a transfer of data to or from the
initiator.

■ Status. This phase occurs when the target requests that status information be sent to
the initiator.

■ Message. The message phase occurs when the target requests the transfer of a
message. Messages are small blocks of data that carry information or requests
between the initiator and a target. Multiple messages can be sent during this phase.

Together, the last four phases (command, data, status, and message) are known as the

information transfer phases. Figure 3-1 shows the relationship of the SCSI bus phases.

Figure 3-1 SCSI bus phases and allowable transitions

C H A P T E R 3

SCSI Manager

Introduction to SCSI Concepts 3-7

SCSI Commands
A SCSI command is an instruction from an initiator to a target to conduct an operation,

such as reading or writing a block of data. Commands are read by the target when it is

ready to do so, as opposed to being sent unrequested by the initiator.

SCSI commands are contained in a data structure called a command descriptor block
(CDB), which can be 6, 10, or 12 bytes in size. The first byte specifies the operation

requested, and the remaining bytes are parameters used by that operation.

A single SCSI command may cause a peripheral device to undertake a relatively large

amount of work, compared with other device interfaces. For example, the read

command can specify multiple blocks of data rather than just one. The primary

difference between the SCSI protocol and other interfaces typically used for storage

devices is that SCSI commands address a device as a series of logical blocks rather

than in terms of heads, tracks, and sectors. It is this abstraction from the physical

characteristics of the device that allows the SCSI protocol to be used with a wide

variety of devices.

SCSI Messages
The SCSI standard specifies a number of possible messages between initiator and target.

SCSI messages are small blocks of data, often just one byte in size, that indicate the

successful completion of an operation (the command complete message), or a variety

of other events, requests, and status information. All messages are sent during the

message phase.

The command complete message is required in all SCSI implementations. This message

is sent from the target to the initiator and indicates that a command (or series of linked

commands) has been completed, either successfully or unsuccessfully. Success or failure

of the command is indicated by status information sent earlier during the status phase.

The importance of the command complete message is more fully discussed in “Using the

SCSIComplete Function,” beginning on page 3-21.

Other SCSI messages are optional. During the selection phase, the initiator and target

each specify their ability to handle messages other than the command complete message.

SCSI Handshaking
The SCSI standard defines the required sequence of transitions of the control and data

signals to ensure reliable communication between SCSI devices. Because the request

signal (/REQ) and the acknowledge signal (/ACK) both play a major role, this part of

the SCSI protocol is often referred to as request/acknowledge handshaking (usually

abbreviated as REQ/ACK handshaking).

The SCSI information transfer phases use REQ/ACK handshaking to transfer data or

control information between the initiator and target, in either direction. The direction of

the transfer depends on the particular bus phase. The handshaking occurs on every byte

transferred, and constitutes the lowest level of the SCSI protocol.

C H A P T E R 3

SCSI Manager

3-8 About the SCSI Manager

For example, during the data phase, when a target sends data to the initiator, the target

places the data on the SCSI bus data lines and then asserts the /REQ signal. The initiator

senses the /REQ signal, reads the data lines, then asserts the /ACK signal. When the

target senses the /ACK signal, it releases the data lines and negates the /REQ signal.

The initiator then senses that the /REQ signal has been negated, and negates the /ACK

signal. After the target senses that the /ACK signal has been negated, it can repeat the

whole process again, to transfer another byte of data.

Unless you are designing a SCSI device, you do not need any special knowledge of

SCSI handshaking to write software that uses the SCSI Manager. However, a general

understanding of SCSI handshaking can be helpful when debugging. Refer to the SCSI

specification for complete information about SCSI handshaking, bus phases, commands,

and messages.

About the SCSI Manager

The SCSI Manager provides routines that allow Macintosh device drivers and other

programs to communicate with SCSI peripheral devices using the SCSI protocol.

The SCSI Manager is a software layer that mediates between device drivers or

applications and the SCSI controller hardware in the Macintosh computer. In some cases,

the amount of mediation is small. For example, the SCSI Manager SCSIReset function

does little except assert the reset signal on the SCSI bus. In other cases, a single SCSI

Manager function may initiate a relatively complex series of actions.

Figure 3-2 shows the relationship of the SCSI Manager to the Macintosh system

architecture. The architecture consists of multiple layers: the application layer, the

system software layer (which is composed of several subordinate layers), and the

hardware layer.

C H A P T E R 3

SCSI Manager

About the SCSI Manager 3-9

Figure 3-2 The role of the SCSI Manager

Application programs usually rely on high-level services such as those provided by the

File Manager, but may also call low-level services directly. The File Manager calls the

Device Manager, which calls the appropriate device driver. SCSI device drivers do not

control SCSI hardware directly; they use the SCSI Manager to communicate with SCSI

devices.

Conformance With the SCSI Specification
The SCSI specification has been revised considerably since the first Macintosh SCSI

implementation. For information about the SCSI standard as originally defined, see

ANSI document X3.131-1986, Small Computer System Interface. Many of the features

described in the newer SCSI-2 specification are supported by SCSI Manager 4.3.

However, the original SCSI Manager predates these extensions.

C H A P T E R 3

SCSI Manager

3-10 About the SCSI Manager

Due to hardware variations among Macintosh models, there are minor differences in the

behavior of some SCSI Manager routines. These differences lie mostly outside the scope

of the SCSI protocol. For information about these differences, see the description of the

SCSIGet function on page 3-32.

All Macintosh computers support these aspects of the SCSI specification:

■ multiple targets

■ as many as eight devices on the bus (the computer and up to seven peripherals)

■ parity generation

The following optional features of the SCSI specification are not supported by the

original SCSI Manager:

■ multiple SCSI buses

■ multiple initiators on a single bus

■ disconnect/reconnect

■ parity error detection

SCSI Manager 4.3 Note

These features and other enhancements are supported by
SCSI Manager 4.3. ◆

Overview of SCSI Manager Data Structures
The SCSI specification and the Macintosh Operating System define a number of data

structures for communicating with SCSI devices. These data structures fall into three

categories:

■ structures defined by the SCSI specification, such as command descriptor blocks and
SCSI messages

■ structures specific to the SCSI Manager, such as transfer instruction blocks and the
16-bit status word returned by the SCSIStat function

■ structures required for the proper operation of SCSI disk drives with the Start
Manager and the File Manager; for example, the driver descriptor map and the
partition map

The command descriptor block and other data structures defined by the SCSI

specification are not discussed in detail in this chapter. Refer to the SCSI specification for

complete information about these structures. See “Using CDB and TIB Structures,”

beginning on page 3-17, for an example of how to send a CDB to a SCSI device.

Although the driver descriptor map and the partition map are not used by the SCSI

Manager, they must be present on all block devices compatible with the Macintosh

Operating System. These structures are discussed in the following section.

A transfer instruction block (TIB) is a Macintosh-specific data structure that your

program uses to pass instructions to the SCSI Manager. TIB structures are used to control

C H A P T E R 3

SCSI Manager

About the SCSI Manager 3-11

data transfers, and for other purposes such as comparing data on a peripheral device

with data in memory. TIB structures are passed as parameters to the SCSI Manager

SCSIRead, SCSIRBlind, SCSIWrite, and SCSIWBlind functions. For read

operations, the TIB specifies a memory location where the data should be stored.

For write operations, the TIB specifies the location of the data to be written.

Although a transfer instruction block is data, not machine-executable code, it is

analogous to code in that the data is interpreted and executed by the SCSI Manager in

a manner similar to executing a program. The SCSIInstr data type defines a transfer

instruction block.

TYPE SCSIInstr = {transfer instruction block}

RECORD

scOpcode: Integer; {operation code}

scParam1: LongInt; {first parameter}

scParam2: LongInt; {second parameter}

END;

The first field of the transfer instruction block contains a transfer operation code.

This code is not a command in the SCSI protocol, but rather an instruction to the SCSI

Manager that directs the transfer of data across the SCSI bus after a SCSI command

has been sent. The instruction set consists of eight operation codes that allow you to

transfer data, increment a counter, and form iterative loops. See “SCSI Manager TIB

Instructions,” beginning on page 3-27, for details of the TIB instruction set.

A sequence of TIB instructions is also known as a TIB pseudoprogram. Here is an

example of a TIB pseudoprogram:

scInc $67B50 512

scLoop -10 6

scStop

This sample pseudoprogram consists of three TIB instructions that transfer six 512-byte

blocks of data to or from address $67B50 (depending on whether these instructions are

passed to a SCSIRead or a SCSIWrite function).

The first TIB instruction transfers a 512-byte block of data from a starting address

and then increments that address by the amount of data transferred. The second TIB

instruction branches back to the first (by branching back 10 bytes, which is the size of a

TIB instruction), and forms a loop that is executed six times (as specified by the second

parameter). The third and final TIB instruction terminates the execution sequence and

returns to the calling routine.

See “Using CDB and TIB Structures,” beginning on page 3-17, for an example of how to

use TIB instructions.

C H A P T E R 3

SCSI Manager

3-12 About the SCSI Manager

The Structure of Block Devices
This section describes the low-level organization of data on random-access storage

devices such as SCSI hard disk drives. Although this information is presented in the

context of the SCSI Manager, it applies to any type of block device that can be used by

the Macintosh Operating System, regardless of the hardware interface.

There are a number of ways to address data on block-structured storage devices such as

disk drives. At the lowest level, a disk drive addresses a block by its cylinder, head, and

sector number. The SCSI specification, however, conceals this level of detail. Instead,

each block on a SCSI disk is assigned a number, beginning with 0 and extending to the

last block on the disk. The SCSI specification describes these addresses as “logical” block

numbers, but the SCSI Manager calls them physical block numbers because they

correspond to a fixed location on the disk.

At an even higher level of abstraction, a device driver can define the mapping of

physical addresses on a device to the logical addresses of a file system. This allows

file systems to be independent of the characteristics of a particular device.

In the terminology of the SCSI Manager, a physical block refers to a specific, fixed

location defined by the manufacturer of a SCSI device. A logical block refers to an

abstract location defined by software. A partition is a series of contiguous logical blocks

that have been allocated to a particular operating system, file system, or device driver.

A disk can be divided into any number of partitions. Locations within these partitions

are specified using logical block numbers, which are integer values ranging from 0 to the

number of blocks in the partition.

The low-level organization of block devices is defined by two data structures: the driver

descriptor record and the partition map. These structures are introduced in the following

sections. See “Data Structures,” beginning on page 3-23, for a complete description of the

fields within these structures.

The Driver Descriptor Record

The driver descriptor record is a data structure that identifies the device drivers installed

on a disk. To support multiple operating systems or other features, a disk can have more

than one device driver installed, each in its own partition. The Start Manager reads the

driver descriptor record during system startup and uses the information to locate and

load the appropriate device driver.

The driver descriptor record is always located at physical block 0, the first block on the

disk. The driver descriptor record is defined by the Block0 data type.

TYPE Block0 =

PACKED RECORD

sbSig: Integer; {device signature}

sbBlkSize: Integer; {block size of the device}

sbBlkCount: LongInt; {number of blocks on the device}

sbDevType: Integer; {reserved}

sbDevId: Integer; {reserved}

C H A P T E R 3

SCSI Manager

About the SCSI Manager 3-13

sbData: LongInt; {reserved}

sbDrvrCount: Integer; {number of driver descriptor entries}

ddBlock: LongInt; {first driver’s starting block}

ddSize: Integer; {size of the driver, in 512-byte blocks}

ddType: Integer; {operating system type (MacOS = 1)}

ddPad: ARRAY [0..242] OF Integer; {additional drivers, if any}

END;

The driver descriptor record consists of seven fixed fields, followed by a variable amount

of driver-specific information. The first field in the driver descriptor record is a signature,

which must be set to the value of the sbSIGWord constant to indicate that the record

is valid (meaning that the disk has been formatted). The second field, sbBlkSize,

specifies the size of the blocks on the device, in bytes. The sbBlkCount field specifies

the total number of blocks on the device. The next three fields are reserved. The

sbDrvrCount field specifies the number of drivers that are installed on the disk.

The drivers can be located anywhere on the device and can be as large as necessary.

The ddBlock, ddSize, and ddType fields contain information about the first device

driver on the disk. Information about any additional drivers is stored in the ddPad field,

as an array of consecutive ddBlock, ddSize, and ddType fields.

To select a particular device driver for loading at system startup, you use the Start

Manager SetOSDefault function and specify a value corresponding to the ddType

field in the driver descriptor record.

The Partition Map

The partition map is a data structure that describes the partitions present on a block

device. The Macintosh Operating System and all other operating systems from Apple

use the same partitioning method. This allows a single device to support multiple

operating systems.

The partition map always begins at physical block 1, the second block on the disk. With

the exception of the driver descriptor record in block 0, every block on a disk must

belong to a partition.

Each partition on a disk is described by an entry in the partition map. The partition map

is itself a partition, and contains an entry describing itself. The partition map entry for

the partition map is not necessarily the first entry in the map. Partition map entries can

be in any order, and need not correspond to the physical organization of partitions on

the disk.

The number of entries in the partition map is not restricted. However, because the

partition map must begin at block 1 and must be contiguous, it cannot easily be

expanded once other partitions are created. One way around this limitation is to

create a large number of empty partition map entries when the disk is initialized.

To locate a partition, the Start Manager examines the pmMapBlkCnt field of the first

partition map entry. This field contains the size of the partition map, in blocks. Then,

using the block size value from the sbBlkSize field of the driver descriptor record, the

C H A P T E R 3

SCSI Manager

3-14 About the SCSI Manager

Start Manager reads each block in the partition map, looking for a valid signature in the

pmSIG field of each partition map entry record.

The partition map entry record is defined by the Partition data type.

TYPE Partition =

RECORD

pmSig: Integer; {partition signature}

pmSigPad: Integer; {reserved}

pmMapBlkCnt: LongInt; {number of blocks in partition map}

pmPyPartStart: LongInt; {first physical block of partition}

pmPartBlkCnt: LongInt; {number of blocks in partition}

pmPartName: PACKED ARRAY [0..31] OF Char; {partition name}

pmParType: PACKED ARRAY [0..31] OF Char; {partition type}

pmLgDataStart: LongInt; {first logical block of data area}

pmDataCnt: LongInt; {number of blocks in data area}

pmPartStatus: LongInt; {partition status information}

pmLgBootStart: LongInt; {first logical block of boot code}

pmBootSize: LongInt; {size of boot code, in bytes}

pmBootAddr: LongInt; {boot code load address}

pmBootAddr2: LongInt; {reserved}

pmBootEntry: LongInt; {boot code entry point}

pmBootEntry2: LongInt; {reserved}

pmBootCksum: LongInt; {boot code checksum}

pmProcessor: PACKED ARRAY [0..15] OF Char; {processor type}

pmPad: ARRAY [0..187] OF Integer; {reserved}

END;

The first three fields in a partition map entry record are redundant, in that all entries in

the partition map must contain the same values for these fields. The pmSig field contains

the partition map signature, which is defined by the pMapSIG constant. The pmSigPad

field is currently unused and must be set to 0. The pmMapBlkCnt field contains the size

in blocks of the entire partition map. Because this value is duplicated in every entry, you

can determine the size of the partition map from any entry in the map.

The remaining fields of the partition map entry record contain information about a

particular disk partition. The pmPyPartStart field contains the physical block number

of the first block of the partition. The pmPartBlkCnt field contains the number of

blocks in the partition. The pmPartName field can contain an optional 32-character

partition name. If this field contains a string beginning with Maci (for Macintosh),

the Start Manager will perform checksum verification of the device driver’s boot code.

Otherwise, this field is ignored.

The pmParType field contains a string that identifies the partition type. Strings

beginning with Apple_ are reserved for use by Apple Computer, Inc. The Start Manager

uses this information to identify the type of device driver or file system in a partition.

C H A P T E R 3

SCSI Manager

Using the SCSI Manager 3-15

A bootable system disk must contain both an Apple_Driver and an Apple_HFS

partition. See page 3-26 for a list of the standard partition types defined by Apple.

For file systems that do not begin at logical block 0 of the partition, the pmLgDataStart

field contains the logical block number of the first block of file system data. The

pmDataCnt field specifies the size of the data area, in blocks. The pmPartStatus field

is currently used only by the A/UX operating system.

For device driver partitions, the pmLgBootStart field specifies the logical block

number of the first block containing boot code. The pmBootSize field contains the size

in bytes of the boot code. The pmBootAddr field specifies the memory address where

the boot code is to be loaded, while the pmBootEntry field specifies the address to

which the Start Manager will transfer control after loading the boot code into memory.

The pmBootCksum field holds the checksum of the boot code, which the Start Manager

can compare against the calculated checksum after loading the code. The pmProcessor

field is a string that identifies the type of processor that will execute the boot code.

For more information about the startup process and SCSI devices, see the chapter

“Start Manager” in Inside Macintosh: Operating System Utilities.

Using the SCSI Manager

Your device driver or application can use the SCSI Manager routines to transfer data

to and from SCSI peripheral devices. This section begins with a simple example that

illustrates the basic steps necessary to read data from a SCSI device. Next, the details of

using transfer instruction blocks and command descriptor blocks are presented,

followed by a complete program that uses these concepts.

Reading Data From a SCSI Device
This section shows you how to use the SCSI Manager routines to read data from a SCSI

peripheral device. Your application or device driver follows these steps for reading data

from a SCSI device:

1. Create a command descriptor block (CDB) and a transfer instruction block (TIB).

2. Call the SCSIGet function to arbitrate for the SCSI bus.

3. Use the SCSISelect function to select the SCSI device to read from.

4. Use the SCSICmd function to send a command descriptor block (CDB) containing a
SCSI read command to the device.

5. Call the SCSIRead function to transfer the data.

6. Call the SCSIComplete function to get the status and message bytes that mark the
end of a transaction over the SCSI bus.

Listing 3-1 shows code illustrating these steps. The example is simplified, in that it

excludes the details of setting up the CDB and TIB data structures prior to initiating the

read operation. That information is presented in the next section.

C H A P T E R 3

SCSI Manager

3-16 Using the SCSI Manager

Listing 3-1 Reading data from a SCSI device

FUNCTION MyReadSCSI : OSErr;

CONST

kCompletionTimeout = 300; {value passed to SCSIComplete }

{ 300 ticks = 5 seconds}

VAR

CDB: PACKED ARRAY [0..5] OF Byte; {command descriptor block}

CDBLen: Integer; {length of CDB}

TIB: PACKED ARRAY [0..1] OF SCSIInstr;{transfer instruction block}

scsiID: Integer; {SCSI ID of the target}

compStat: Integer; {status from SCSIComplete}

compMsg: Integer; {message from SCSIComplete}

compErr: OSErr; {result from SCSIComplete}

myErr: OSErr; {cumulative error result}

BEGIN

{Note: This example assumes the CDB, CDBLen, TIB, and scsiID variables }

{ already contain appropriate values.}

myErr := SCSIGet; {arbitrate for the bus}

IF myErr = noErr THEN

BEGIN

myErr := SCSISelect(scsiID); {select the target}

IF myErr = noErr THEN

BEGIN

myErr := SCSICmd(@CDB, CDBLen); {send read command}

IF myErr = noErr THEN

myErr := SCSIRead(@TIB); {polled read}

{complete the transaction and release the bus}

compErr := SCSIComplete(compStat, compMsg, kCompletionTimeout);

{return the most informative error result}

IF myErr = noErr THEN {if no prior errors, then }

myErr := compErr; { return SCSIComplete result}

END;

END;

MyReadSCSI := myErr; {return result code}

END;

C H A P T E R 3

SCSI Manager

Using the SCSI Manager 3-17

The MyReadSCSI function follows the steps presented earlier in this section, starting

with calling the SCSIGet and SCSISelect functions to select the target device, sending

a read command using the SCSICmd function, and reading the data with the SCSIRead

function. Finally, the SCSIComplete function is called to obtain the status and message

bytes from the device and restore the bus to the bus free phase.

The MyReadSCSI function assumes these variables have already been set up properly:

■ a SCSI command descriptor block (the CDB variable)

■ an integer specifying the length of the command descriptor block (the CDBLen
variable)

■ a transfer instruction block (the TIB variable)

■ an integer specifying the SCSI ID of the target device (the scsiID variable)

Within its narrowed scope, the MyReadSCSI function is correct and complete. You can

easily modify it to handle other operations, such as writing data, or conducting blind

transfers.

The MyReadSCSI function shows one way of handling the error results returned by

a series of SCSI Manager functions. The result codes returned by the SCSI Manager

functions are put into the myErr local variable as each SCSI Manager function is called.

Your code should likewise check the result codes and proceed only if there is no error.

Calling the SCSIComplete function is the last step, and requires special handling. Your

code should call the SCSIComplete function even if an earlier SCSI Manager routine

has returned an error, because the SCSIComplete function takes whatever steps are

necessary to restore the SCSI bus to the bus free phase. For more information, see “Using

the SCSIComplete Function” on page 3-21.

Using CDB and TIB Structures
The command descriptor block (CDB) is a data structure defined by the SCSI

specification for communicating commands to SCSI devices. The SCSI Manager does

not interpret the commands in a CDB, it simply transfers them to the selected device.

You send a CDB to a SCSI device using the SCSICmd function. The size of the CDB

structure can be 6, 10, or 12 bytes, depending on the number of parameters required by

the command. The first byte specifies the command, and the remaining bytes contain

parameters.

The SCSI specification includes a set of standard commands that all SCSI devices

must implement, and a wide range of commands for specific device types. In addition,

manufacturers can define proprietary command codes for their devices. You should refer

to the manufacturer’s documentation for information about the commands supported by

a particular device.

You use the transfer instruction block (TIB) data structure to pass instructions to the

SCSI Manager SCSIRead, SCSIRBlind, SCSIWrite, and SCSIWBlind functions. The

TIB structure is defined by the SCSIInstr data type. The scOpcode field contains a

transfer operation code, and the scParam1 and scParam2 fields contain parameters to

the command. The instruction set consists of eight operation codes that allow you to

C H A P T E R 3

SCSI Manager

3-18 Using the SCSI Manager

transfer data, increment a counter, and form iterative loops. See “SCSI Manager TIB

Instructions,” beginning on page 3-27, for details of the TIB instruction set.

Listing 3-2 shows an example of how you can use CDB and TIB instructions to send a

command and read information from a SCSI peripheral device. The MySCSIInquiry

program uses the SCSI INQUIRY command to obtain a 256-byte record of information

from a target device. This information includes the target’s device type, vendor ID,

product ID, revision data, and other vendor-specific information. The INQUIRY

command is one of the standard commands that all SCSI devices must support.

Listing 3-2 Using TIB and CDB structures

PROGRAM MySCSIInquiry;

USES SCSI;

CONST

kInquiryCmd = $12; {SCSI command code for the INQUIRY command}

kVendorIDSize = 8; {size of the Vendor ID string}

kProductIDSize = 16; {size of the Product ID string}

kRevisionSize = 4; {size of the Revision string}

kCompletionTimeout = 300; {timeout value passed to SCSIComplete}

kMySCSIID = 0; {SCSI ID of the target device}

{This structure duplicates the format of the SCSI INQUIRY response record, }

{ as described in the SCSI-2 specification. The first 5 bytes are required }

{ for SCSI-1 devices. The first 36 bytes are required for SCSI-2 devices. }

{ The AdditionalLength field contains the length of the vendor-specific }

{ information, if any, beyond the 5 bytes required for all devices.}

TYPE MyInquiryRecord =

PACKED RECORD

DeviceType: Byte; {SCSI device type code (disk, tape, etc.)}

DeviceQualifier: Byte; {7-bit vendor-specific code}

Version: Byte; {version of ANSI standard (SCSI-1 or SCSI-2)}

ResponseFormat: Byte;

AdditionalLength: Byte; {length of vendor-specific information}

VendorUse1: Byte;

Reserved1: Integer;

VendorID: PACKED ARRAY [1..kVendorIDSize] OF Char; {manufacturer}

ProductID: PACKED ARRAY [1..kProductIDSize] OF Char; {product code}

Revision: PACKED ARRAY [1..kRevisionSize] OF Char; {firmware rev}

VendorUse2: PACKED ARRAY [1..20] OF Byte;

Reserved2: PACKED ARRAY [1..42] OF Byte;

VendorUse3: PACKED ARRAY [1..158] OF Byte;

END; {a total of 256 bytes of data may be returned}

C H A P T E R 3

SCSI Manager

Using the SCSI Manager 3-19

VAR

CDB: PACKED ARRAY [0..5] OF Byte; {command descriptor block}

TIB: PACKED ARRAY [0..1] OF SCSIInstr; {transfer instruction block}

Response: MyInquiryRecord; {holds target’s response}

compStat: Integer; {status information from SCSIComplete}

compMsg: Integer; {message information from SCSIComplete}

compErr: OSErr; {result from SCSIComplete}

myErr: OSErr; {error result}

i: Integer; {loop counter}

BEGIN

{Set up the command buffer with the SCSI INQUIRY command.}

CDB[0] := kInquiryCmd; {SCSI command code for the INQUIRY command}

CDB[1] := 0; {unused parameter}

CDB[2] := 0; {unused parameter}

CDB[3] := 0; {unused parameter}

CDB[4] := 5; {maximum number of bytes target should return}

CDB[5] := 0; {unused parameter}

{Set up the two TIB structures; one to read, the other as terminator.}

TIB[0].scOpcode := scNoInc; {specify the scNoInc instruction}

TIB[0].scParam1 := LongInt(@Response); {pointer to buffer}

TIB[0].scParam2 := 5; {number of bytes to move}

TIB[1].scOpcode := scStop; {specify the scStop instruction}

TIB[1].scParam1 := LongInt(NIL); {unused parameter}

TIB[1].scParam2 := LongInt(NIL); {unused parameter}

WRITELN('SCSI inquiry example. Testing SCSI ID:', kMySCSIID);

{Send the INQUIRY command twice. The first time to obtain the }

{ AdditionalLength value in the fifth byte of the INQUIRY response }

{ record and the second time to read that additional amount. Notice }

{ that SCSIComplete is always called if SCSISelect was successful.}

FOR i := 1 to 2 DO

BEGIN

myErr := SCSIGet; {arbitrate for the bus}

IF myErr = noErr THEN

myErr := SCSISelect(kMySCSIID); {select the target}

IF myErr <> noErr THEN

BEGIN

WRITELN('Error result from SCSIGet or SCSISelect:', myErr);

EXIT(MySCSIInquiry);

END;

myErr := SCSICmd(@CDB, 6); {send INQUIRY command to the target}

C H A P T E R 3

SCSI Manager

3-20 Using the SCSI Manager

IF myErr = noErr THEN

BEGIN

myErr := SCSIRead(@TIB); {read the INQUIRY response record}

IF myErr = noErr THEN {if there was no error, and }

IF i = 1 THEN { if this is the first time through }

BEGIN { the loop, get the AdditionalLength}

CDB[4] := CDB[4] + Response.AdditionalLength;

TIB[0].scParam2 := TIB[0].scParam2 +

 Response.AdditionalLength;

END;

END;

{Call SCSIComplete to clean up. Results are ignored in this example.}

compErr := SCSIComplete(compStat, compMsg, kCompletionTimeout);

IF myErr <> noErr THEN

BEGIN

WRITELN('Error result from SCSICmd or SCSIRead:', myErr);

EXIT(MySCSIInquiry);

END;

END; {FOR loop}

{Display the information.}

IF Response.AdditionalLength > 0 THEN

BEGIN

WITH Response DO

BEGIN

WRITE('VendorID:');

FOR i := 1 TO kVendorIDSize DO

WRITE(VendorID[i]);

WRITELN;

WRITE('ProductID:');

FOR i := 1 TO kProductIDSize DO

WRITE(ProductID[i]);

WRITELN;

WRITE('Revision:');

FOR i := 1 TO kRevisionSize DO

WRITE(Revision[i]);

WRITELN;

END;

END;

END.

C H A P T E R 3

SCSI Manager

Using the SCSI Manager 3-21

The MySCSIInquiry program first defines various constants, including the

kInquiryCmd constant, which contains the operation code for the SCSI INQUIRY

command. Next the MyInquiryRecord data type is declared, a 256-byte structure that

holds the information returned by the target. The fields of this record are based on the

SCSI-2 specification. The SCSI-1 specification requires that devices return at least the first

5 bytes of information (DeviceType through AdditionalLength), however, many

SCSI-1 devices and all SCSI-2 devices return at least the first 36 bytes (DeviceType

through Revision).

In the 6-byte CDB used by the SCSI INQUIRY command, the first byte contains the

operation code and the fifth byte specifies the maximum number of bytes the target is

allowed to send in response to the inquiry. Restricting the target’s response to a specified

number of bytes prevents it from overflowing the buffer the initiator has set aside to

accept the data.

This program uses two transfer instruction blocks, both of which are relatively simple.

The first TIB is an scNoInc instruction, whose parameters specify a data transfer into

the Response record. The second TIB is an scStop instruction, which terminates the

SCSI Manager processing that occurs inside the SCSIRead function.

The body of the MySCSIInquiry program consists of a loop that performs the

arbitrate/select/command/transfer/complete sequence described in “Reading Data

From a SCSI Device” on page 3-15. The loop executes this sequence of SCSI Manager

functions twice. The first time sends the SCSI INQUIRY command to the target and

requests only the standard 5 bytes of information supplied by all SCSI devices. The value

of the fifth byte (returned in the AdditionalLength field of the Response record)

indicates the amount of additional information the device is capable of returning. Before

going through the loop a second time, both the CDB and the TIB are modified to reflect

the additional size of the inquiry information.

The program checks for errors at each stage in the SCSI Manager calling sequence. If

either the SCSIGet or SCSISelect function returns an error, the program exits. If the

SCSICmd function returns an error, SCSIRead is not called. To complete the transaction

and release the bus, the SCSIComplete function is always called if SCSISelect was

successful.

Using the SCSIComplete Function
The SCSIComplete function completes a SCSI transaction and restores the bus to the

bus free phase. You must call this function at the end of every transaction that proceeds

past the selection phase, even if the transaction does not complete successfully.

The SCSIComplete function waits a specified number of ticks for the current

transaction to complete, and then returns one byte of status information and one byte

of message information from the target device. The function returns one of the following

result codes:

■ noErr. The SCSIComplete function was able to obtain both the status and message
bytes successfully. This result code indicates that the information is valid.

C H A P T E R 3

SCSI Manager

3-22 Using the SCSI Manager

■ scComplPhaseErr. Upon entry, the SCSIComplete function detected that the target
was ready to transfer information (that is, the /REQ signal was asserted) but the SCSI
bus was not in the status phase. The SCSI Manager performed corrective action to bring
the bus into the status phase. For example, accepting bytes from the target without
passing them to your program (“bit-bucketing”), or sending an arbitrary number of
bytes to the target. Once in status phase, the SCSIComplete function was able to
transfer the status and message bytes successfully, and this information is valid.

■ scPhaseErr. The SCSIComplete function could not force the SCSI bus into the
status phase. The status and message bytes should be considered invalid. You may
need to reset the bus to restore proper operation.

■ scCommErr. This result code covers any other error conditions encountered by the
SCSIComplete function, such as the timeout that occurs if the transaction does not
complete within the specified number of ticks.

Choosing Polled or Blind Transfers
The SCSI Manager supports two data transfer methods: polled and blind. During a

polled transfer, the SCSI Manager senses the state of the Macintosh SCSI controller

hardware to determine when the controller is ready to transfer another byte. In a blind
transfer, the SCSI Manager assumes that the SCSI controller (and the target device) can

keep up with a specified transfer rate, and does not explicitly sense whether the

hardware is ready.

Note

These transfer modes are specific to the Macintosh SCSI interface
hardware implementation and are not part of the SCSI protocol. ◆

When the SCSI Manager retrieves data from the SCSI controller, it can explicitly verify

that a byte was received by the controller and is ready for transfer. The SCSI Manager

does this by polling a status register in the controller. Alternatively, the SCSI Manager

can assume that a byte is available and can attempt to read it without checking first.

As long as a SCSI device can supply data to the SCSI controller faster than the SCSI

Manager can retrieve it, blind transfers work reliably. If the SCSI device cannot keep up,

timeout errors and other problems can occur.

For example, in the Macintosh Plus (the first model to include a SCSI interface), if

the SCSI Manager reads a byte from the SCSI controller chip before the chip receives

a byte from the target, the read operation completes but the data is invalid. The

SCSIComplete function does not always return an error result in this case.

Newer Macintosh models include hardware support for handshaking, allowing blind

transfers to be both fast and reliable. This handshaking allows the SCSI controller to

defer the CPU if no data is available to transfer. If the data doesn’t arrive within a

specified period, the SCSI Manager returns the scBusTOErr result. The timeout period

varies for each Macintosh model. This type of timeout error does not occur when using

polled transfers.

Polled transfers work reliably with all SCSI peripheral devices, and are a good choice for

slow or unpredictable devices such as printers and scanners. You should also use polled

C H A P T E R 3

SCSI Manager

SCSI Manager Reference 3-23

transfers if you are unfamiliar with the characteristics of a particular device. You use the

SCSIRead and SCSIWrite functions to initiate polled transfers.

For disk drives and other high-speed devices, blind transfers can significantly increase

data throughput. As long as the device does not incur any delays during a transfer, or

the delays occur at predictable times, blind transfers are a good choice. You use the

SCSIRBlind and SCSIWBlind functions to initiate blind transfers.

Because the first byte transferred by each TIB instruction is always polled, even in blind

mode, you can work around predictable delays using an appropriate sequence of TIB

instructions. For example, if a peripheral device always pauses at a specific byte within a

transfer, you can divide the transfer into blocks so that the delayed byte is located at the

start of a TIB instruction. The SCSI Manager polls the controller before the first byte, then

reads the remaining bytes using a blind transfer. For disk drives, predictable delays

generally occur at sector boundaries, so you can compensate by dividing your transfers

into sector-sized blocks.

SCSI Manager Reference

This section describes the data structures and routines that constitute the SCSI Manager,

and also includes the data structures that describe the low-level structure of block

devices.

The section “SCSI Manager TIB Instructions,” beginning on page 3-27, contains

descriptions of transfer instruction block (TIB) instructions. These structures are used to

control data transfers conducted by the SCSI Manager. Although TIB instructions are

data structures, not machine-executable code, they are analogous to code in that TIB

instructions are interpreted and executed by the SCSI Manager. Because of this dual

nature, TIB instructions are presented in their own section.

Data Structures

This section describes the driver descriptor record and the partition map entry record.

These data structures are not used by the SCSI Manager, but represent the way data is

structured on random access storage devices such as hard disk drives. The Start Manager

uses this information to locate partitions and device drivers on SCSI disks.

Driver Descriptor Record

The driver descriptor record contains information about the device drivers resident on a

SCSI peripheral device. The driver descriptor record is defined by the Block0 data type.

TYPE Block0 =

PACKED RECORD

sbSig: Integer; {device signature}

C H A P T E R 3

SCSI Manager

3-24 SCSI Manager Reference

sbBlkSize: Integer; {block size of the device}

sbBlkCount: LongInt; {number of blocks on the device}

sbDevType: Integer; {reserved}

sbDevId: Integer; {reserved}

sbData: LongInt; {reserved}

sbDrvrCount: Integer; {number of driver descriptor entries}

ddBlock: LongInt; {first driver’s starting block}

ddSize: Integer; {size of the driver, in 512-byte blocks}

ddType: Integer; {operating system type (MacOS = 1)}

ddPad: ARRAY [0..242] OF Integer; {additional drivers, if any}

END;

Field descriptions

sbSig The device signature. This field should contain the value of the
sbSIGWord constant ($4552) to indicate that the driver descriptor
record is valid (meaning that the disk has been formatted).

sbBlkSize The size of the blocks on the device, in bytes.

sbBlkCount The number of blocks on the device.

sbDevType Reserved.

sbDevId Reserved.

sbData Reserved.

sbDrvrCount The number of drivers installed on the disk. More than one driver
may be included when multiple operating systems or processors are
supported. The drivers can be located anywhere on the device and
can be as large as necessary.

ddBlock The physical block number of the first block of the first device
driver on the disk.

ddSize The size of the device driver, in 512-byte blocks.

ddType The operating system or processor supported by the driver. A value
of 1 specifies the Macintosh Operating System. The values 0
through 15 are reserved for use by Apple Computer, Inc.

ddPad Additional ddBlock, ddSize, and ddType entries for other device
drivers on the disk.

If multiple device drivers exist on the device, you can use the Start Manager

SetOSDefault function to control which operating system is loaded at startup by

specifying a value that corresponds to the ddType field of the appropriate device driver.

For more information on the startup process, see the chapter “Start Manager” in

Inside Macintosh: Operating System Utilities.

See “The Structure of Block Devices,” beginning on page 3-12, for more information

about this data structure.

C H A P T E R 3

SCSI Manager

SCSI Manager Reference 3-25

Partition Map Entry Record

The partition map entry record contains information about how data is stored on a block

device, usually a SCSI disk drive. The partition map entry record is defined by the

Partition data type.

TYPE Partition =

RECORD

pmSig: Integer; {partition signature}

pmSigPad: Integer; {reserved}

pmMapBlkCnt: LongInt; {number of blocks in partition map}

pmPyPartStart: LongInt; {first physical block of partition}

pmPartBlkCnt: LongInt; {number of blocks in partition}

pmPartName: PACKED ARRAY [0..31] OF Char; {partition name}

pmParType: PACKED ARRAY [0..31] OF Char; {partition type}

pmLgDataStart: LongInt; {first logical block of data area}

pmDataCnt: LongInt; {number of blocks in data area}

pmPartStatus: LongInt; {partition status information}

pmLgBootStart: LongInt; {first logical block of boot code}

pmBootSize: LongInt; {size of boot code, in bytes}

pmBootAddr: LongInt; {boot code load address}

pmBootAddr2: LongInt; {reserved}

pmBootEntry: LongInt; {boot code entry point}

pmBootEntry2: LongInt; {reserved}

pmBootCksum: LongInt; {boot code checksum}

pmProcessor: PACKED ARRAY [0..15] OF Char; {processor type}

pmPad: ARRAY [0..187] OF Integer; {reserved}

END;

Field descriptions

pmSig The partition signature. This field should contain the value of the
pMapSIG constant ($504D). An earlier but still supported version
uses the value $5453.

pmSigPad Reserved.

pmMapBlkCnt The size of the partition map, in blocks.

pmPyPartStart The physical block number of the first block of the partition.

pmPartBlkCnt The size of the partition, in blocks.

pmPartName An optional partition name, up to 32 bytes in length. If the string
is less than 32 bytes, it must be terminated with the ASCII NUL
character (a byte with a value of 0). If the partition name begins
with Maci (for Macintosh), the Start Manager will perform
checksum verification of the device driver’s boot code. Otherwise,
this field is ignored.

C H A P T E R 3

SCSI Manager

3-26 SCSI Manager Reference

pmParType A string that identifies the partition type. Names that begin with
Apple_ are reserved for use by Apple Computer, Inc. Names
shorter than 32 characters must be terminated with the NUL
character. The following standard partition types are defined for
the pmParType field:

pmLgDataStart The logical block number of the first block containing file system
data. This is for use by operating systems, such as A/UX, in which
the file system does not begin at logical block 0 of the partition.

pmDataCnt The size of the file system data area, in blocks. This is used in
conjunction with the pmLgDataStart field, for those operating
systems in which the file system does not begin at logical block 0
of the partition.

pmPartStatus Two words of status information about the partition. The low-order
byte of the low-order word contains status information used only
by the A/UX operating system:

The remaining bytes of the pmPartStatus field are reserved.

pmLgBootStart The logical block number of the first block containing boot code.

pmBootSize The size of the boot code, in bytes.

String Meaning

Apple_partition_map Partition contains a partition map

Apple_Driver Partition contains a device driver

Apple_Driver43 Partition contains a SCSI Manager 4.3
device driver

Apple_MFS Partition uses the original Macintosh
File System (64K ROM version)

Apple_HFS Partition uses the Hierarchical File
System implemented in 128K and
later ROM versions

Apple_Unix_SVR2 Partition uses the Unix file system

Apple_PRODOS Partition uses the ProDOS file system

Apple_Free Partition is unused

Apple_Scratch Partition is empty

Bit Meaning

0 Set if a valid partition map entry

1 Set if partition is already allocated; clear if available

2 Set if partition is in use; may be cleared after a system reset

3 Set if partition contains valid boot information

4 Set if partition allows reading

5 Set if partition allows writing

6 Set if boot code is position-independent

7 Unused

C H A P T E R 3

SCSI Manager

SCSI Manager Reference 3-27

pmBootAddr The memory address where the boot code is to be loaded.

pmBootAddr2 Reserved.

pmBootEntry The memory address to which the Start Manager will transfer
control after loading the boot code into memory.

pmBootEntry2 Reserved.

pmBootCksum The boot code checksum. The Start Manager can compare this value
against the calculated checksum after loading the code.

pmProcessor An optional string that identifies the type of processor that will
execute the boot code. Strings shorter than 16 bytes must be
terminated with the ASCII NUL character. The following processor
types are defined: 68000, 68020, 68030, and 68040.

pmPad Reserved.

See “The Structure of Block Devices,” beginning on page 3-12, for more information

about this data structure.

SCSI Manager TIB Instructions

The transfer instruction block (TIB) is a data structure that you use to control the

data transfer process. TIB structures are passed as parameters to the SCSIRead,

SCSIRBlind, SCSIWrite, and SCSIWBlind functions. The transfer instruction

block is defined by the SCSIInstr data type.

TYPE SCSIInstr =

RECORD

scOpcode: Integer; {operation code}

scParam1: LongInt; {first parameter}

scParam2: LongInt; {second parameter}

END;

The scOpcode field contains a value that specifies the operation to be performed. There

are eight possible operations, known as TIB instructions, which carry out tasks such as

moving data, looping, and address arithmetic. These instructions are described in this

section. The operation codes for the TIB instructions are:

CONST

scInc = 1; {transfer data, increment buffer pointer}

scNoInc = 2; {transfer data, don’t increment pointer}

scAdd = 3; {add long to address}

scMove = 4; {move long to address}

scLoop = 5; {decrement counter and loop if > 0}

scNop = 6; {no operation}

scStop = 7; {stop TIB execution}

scComp = 8; {compare SCSI data with memory}

C H A P T E R 3

SCSI Manager

3-28 SCSI Manager Reference

To transfer data, you create a variable-length array of TIB instructions and pass a

pointer to this array to any of the SCSI Manager data transfer functions (SCSIRead,

SCSIRBlind, SCSIWrite, SCSIWBlind). These SCSI Manager functions interpret the

TIB instructions and carry out the requested operations.

For an example of how to use TIB instructions, see “Using CDB and TIB Structures,”

beginning on page 3-17.

IMPORTANT

Before you call any of the SCSI Manager data transfer functions
(SCSIRead, SCSIRBlind, SCSIWrite, or SCSIWBlind), you must
first send a SCSI read or write command to the target using the
SCSICmd function. ▲

scInc

You can use the scInc TIB instruction to transfer data and increment the buffer pointer.

Parameter block

DESCRIPTION

The scInc instruction moves data to or from the buffer pointed to by scParam1. You

specify the number of bytes to be transferred in scParam2. The buffer pointer in

scParam1 is incremented by the number of bytes transferred (for use by a subsequent

iteration of this instruction).

scNoInc

You can use the scNoInc TIB instruction to transfer data without incrementing the

buffer pointer.

Parameter block

DESCRIPTION

The scNoInc instruction moves data to or from the buffer pointed to by scParam1. You

specify the number of bytes to be transferred in scParam2. The buffer pointer in

scParam1 is unmodified by this instruction.

→ scParam1 Ptr A pointer to a data buffer.
→ scParam2 LongInt The number of bytes to be transferred.

→ scParam1 Ptr A pointer to a data buffer.
→ scParam2 LongInt The number of bytes to be transferred.

C H A P T E R 3

SCSI Manager

SCSI Manager Reference 3-29

scAdd

You can use the scAdd TIB instruction to add a value to an address.

Parameter block

DESCRIPTION

The scAdd instruction adds the long value in scParam2 to the address in scParam1.

scMove

You can use the scMove TIB instruction to copy a long value from one memory location

to another.

Parameter block

DESCRIPTION

The scMove TIB instruction copies the 32-bit value pointed to by the scParam1

parameter to the memory location specified by the scParam2 parameter.

scLoop

You can use the scLoop TIB instruction to repeat a sequence of TIB instructions a

specified number of times.

Parameter block

DESCRIPTION

The scLoop TIB instruction decrements the value in scParam2 by 1. If the result is

greater than 0, the flow of control branches to the TIB instruction whose relative offset is

the current instruction plus the value in scParam1. If the result is 0, control passes to the

instruction following the scLoop instruction. The offset in scParam1 is a signed value,

and must be a multiple of 10 bytes (the size of the SCSIInstr data type). For example,

→ scParam1 Ptr An address.
→ scParam2 LongInt The number to add to the address.

→ scParam1 Ptr The source address.
→ scParam2 Ptr The destination address.

→ scParam1 LongInt The relative offset of the TIB instruction to branch to.
→ scParam2 LongInt The number of times to loop.

C H A P T E R 3

SCSI Manager

3-30 SCSI Manager Reference

to branch to the instruction immediately preceding the current one, you would specify

a relative offset of –10. To jump ahead three instructions, you would specify a relative

offset of 30.

scNop

The scNop TIB instruction does nothing.

DESCRIPTION

The scNop TIB instruction is analogous to an assembly-language NOP instruction. The

two parameters are ignored.

scStop

You use the scStop TIB instruction to end a sequence of TIB instructions.

DESCRIPTION

The scStop TIB instruction stops execution of a sequence of TIB instructions and

returns control to the calling SCSI Manager function. At least one scStop instruction

is required in any TIB instruction sequence, usually at the end. The two parameters are

ignored.

scComp

You can use the scComp TIB instruction to compare data on a SCSI device with data in

memory.

Parameter block

DESCRIPTION

The scComp TIB instruction is used in conjunction with the SCSIRead function to

compare data in memory with incoming data from a SCSI device. The SCSI Manager

compares the result of the read command with the contents of the data buffer pointed

to by scParam1. The scParam2 parameter specifies the number of bytes to read and

compare. If all bytes do not compare, the SCSIRead function returns the result code

scCompareErr.

→ scParam1 Ptr A pointer to a data buffer.
→ scParam2 LongInt The number of bytes to be compared.

C H A P T E R 3

SCSI Manager

SCSI Manager Reference 3-31

SCSI Manager 4.3 Note

You should avoid using the scComp TIB instruction because it is not
supported by SCSI Manager 4.3. ◆

SCSI Manager Routines

This section describes the SCSI Manager routines you use to

■ reset the SCSI bus

■ arbitrate for the SCSI bus

■ select a SCSI device

■ send SCSI commands and messages

■ read or write data to SCSI devices

■ obtain the status of the SCSI bus

■ complete the processing of a SCSI transaction

SCSIReset

You can use the SCSIReset function to reset all devices on the SCSI bus.

FUNCTION SCSIReset: OSErr;

DESCRIPTION

The SCSIReset function directs the SCSI controller chip (or equivalent hardware) in the

Macintosh computer to assert the SCSI bus reset signal. The reset signal causes all

devices on the bus to clear pending I/O and forces the bus into the bus free phase.

▲ W A R N I N G

The SCSIReset function interrupts SCSI communications and can
cause data loss. Use this function only in exceptional circumstances. ▲

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for SCSIReset are

RESULT CODES

Trap macro Selector

_SCSIDispatch $0000

noErr 0 No error
scCommErr 2 Communications error, operation timeout

C H A P T E R 3

SCSI Manager

3-32 SCSI Manager Reference

SEE ALSO

See “SCSI Bus Signals,” beginning on page 3-4, and “SCSI Bus Phases,” beginning on

page 3-5, for more information about the reset signal and the bus free phase.

SCSIGet

You use the SCSIGet function to arbitrate for control of the SCSI bus.

FUNCTION SCSIGet: OSErr;

DESCRIPTION

The SCSIGet function prepares the SCSI Manager to initiate the arbitration sequence.

If the SCSI Manager is busy with another operation, this function returns the

scMgrBusyErr result. If arbitration failed because the bus was busy, the function

returns the scArbNBErr result.

IMPORTANT

The operation of the SCSIGet function varies on different Macintosh
models and does not necessarily initiate the SCSI bus arbitration phase.
In some Macintosh models, the arbitration phase does not occur until
your program calls the SCSISelect function. However, your program
must always call the SCSIGet function before calling SCSISelect. ▲

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for SCSIGet are

RESULT CODES

SEE ALSO

See “SCSI Bus Phases,” beginning on page 3-5, for a description of the arbitration phase.

Trap macro Selector

_SCSIDispatch $0001

noErr 0 No error
scCommErr 2 Communications error, operation timeout
scArbNBErr 3 Bus busy, arbitration timeout
scMgrBusyErr 7 SCSI Manager busy

C H A P T E R 3

SCSI Manager

SCSI Manager Reference 3-33

SCSISelect

You use SCSISelect function to select a SCSI device for a subsequent operation.

FUNCTION SCSISelect (targetID: Integer): OSErr;

targetID The SCSI ID of the target device, with a value from 0 to 7.

DESCRIPTION

The SCSISelect function selects the SCSI device identified by the targetID value.

IMPORTANT

You must call the SCSIGet function before calling SCSISelect. ▲

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for SCSISelect are

RESULT CODES

SEE ALSO

See “SCSI Bus Phases,” beginning on page 3-5, for a description of the selection phase.

SCSISelAtn

You can use the SCSISelAtn function to select a SCSI device and at the same time to

assert the attention (/ATN) bus signal.

FUNCTION SCSISelAtn (targetID: Integer): OSErr;

targetID The SCSI ID of the target device, with a value from 0 to 6.

DESCRIPTION

The SCSISelAtn function is identical to the SCSISelect function except that this

function asserts the /ATN signal during selection. The /ATN signal informs the target

Trap macro Selector

_SCSIDispatch $0002

noErr 0 No error
scCommErr 2 Communications error, operation timeout
scArbNBErr 3 Bus busy, arbitration timeout
scSequenceErr 8 Attempted operation is out of sequence

C H A P T E R 3

SCSI Manager

3-34 SCSI Manager Reference

that the initiator wants to send a message. The SCSISelAtn function must be followed

by a call to the SCSIMsgOut function to send the message to the target device.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for SCSISelAtn are

RESULT CODES

SEE ALSO

See “SCSI Bus Signals,” beginning on page 3-4, and “SCSI Bus Phases,” beginning on

page 3-5, for more information about the attention signal and the selection phase.

SCSICmd

You use the SCSICmd function to send a SCSI command to a SCSI device.

FUNCTION SCSICmd (buffer: Ptr; count: Integer): OSErr;

buffer A pointer to a buffer containing the SCSI command descriptor block.

count The size of the command descriptor block, in bytes.

DESCRIPTION

The SCSICmd function sends a SCSI command to the previously selected target device.

The command code and other parameters are contained in a command descriptor block

(CDB) data structure pointed to by the buffer parameter. The count parameter

specifies the size of the CDB structure, which can be 6, 10, or 12 bytes.

The SCSI specification describes the CDB data structure and lists the standard SCSI

commands that all devices must support. Devices may support additional commands

not defined by the SCSI specification.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for SCSICmd are

Trap macro Selector

_SCSIDispatch $000B

noErr 0 No error
scCommErr 2 Communications error, operation timeout

Trap macro Selector

_SCSIDispatch $0003

C H A P T E R 3

SCSI Manager

SCSI Manager Reference 3-35

RESULT CODES

SEE ALSO

See “SCSI Commands,” beginning on page 3-7, for an overview of SCSI commands.

Refer to the SCSI specification for detailed information about SCSI commands.

SCSIMsgIn

You can use the SCSIMsgIn function to receive a message from a SCSI device.

FUNCTION SCSIMsgIn (VAR message: Integer): OSErr;

message The low-order byte contains the message from the target device.

DESCRIPTION

The SCSIMsgIn function receives a SCSI message from the previously selected target

device. The message is returned in the low-order byte of the message parameter. See the

SCSI specification for information about the types of messages that can be sent from a

target to an initiator.

The SCSIMsgIn function leaves the attention bus signal undisturbed if it is already

asserted.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for SCSIMsgIn are

RESULT CODES

SEE ALSO

See “SCSI Messages,” beginning on page 3-7, for an overview of SCSI messages. Refer to

the SCSI specification for detailed information about SCSI messages.

noErr 0 No error
scCommErr 2 Communications error, operation timeout
scPhaseErr 5 Phase error on the SCSI bus

Trap macro Selector

_SCSIDispatch $000C

noErr 0 No error
scCommErr 2 Communications error, operation timeout
scPhaseErr 5 Phase error on the SCSI bus

C H A P T E R 3

SCSI Manager

3-36 SCSI Manager Reference

SCSIMsgOut

You can use the SCSIMsgOut function to send a message to a SCSI device.

FUNCTION SCSIMsgOut (message: Integer): OSErr;

message The low-order byte contains the message to be sent to the target device.

DESCRIPTION

The SCSIMsgOut function sends a SCSI message to the previously selected target

device. The message is contained in the low-order byte of the message parameter. See

the SCSI specification for information about the types of messages that can be sent from

an initiator to a target.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for SCSIMsgOut are

RESULT CODES

SEE ALSO

See “SCSI Messages,” beginning on page 3-7, for an overview of SCSI messages. Refer to

the SCSI specification for detailed information about SCSI messages.

SCSIRead

You can use the SCSIRead function to read data from a SCSI device using a polled transfer.

FUNCTION SCSIRead (tibPtr: Ptr): OSErr;

tibPtr A pointer to an array of TIB instructions.

DESCRIPTION

The SCSIRead function reads data from the previously selected target device. The data

transfer instructions are specified by the TIB array pointed to by the tibPtr parameter.

Trap macro Selector

_SCSIDispatch $000D

noErr 0 No error
scCommErr 2 Communications error, operation timeout
scPhaseErr 5 Phase error on the SCSI bus

C H A P T E R 3

SCSI Manager

SCSI Manager Reference 3-37

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for SCSIRead are

RESULT CODES

SEE ALSO

See “Using CDB and TIB Structures,” beginning on page 3-17, for information about

using TIB instructions. See “SCSI Manager TIB Instructions,” beginning on page 3-27, for

details of the TIB instruction set.

SCSIRBlind

You can use the SCSIRBlind function to read data from a SCSI device using a blind

transfer.

FUNCTION SCSIRBlind (tibPtr: Ptr): OSErr;

tibPtr A pointer to an array of TIB instructions.

DESCRIPTION

The SCSIRBlind function is identical to the SCSIRead function but does not poll the

SCSI controller before transferring each byte of data. The SCSI controller is polled only

for the first byte transferred by each scInc, scNoInc, or scComp TIB instruction.

SPECIAL CONSIDERATIONS

You should use this function only if the device you are reading from is capable of

transferring data fast enough to avoid timeout errors from the SCSI controller.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for SCSIRBlind are

Trap macro Selector

_SCSIDispatch $0005

noErr 0 No error
scCommErr 2 Communications error, operation timeout
scBadParmsErr 4 Unrecognized TIB instruction
scPhaseErr 5 Phase error on the SCSI bus
scCompareErr 6 Comparison error from scComp instruction

Trap macro Selector

_SCSIDispatch $0008

C H A P T E R 3

SCSI Manager

3-38 SCSI Manager Reference

RESULT CODES

SEE ALSO

See the description of the SCSIRead function on page 3-36 for information about

performing a polled transfer. See “Choosing Polled or Blind Transfers,” beginning on

page 3-22, for additional information.

SCSIWrite

You can use the SCSIWrite function to write to a SCSI device using a polled transfer.

FUNCTION SCSIWrite (tibPtr: Ptr): OSErr;

tibPtr A pointer to an array of TIB instructions.

DESCRIPTION

The SCSIWrite function transfers data to the previously selected target device. The

data transfer instructions are specified by the TIB array pointed to by the tibPtr

parameter.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for SCSIWrite are

RESULT CODES

SEE ALSO

See “Using CDB and TIB Structures,” beginning on page 3-17, for information about

using TIB instructions. See “SCSI Manager TIB Instructions,” beginning on page 3-27, for

details of the TIB instruction set.

noErr 0 No error
scCommErr 2 Communications error, operation timeout
scBadParmsErr 4 Unrecognized TIB instruction
scPhaseErr 5 Phase error on the SCSI bus
scCompareErr 6 Comparison error from scComp instruction
scBusTOErr 9 Bus timeout during blind transfer

Trap macro Selector

_SCSIDispatch $0006

noErr 0 No error
scCommErr 2 Communications error, operation timeout
scBadParmsErr 4 Unrecognized TIB instruction
scPhaseErr 5 Phase error on the SCSI bus

C H A P T E R 3

SCSI Manager

SCSI Manager Reference 3-39

SCSIWBlind

You can use the SCSIWBlind function to write to a SCSI device using a blind transfer.

FUNCTION SCSIWBlind (tibPtr: Ptr): OSErr;

tibPtr A pointer to an array of TIB instructions.

DESCRIPTION

The SCSIWBlind function is identical to the SCSIWrite function but does not poll the

SCSI controller before transferring each byte of data. The SCSI controller is polled only

for the first byte transferred by each scInc, scNoInc, or scComp TIB instruction.

SPECIAL CONSIDERATIONS

You should use this function only if the device you are writing to is capable of accepting

data fast enough to avoid timeout errors from the SCSI controller.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for SCSIWBlind are

RESULT CODES

SEE ALSO

See the description of the SCSIWrite function on page 3-38 for information about

performing a polled transfer. See “Choosing Polled or Blind Transfers,” beginning on

page 3-22, for additional information.

Trap macro Selector

_SCSIDispatch $0009

noErr 0 No error
scCommErr 2 Communications error, operation timeout
scBadParmsErr 4 Unrecognized TIB instruction
scPhaseErr 5 Phase error on the SCSI bus
scBusTOErr 9 Bus timeout during blind transfer

C H A P T E R 3

SCSI Manager

3-40 SCSI Manager Reference

SCSIComplete

You use the SCSIComplete function to complete a SCSI transaction.

FUNCTION SCSIComplete(VAR stat: Integer; VAR message: Integer;

 wait: LongInt): OSErr;

stat The low-order byte contains the status byte from the target device.

message The low-order byte contains the message byte from the target device.

wait The number of ticks to wait for the command to complete.

DESCRIPTION

The SCSIComplete function performs the tasks necessary to properly complete the

current SCSI transaction and leave the bus in the bus free phase. This function must be

called at the end of each SCSI transaction, even if the transaction does not complete

successfully.

The SCSIComplete function waits for the transaction to complete, and then returns one

byte of status information and one byte of message information. If the transaction fails to

complete within the number of ticks specified by the wait parameter, the scCommErr

result is returned.

The SCSIComplete function uses a number of strategies to correct anomalous

conditions on the SCSI bus and restore the bus into a known state. These include

accepting arbitrary amounts of data sent by the target (and throwing this data away),

and sending arbitrary data (bytes with the value of $EE) as requested by the target. The

function returns the scComplPhaseErr result if either of these steps were necessary.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for SCSIComplete are

RESULT CODES

SEE ALSO

See “Using the SCSIComplete Function,” beginning on page 3-21, for more information

about this function.

Trap macro Selector

_SCSIDispatch $0004

noErr 0 No error
scCommErr 2 Communications error, operation timeout
scPhaseErr 5 Phase error on the SCSI bus
scComplPhaseErr 10 SCSI bus was not in status phase on entry to

SCSIComplete

C H A P T E R 3

SCSI Manager

SCSI Manager Reference 3-41

SCSIStat

You can use the SCSIStat function to obtain status information from the SCSI Manager.

FUNCTION SCSIStat: Integer;

DESCRIPTION

The SCSIStat function returns a 16-bit value containing status information. This

information includes the state of all SCSI bus control signals as well as the status of the

NCR 5380 SCSI controller chip (or equivalent hardware). In Macintosh models that use

other SCSI controller hardware, the status information conforms to the 5380 format, but

may not represent the actual state of the hardware.

IMPORTANT

Because hardware differences make it difficult to accurately interpret
the status information, use of this function is not recommended. ▲

Bits 0 through 9 represent the state of the SCSI bus signals, and bits 10 through 15

report status information from the SCSI controller hardware. The status bits have these

meanings:

Note
The SCSI bus control signals are active low; therefore, the status bits
represent the complement of the bus signals. ◆

Bit Name Meaning

0 DBP Data parity signal

1 /SEL Select signal

2 /I/O I/O signal

3 /C/D Command/Data signal

4 /MSG Message signal

5 /REQ Request signal

6 /BSY Busy signal

7 /RST Reset signal

8 /ACK Acknowledge signal

9 /ATN Attention signal

10 BSY ERR Busy error

11 PHS MAT Phase match

12 INT REQ Interrupt request

13 PTY ERR Parity error

14 DMA REQ Direct memory access request

15 END DMA Direct memory access complete

C H A P T E R 3

SCSI Manager

3-42 SCSI Manager Reference

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for SCSIStat are

RESULT CODES

SEE ALSO

See “SCSI Bus Signals,” beginning on page 3-4, for an overview of SCSI bus signals.

Refer to the SCSI specification for detailed information about SCSI bus signals. Refer to

the NCR 5380 SCSI controller specification for information about that device.

Trap macro Selector

_SCSIDispatch $000A

noErr 0 No error
scCommErr 2 Communications error, operation timeout
scPhaseErr 5 Phase error on the SCSI bus

C H A P T E R 3

SCSI Manager

Summary of the SCSI Manager 3-43

Summary of the SCSI Manager

Pascal Summary

Constants

CONST

scInc = 1; {transfer data, increment buffer pointer}

scNoInc = 2; {transfer data, don’t increment pointer}

scAdd = 3; {add long to address}

scMove = 4; {move long to address}

scLoop = 5; {decrement counter and loop if > 0}

scNop = 6; {no operation}

scStop = 7; {stop TIB execution}

scComp = 8; {compare SCSI data with memory}

{signature values}

sbSIGWord = $4552; {driver descriptor map signature}

pMapSIG = $504D; {partition map signature}

Data Types

TYPE SCSIInstr =

RECORD

scOpcode: Integer; {operation code}

scParam1: LongInt; {first parameter}

scParam2: LongInt; {second parameter}

END;

Block0 =

PACKED RECORD

sbSig: Integer; {device signature}

sbBlkSize: Integer; {block size of the device}

sbBlkCount: LongInt; {number of blocks on the device}

sbDevType: Integer; {reserved}

sbDevId: Integer; {reserved}

sbData: LongInt; {reserved}

sbDrvrCount: Integer; {number of driver descriptor entries}

ddBlock: LongInt; {first driver’s starting block}

ddSize: Integer; {size of the driver, in 512-byte blocks}

C H A P T E R 3

SCSI Manager

3-44 Summary of the SCSI Manager

ddType: Integer; {operating system type (MacOS = 1)}

ddPad: ARRAY [0..242] OF Integer; {additional drivers, if any}

END;

Partition =

RECORD

pmSig: Integer; {partition signature}

pmSigPad: Integer; {reserved}

pmMapBlkCnt: LongInt; {number of blocks in partition map}

pmPyPartStart: LongInt; {first physical block of partition}

pmPartBlkCnt: LongInt; {number of blocks in partition}

pmPartName: PACKED ARRAY [0..31] OF Char; {partition name}

pmParType: PACKED ARRAY [0..31] OF Char; {partition type}

pmLgDataStart: LongInt; {first logical block of data area}

pmDataCnt: LongInt; {number of blocks in data area}

pmPartStatus: LongInt; {partition status information}

pmLgBootStart: LongInt; {first logical block of boot code}

pmBootSize: LongInt; {size of boot code, in bytes}

pmBootAddr: LongInt; {boot code load address}

pmBootAddr2: LongInt; {reserved}

pmBootEntry: LongInt; {boot code entry point}

pmBootEntry2: LongInt; {reserved}

pmBootCksum: LongInt; {boot code checksum}

pmProcessor: PACKED ARRAY [0..15] OF Char; {processor type}

pmPad: ARRAY [0..187] OF Integer; {reserved}

END;

Routines

FUNCTION SCSIReset : OSErr;

FUNCTION SCSIGet : OSErr;

FUNCTION SCSISelect (targetID: Integer): OSErr;

FUNCTION SCSISelAtn (targetID: Integer): OSErr;

FUNCTION SCSICmd (buffer: Ptr; count: Integer): OSErr;

FUNCTION SCSIMsgIn (VAR message: Integer): OSErr;

FUNCTION SCSIMsgOut (message: Integer): OSErr;

FUNCTION SCSIRead (tibPtr: Ptr): OSErr;

FUNCTION SCSIRBlind (tibPtr: Ptr): OSErr;

FUNCTION SCSIWrite (tibPtr: Ptr): OSErr;

FUNCTION SCSIWBlind (tibPtr: Ptr): OSErr;

FUNCTION SCSIComplete (VAR stat: Integer; VAR message: Integer;
wait: LongInt): OSErr;

C H A P T E R 3

SCSI Manager

Summary of the SCSI Manager 3-45

FUNCTION SCSIStat : Integer;

C Summary

Constants

enum {

/* TIB instruction opcodes */

scInc = 1, /* transfer data, increment buffer pointer */

scNoInc = 2, /* transfer data, don’t increment pointer */

scAdd = 3, /* add long to address */

scMove = 4, /* move long to address */

scLoop = 5, /* decrement counter and loop if > 0 */

scNop = 6, /* no operation */

scStop = 7, /* stop TIB execution */

scComp = 8, /* compare SCSI data with memory */

/* signature values */

sbSIGWord = 0x4552, /* driver descriptor map signature */

pMapSIG = 0x504D /* partition map signature */

};

Data Types

struct SCSIInstr {

unsigned short scOpcode; /* operation code */

unsigned long scParam1; /* first parameter */

unsigned long scParam2; /* second parameter */

};

typedef struct SCSIInstr SCSIInstr;

struct Block0 {

unsigned short sbSig; /* device signature */

unsigned short sbBlkSize; /* block size of the device*/

unsigned long sbBlkCount; /* number of blocks on the device*/

unsigned short sbDevType; /* reserved */

unsigned short sbDevId; /* reserved */

unsigned long sbData; /* reserved */

unsigned short sbDrvrCount; /* number of driver descriptor entries */

unsigned long ddBlock; /* first driver’s starting block */

unsigned short ddSize; /* driver’s size, in 512-byte blocks */

C H A P T E R 3

SCSI Manager

3-46 Summary of the SCSI Manager

unsigned short ddType; /* operating system type (MacOS = 1) */

unsigned short ddPad[243]; /* additional drivers, if any */

};

typedef struct Block0 Block0;

Partition {

unsigned short pmSig; /* partition signature */

unsigned short pmSigPad; /* reserved */

unsigned long pmMapBlkCnt; /* number of blocks in partition map */

unsigned long pmPyPartStart; /* first physical block of partition */

unsigned long pmPartBlkCnt; /* number of blocks in partition */

unsigned char pmPartName[32];/* partition name */

unsigned char pmParType[32]; /* partition type */

unsigned long pmLgDataStart; /* first logical block of data area */

unsigned long pmDataCnt; /* number of blocks in data area */

unsigned long pmPartStatus; /* partition status information */

unsigned long pmLgBootStart; /* first logical block of boot code */

unsigned long pmBootSize; /* size of boot code, in bytes */

unsigned long pmBootAddr; /* boot code load address */

unsigned long pmBootAddr2; /* reserved */

unsigned long pmBootEntry; /* boot code entry point */

unsigned long pmBootEntry2; /* reserved */

unsigned long pmBootCksum; /* boot code checksum */

unsigned char pmProcessor[16]; /* processor type */

unsigned short pmPad[188]; /* reserved */

};

typedef struct Partition Partition;

Functions

pascal OSErr SCSIReset (void);

pascal OSErr SCSIGet (void);

pascal OSErr SCSISelect (short targetID);

pascal OSErr SCSISelAtn (short targetID);

pascal OSErr SCSICmd (Ptr buffer, short count);

pascal OSErr SCSIMsgIn (short *message);

pascal OSErr SCSIMsgOut (short message);

pascal OSErr SCSIRead (Ptr tibPtr);

pascal OSErr SCSIRBlind (Ptr tibPtr);

pascal OSErr SCSIWrite (Ptr tibPtr);

pascal OSErr SCSIWBlind (Ptr tibPtr);

C H A P T E R 3

SCSI Manager

Summary of the SCSI Manager 3-47

pascal OSErr SCSIComplete (short *stat, short *message,
unsigned long wait);

pascal short SCSIStat (void);

Assembly-Language Summary

Data Structures

Transfer Instruction Block

Driver Descriptor Record

Partition Map Entry Record

0 scOpcode word operation code
2 scParam1 long first parameter
6 scParam2 long second parameter

0 sbSig word device signature
2 sbBlkSize word block size of the device
4 sbBlkCount long number of blocks on the device
8 sbDevType word reserved

10 sbDevId word reserved
12 sbData long reserved
16 sbDrvrCount word number of driver descriptor entries
18 ddBlock long first driver’s starting block
22 ddSize word driver’s size, in 512-byte blocks
24 ddType word operating system type (MacOS = 1)
26 ddPad 486 bytes additional drivers, if any

0 pmSig word partition signature
2 pmSigPad word reserved
4 pmMapBlkCnt long number of blocks in partition map
8 pmPyPartStart long first physical block of partition

12 pmPartBlkCnt long number of blocks in partition
16 pmPartName 32 bytes partition name
48 PmParType 32 bytes partition type
80 pmLgDataStart long first logical block of data area
84 pmDataCnt long number of blocks in data area
88 pmPartStatus long partition status information
92 pmLgBootStart long first logical block of boot code
96 pmBootSize long size of boot code, in bytes

100 pmBootAddr long boot code load address
104 pmBootAddr2 long reserved
108 pmBootEntry long boot code entry point
112 pmBootEntry2 long reserved

C H A P T E R 3

SCSI Manager

3-48 Summary of the SCSI Manager

Trap Macros

Trap Macros Requiring Routine Selectors

_SCSIDispatch

Result Codes

116 pmBootCksum long boot code checksum
120 pmProcessor 16 bytes processor type
136 pmPad 376 bytes reserved

Selector Routine

$00 SCSIReset

$01 SCSIGet

$02 SCSISelect

$03 SCSICmd

$04 SCSIComplete

$05 SCSIRead

$06 SCSIWrite

$08 SCSIRBlind

$09 SCSIWBlind

$0A SCSIStat

$0B SCSISelAtn

$0C SCSIMsgIn

$0D SCSIMsgOut

noErr 0 No error
scCommErr 2 Communications error, operation timeout
scArbNBErr 3 Bus busy, arbitration timeout
scBadParmsErr 4 Bad parameter or unrecognized TIB instruction
scPhaseErr 5 Phase error on the SCSI bus
scCompareErr 6 Comparison error from scComp instruction
scMgrBusyErr 7 SCSI Manager busy
scSequenceErr 8 Attempted operation is out of sequence
scBusTOErr 9 Bus timeout during blind transfer
scComplPhaseErr 10 SCSI bus was not in status phase on entry to SCSIComplete

Contents 4-1

C H A P T E R 4

Contents

SCSI Manager 4.3

About SCSI Manager 4.3 4-3

Transport 4-5

SCSI Interface Modules 4-6

System Performance 4-6

Compatibility 4-6

Using SCSI Manager 4.3 4-7

Locating SCSI Devices 4-8

Describing Data Buffers 4-9

Handshaking Instructions 4-9

Error Recovery Techniques 4-10

Optional Features 4-10

Writing a SCSI Device Driver 4-11

Loading and Initializing a Driver 4-11

Selecting a Startup Device 4-12

Transitions Between SCSI Environments 4-12

Handling Asynchronous Requests 4-13

Handling Immediate Requests 4-13

Virtual Memory Compatibility 4-14

Writing a SCSI Interface Module 4-15

SIM Initialization and Operation 4-15

Supporting the Original SCSI Manager 4-16

Handshaking of Blind Transfers 4-18

Supporting DMA 4-18

Loading Drivers 4-18

SCSI Manager 4.3 Reference 4-19

Data Structures 4-19

Simple Data Types 4-19

Device Identification Record 4-19

Command Descriptor Block Record 4-20

Scatter/Gather List Element 4-20

C H A P T E R 4

4-2 Contents

SCSI Manager Parameter Block Header 4-21

SCSI I/O Parameter Block 4-23

SCSI Bus Inquiry Parameter Block 4-28

SCSI Abort Command Parameter Block 4-33

SCSI Terminate I/O Parameter Block 4-33

SCSI Virtual ID Information Parameter Block 4-34

SCSI Load Driver Parameter Block 4-34

SCSI Driver Identification Parameter Block 4-35

SIM Initialization Record 4-36

SCSI Manager 4.3 Functions 4-37

Client Functions 4-37

SIM Support Functions 4-54

SIM Internal Functions 4-60

Summary of SCSI Manager 4.3 4-65

C Summary 4-65

Constants 4-65

Data Types 4-70

Functions 4-75

Pascal Summary 4-75

Constants 4-75

Data Types 4-79

Routines 4-85

Assembly-Language Summary 4-86

Data Structures 4-86

Trap Macros 4-89

Result Codes 4-90

C H A P T E R 4

About SCSI Manager 4.3 4-3

SCSI Manager 4.3

SCSI Manager 4.3 is an enhanced version of the SCSI Manager that provides new

features as well as compatibility with the original version. SCSI Manager 4.3 is contained

in the ROM of high-performance computers such as the Macintosh Quadra 840AV and

the Power Macintosh 8100/80. Beginning with system software version 7.5, SCSI

Manager 4.3 is also available as a system extension that can be installed in any

Macintosh computer that uses the NCR 53C96 SCSI controller chip.

In addition to the capabilities of the original SCSI Manager, SCSI Manager 4.3 provides

■ support for asynchronous SCSI I/O

■ support for optional SCSI features such as disconnect/reconnect

■ a hardware-independent programming interface that minimizes the SCSI-specific
tasks a device driver must perform

You should read this chapter if you are writing a SCSI device driver or other software for

Macintosh computers that use SCSI Manager 4.3. To make best use of this chapter, you

should understand the Device Manager and the implementation of device drivers in

Macintosh computers. If you are designing a SCSI peripheral device for the Macintosh,

you should read Designing Cards and Drivers for the Macintosh Family, third edition, and

Guide to the Macintosh Family Hardware, second edition.

This chapter assumes you are familiar with the following SCSI specifications established

by the American National Standards Institute (ANSI):

■ X3.131-1986, Small Computer System Interface

■ X3.131-1994, Small Computer System Interface–2

■ X3.232 (draft), SCSI-2 Common Access Method

If you are writing a device driver for a block-structured storage device such as hard disk,

you should also read the chapter “SCSI Manager” in this book for information about the

structure of block devices used by the Macintosh Operating System. Because many

Macintosh models continue to use the original SCSI Manager, you may want to design

your software to operate with both SCSI Manager 4.3 and the original SCSI Manager.

About SCSI Manager 4.3

The SCSI Manager 4.3 application program interface (API) is modeled on the Common

Access Method (CAM) software interface being developed by ANSI committee X3T9.

The SCSI Manager 4.3 interface, however, includes Apple-specific differences required

for compatibility with the original SCSI Manager and the Macintosh Operating System.

The CAM specification defines the operation of three functional units—the transport

(XPT), the SCSI interface module (SIM), and the host bus adapter (HBA). The XPT

is the entry point to SCSI Manager 4.3 and is responsible for passing requests to the

appropriate SIM. Each SIM is responsible for managing the HBA for a particular bus.

In addition to the XPT, SCSI Manager 4.3 includes a SIM for managing the NCR

53C96 SCSI controller used in high-performance Macintosh computers. Other SIM

C H A P T E R 4

SCSI Manager 4.3

4-4 About SCSI Manager 4.3

modules and HBA hardware can be added at any time by Apple or third-party

developers. For example, a NuBus or PDS expansion card can provide an additional

SCSI bus, which device drivers can access through SCSI Manager 4.3 in exactly the

same way as the internal bus. Figure 4-1 shows the relationship between device

drivers, SCSI Manager 4.3, and the SCSI controller hardware.

Figure 4-1 The SCSI Manager 4.3 architecture

The features and capabilities of SCSI Manager 4.3 include

■ SCSI-2 compliance. All mandatory SCSI-2 messages and protocol actions are
supported as defined for an initiator. Optional SCSI-2 hardware features, such as
fast and wide transfers, are anticipated by the SCSI Manager 4.3 architecture and
supported by the interface.

■ Concurrent asynchronous I/O. SCSI Manager 4.3 handles both synchronous and
asynchronous I/O requests. In addition, it allows multiple device drivers to issue
multiple requests and attempts to overlap the operations as much as possible.

■ Hardware-independent programming interface. A new hardware-independent
interface allows device drivers to work with any SCSI Manager 4.3-compatible host
bus adapter (HBA), including those from third-party developers.

C H A P T E R 4

SCSI Manager 4.3

About SCSI Manager 4.3 4-5

■ Direct memory access (DMA). SCSI Manager 4.3 automatically takes advantage
of the DMA capabilities available in high-performance Macintosh models. Direct
memory access allows the computer to perform other functions while data bytes are
transferred to or from the SCSI bus.

■ Support for multiple buses. SCSI Manager 4.3 supports any number of SCSI buses,
each with a full complement of devices. For example, on Macintosh computers with
dual SCSI buses (such as the Power Macintosh 8100/80), up to 14 SCSI devices can be
attached. In addition, developers can design NuBus or PDS expansion cards that offer
enhanced SCSI bus capabilities.

■ Support for multiple logical units on each target. SCSI Manager 4.3 allows access to
all logical units on a target device. Logical units are treated as separate entities, and
I/O requests are queued according to logical unit number (LUN).

■ Disconnect/reconnect. This capability helps maximize SCSI bus utilization by
allowing a device to disconnect and release control of the SCSI bus while it processes
a command, then reconnect when it is ready to complete the transaction. This allows a
device driver to submit requests to multiple targets so that those requests are executed
in parallel. For example, the driver for a disk array can issue a request to one disk,
which disconnects, then issue another request to a different disk. The two disks can
perform their seek operations simultaneously, reducing the effective seek time.

■ Parity detection. SCSI Manager 4.3 detects and handles parity errors in data received
from a target. For compatibility reasons, this feature can be disabled on a per-
transaction basis. (All Macintosh computers generate parity for write operations, but
the original SCSI Manager does not detect parity errors in incoming data.)

■ Autosense. SCSI Manager 4.3 automatically sends a REQUEST SENSE command in
response to a CHECK CONDITION status and retrieves the sense data. This feature can
be disabled.

■ Compatibility. SCSI Manager 4.3 supports all original SCSI Manager functions and
TIB instructions, except for scComp (compare).

Transport
The SCSI Manager 4.3 transport (XPT) provides the software interface to applications

and device drivers, and is responsible for

■ providing the means to register host bus adapters, their characteristics, and their
respective SCSI interface modules

■ routing requests to the proper SCSI interface module

■ notifying the caller when a request is complete

■ providing the high-level facilities for emulating the original SCSI Manager interface.
This consists of maintaining a translation table of SCSI ID numbers and their
corresponding host bus adapters, and directing original SCSI Manager requests
accordingly

■ isolating SCSI interface modules from certain operating system requirements, such as
those imposed by the Virtual Memory Manager

C H A P T E R 4

SCSI Manager 4.3

4-6 About SCSI Manager 4.3

SCSI Interface Modules
A SCSI interface module (SIM) provides the software interface between the transport

(XPT) and a host bus adapter (HBA) in SCSI Manager 4.3. The SIM processes and executes

SCSI requests directed to it by the XPT and is responsible for handling all aspects of

a SCSI transaction, including

■ maintaining the request queue, including freezing and unfreezing for error handling
as necessary, and queuing multiple operations for all logical units on all target devices

■ managing the selection, disconnection, reconnection, and data pointers of the SCSI
protocol

■ assigning tags for tag queuing, if supported

■ managing the HBA hardware

■ identifying abnormal conditions on the SCSI bus and performing error recovery

■ providing a time-out mechanism for tracking SCSI command execution

■ emulating original SCSI Manager functions, if supported

System Performance
In terms of maximum data transfer (bytes-per-second) over the internal SCSI bus,

SCSI Manager 4.3 performs similarly to the original SCSI Manager. This aspect of

performance is limited by the capability of the SCSI controller hardware and can be

improved by adding a faster HBA.

In terms of overall system performance, the asynchronous capability of SCSI Manager

4.3 can provide significant benefits by allowing application code to regain control of the

system while a SCSI transaction is in progress. This concurrency is a key benefit of

asynchronous operation. In addition, support for disconnect/reconnect allows

applications to initiate multiple I/O requests on multiple targets simultaneously,

allowing further increases in throughput.

Multiple bus systems offer the added benefit of concurrency between buses. If DMA is

used for both buses, their data transfer periods can be overlapped as well.

Compatibility
All the functions provided by the original SCSI Manager are emulated by the SCSI

Manager 4.3 XPT and SIM for the internal SCSI bus. This level of compatibility is

optional for third-party SIM/HBA developers. When a SIM registers its HBA with the

SCSI Manager 4.3 XPT, the SIM specifies whether or not it is able to emulate the original

SCSI Manager functions by setting the oldCallCapable field of the SIM initialization

record.

When an application or device driver calls the original SCSI Manager function SCSIGet,

the XPT sets a flag preventing any additional SCSIGet function calls but performs

no other action. Upon receipt of a SCSISelect function call, the XPT issues a

SCSIOldCall request to the appropriate SIM, which places the request in its queue.

C H A P T E R 4

SCSI Manager 4.3

Using SCSI Manager 4.3 4-7

Once the SCSIOldCall request begins execution, the SIM emulates subsequent original

SCSI Manager function calls passed to it by the XPT. During this emulation, no new

requests are processed until the entire transaction is completed and the SCSIComplete

function returns. Any SCSIGet or SCSISelect requests received after the start of a

SCSIOldCall request are rejected and return the scMgrBusyErr code.

While the original SCSI Manager emulation is in progress, asynchronous requests made

by other applications or device drivers (using SCSI Manager 4.3 functions) are queued

but do not execute until the emulation is complete. Requests to other SIMs are not

affected and continue to execute normally.

The SCSIReset function resets only those buses that are capable of handling original

SCSI Manager functions. The SCSIStat function returns results as accurate as possible

for the SIM/HBA handling the request.

The scComp (compare) TIB instruction is not supported by SCSI Manager 4.3 because

DMA transfers do not permit this type of compare operation. This should pose few

compatibility problems because this instruction is rarely used. You can, of course,

write your own code to compare data on a SCSI device with data in memory.

▲ W A R N I N G

Applications or device drivers that bypass the SCSI Manager for any
part of a transaction are not supported and will interfere with the
operation of SCSI Manager 4.3. ▲

Using SCSI Manager 4.3

A fundamental difference between SCSI Manager 4.3 and the original SCSI Manager is

that a single function, SCSIAction, handles an entire SCSI transaction. You do not need

to explicitly arbitrate for the bus, select a device, or send a SCSI command. In most cases,

your program does not need to be aware of SCSI bus phases.

The SCSIAction function is the entry point for all SCSI Manager 4.3 client functions.

These functions provide the services that clients (applications and device drivers) need

to communicate with SCSI devices. The only parameter to SCSIAction is a pointer to a

SCSI Manager parameter block data structure. You use the scsiFunctionCode field of

the parameter block to specify which function to perform. Most functions use specialized

versions of the parameter block to carry the input parameters and return the results.

For example, the SCSIBusInquiry function requires a SCSI bus inquiry parameter

block (SCSIBusInquiryPB).

Perhaps the most important SCSIAction function is SCSIExecIO, which you use

to request a SCSI I/O transaction. This function uses the SCSI I/O parameter block

(SCSIExecIOPB), which specifies the destination of the request (the bus, target, and

logical unit), the command descriptor block (CDB), the data buffers that either contain or

receive the data, and a variety of other fields and flags required to fulfill the transaction.

You can call the SCSIExecIO function either synchronously or asynchronously. If the

scsiCompletion field of the parameter block contains a pointer to a completion

C H A P T E R 4

SCSI Manager 4.3

4-8 Using SCSI Manager 4.3

routine, the SCSI Manager executes the function asynchronously. If you set the

scsiCompletion field to nil, the request is executed synchronously.

Because of interrupt handling considerations, device drivers must issue synchronous

SCSIExecIO requests as such, rather than issuing them asynchronously and creating

a synchronous wait loop inside the device driver. See “Writing a SCSI Device Driver,”

beginning on page 4-11, for more information about the proper handling of synchronous

and asynchronous requests by device drivers. Applications are not subject to the same

restrictions as device drivers and may create synchronous wait loops if desired.

Different SIM implementations may require additional fields beyond the standard fields

of the SCSI I/O parameter block. Some of these may be input or output fields providing

access to special capabilities of a SIM; others may be private fields required during the

processing of the request. You can use the SCSIBusInquiry function to determine the

size of the SCSI I/O parameter block for a particular SIM, as well as the largest

parameter block required by any registered SIM.

You can also use the SCSIBusInquiry function to get information about various

hardware and software characteristics of a SIM and its HBA. You can use this

information to form a request that takes advantage of all the capabilities of a SIM.

Parameter blocks are queued separately for each logical unit (LUN) on a target device.

When an error occurs during a SCSIExecIO request, the SIM freezes the queue for the

LUN on which the error occurred, to allow you to perform any necessary error recovery.

After correcting the error condition, you must use the SCSIReleaseQ function to enable

normal handling of I/O requests to that LUN. See “Error Recovery Techniques” on

page 4-10 for more information.

Locating SCSI Devices
SCSI Manager 4.3 supports multiple buses, allowing a client to specify a device based

on its bus number as well as its target ID and LUN. To emulate original SCSI Manager

functions that understand only a target ID, the technique first used in the Macintosh

Quadra 900 has been expanded to include not only built-in SCSI buses but any

compatible HBA installed in a NuBus or PDS expansion slot.

When multiple buses are registered with the XPT, emulated original SCSI Manager

transactions are directed to the first bus that responds to a selection for the requested

target ID. The target ID specified in a SCSISelect function is called the virtual ID

because it designates a device on the single virtual bus (which encompasses all original

SCSI Manager-compatible buses).

When you make a SCSISelect request, the XPT first attempts to select a device on the

built-in internal bus. If there is no response on that bus, the XPT tries the built-in external

bus (on models that include two SCSI buses), or the first registered add-on bus.

Additional buses are searched in the order they were registered.

When the XPT finds a device that responds to the selection, all subsequent SCSISelect

requests are directed to the bus on which that selection occurred. Until a successful

selection occurs on one of the buses, the virtual ID is not assigned to any physical bus.

C H A P T E R 4

SCSI Manager 4.3

Using SCSI Manager 4.3 4-9

Once established, the mapping of virtual ID to physical bus is not changed until restart.

You can use the SCSIGetVirtualIDInfo function to determine which physical bus a

device is attached to.

It is possible for devices to be available through the original SCSI Manager interface but

not through the SCSI Manager 4.3 interface. For example, a third-party SIM may install

its own XPT if SCSI Manager 4.3 is not available. This creates a functional SCSI Manager

4.3 interface that does not include the built-in SCSI bus. Another possibility is the

presence of a third-party SCSI adapter that does not comply with SCSI Manager 4.3 but

patches the original SCSI Manager interface to create its own virtual bus. To locate all

SCSI devices in these environments you must use the SCSI Manager 4.3 functions to scan

for devices on all SIMs and then use the original SCSI Manager functions to scan for

devices that are not accessible through the SCSI Manager 4.3 interface.

Describing Data Buffers
SCSI Manager 4.3 recognizes three data types for describing the source and destination

memory buffers for a SCSI data transfer. The most familiar is a simple buffer, consisting

of a single contiguous block of memory. An extension of this is the scatter/gather list,
which consists of one or more elements, each of which describes the location and size of

one buffer. Scatter/gather lists allow you to group multiple buffers of any size into a

single virtual buffer for an I/O transaction.

In addition to these, SCSI Manager 4.3 supports the transfer instruction block (TIB) data

type used by the original SCSI Manager interface. This structure is used only for

emulating original SCSI Manager functions. During the execution of a SCSIRead,

SCSIWrite, SCSIRBlind, or SCSIWBlind function, TIB instructions are interpreted by

the SCSI Manager to determine the source and destination of the data. See the chapter

“SCSI Manager” in this book for more information about TIB instructions.

Handshaking Instructions
In the original SCSI Manager interface, you use TIB instructions to show the SCSI

Manager where long delays (greater than 16 microseconds) may occur in a blind transfer.

Without these instructions, the SCSI Manager can lose data or crash the system if delays

occur at unexpected times in a data transfer.

You use the scsiHandshake field of the SCSI I/O parameter block to specify

handshaking instructions to SCSI Manager 4.3. This field contains a series of word

values, each of which specifies the number of bytes between potential delays in the

SCSI data transfer. You terminate the instructions with a value of 0.

For example, a “1, 511” TIB is a common TIB structure used with disk drives that have a

512-byte block size and sometimes experience a delay between the first and second bytes

in the block, as well as a delay between the last byte of a block and the first byte of the

following block. This TIB structure translates to a scsiHandshake field of “1, 511, 0”,

which indicates a request to synchronize and transfer 1 byte, synchronize and transfer

511 bytes, synchronize and transfer 1 byte, and so on.

C H A P T E R 4

SCSI Manager 4.3

4-10 Using SCSI Manager 4.3

Like the original SCSI Manager, SCSI Manager 4.3 always synchronizes on the first

byte of a data phase. In addition, the handshaking cycle is reset whenever a device

disconnects. That is, the cycle starts over from the beginning when a device reconnects.

The scsiHandshake field should also indicate where a device may disconnect.

The handshaking cycle continues across scatter/gather list elements. For example, if

the handshake array contains “2048, 0” and the scatter/gather list specifies a transfer of

512 bytes and then 8192 bytes, a handshake synchronization will occur 1536 bytes into

the second scatter/gather element.

You should use polled transfers for devices that may experience unpredictable delays

during the data phase or can disconnect at unpredictable times.

Error Recovery Techniques
SCSI Manager 4.3 provides a feature called queue freezing that you can use to recover

from I/O errors. When a SCSIExecIO request returns an error, the SIM freezes the

I/O queue for the LUN that caused the error. You can then issue additional requests with

the scsiSIMQHead flag set so that they will be inserted in front of any requests that

were already in the queue. You can use this method to perform retries, block remapping,

or other error recovery techniques. After inserting your error handling requests, you

call the SCSIReleaseQ function to allow the request at the head of the queue to

be dispatched. If necessary, multiple requests can be single-stepped by setting the

scsiSIMQFreeze flag as well as the scsiSIMQHead flag on each of the requests

and following each with a SCSIReleaseQ call.

Note

You can disable queue freezing for a single transaction by setting the
scsiSIMQNoFreeze flag. ◆

Optional Features
The following optional features may not be supported by all SIMs. You should use the

SCSIBusInquiry function to determine which features are supported by a particular

bus.

■ synchronous data transfer

■ target command queuing

■ HBA engine support

■ target mode

■ asynchronous event notification

C H A P T E R 4

SCSI Manager 4.3

Writing a SCSI Device Driver 4-11

Writing a SCSI Device Driver

This section provides additional information you need to write a device driver that is

compatible with both SCSI Manager 4.3 and the original SCSI Manager.

Loading and Initializing a Driver
During system startup of Macintosh models that do not include SCSI Manager 4.3 in

ROM, the Start Manager scans the SCSI bus from SCSI ID 6 to SCSI ID 0, looking for

devices that have both an Apple_HFS and Apple_Driver partition. For each device

found, the driver is loaded and executed, and installs itself into the unit table. The driver

then places an element in the drive queue for any HFS partitions that are on the drive.

When SCSI Manager 4.3 is present in ROM, the Start Manager loads all SCSI Manager 4.3

drivers from all devices on all registered buses. Drivers that support SCSI Manager 4.3 are

identified by the string Apple_Driver43 in the pmParType field of the partition map.

Traditional (Apple_Driver) drivers are then loaded for any devices on the virtual bus

that do not contain a SCSI Manager 4.3 driver.

If SCSI Manager 4.3 is not present in ROM, the Start Manager treats SCSI Manager 4.3

drivers exactly like traditional drivers. Because the Start Manager in earlier Macintosh

computers checks only the first 12 characters of the pmParType field before loading and

executing a driver, both SCSI Manager 4.3 drivers and traditional drivers will load on

these models. To initialize the driver, the Start Manager jumps to the first byte of the

driver’s code (using a JSR instruction), with register D5 set to the SCSI ID of the device

the driver was loaded from.

SCSI Manager 4.3 drivers contain a second entry point at an offset of 8 bytes from the

standard entry. Use of this entry point means that SCSI Manager 4.3 is present and that

register D5 contains a device identification record. No other registers are used.

There are seven unit table entries (32 through 38) reserved for SCSI drivers controlling

devices at SCSI ID 0 through SCSI ID 6 on the virtual SCSI bus. For compatibility with

existing SCSI utility software, drivers serving devices on the virtual bus should continue

to install themselves in the unit table locations reserved for traditional SCSI drivers.

Drivers for devices that are not on the virtual bus should choose a unit number outside

the range reserved for traditional SCSI drivers. See the chapter “Device Manager” in this

book for information about installing device drivers in the unit table.

To allow clients to determine whether a driver has been loaded for a particular SCSI

device, the XPT maintains a driver registration table. This table cross-references device

identification records with driver reference numbers. The device identification record is a

SCSI Manager 4.3 data structure that specifies a device by its bus, SCSI ID, and logical unit

number. The device identification record is defined by the DeviceIdent data type, which

is described on page 4-19.

A device identification record can have only one driver reference number associated with it,

but a single driver reference number may be registered to multiple devices. You can use the

SCSICreateRefNumXref, SCSILookupRefNumXref, and SCSIRemoveRefNumXref

C H A P T E R 4

SCSI Manager 4.3

4-12 Writing a SCSI Device Driver

functions to access the driver registration table. Drivers loaded through the SCSI

Manager 4.3 entry point must use the SCSICreateRefNumXref function to register

with the XPT. This is done automatically by SCSI Manager 4.3 for traditional drivers.

Selecting a Startup Device
After all device drivers are loaded and initialized, the Start Manager searches for the

default startup device in the drive queue. If the device is found, it is mounted and the

boot process begins. Macintosh models that do not include SCSI Manager 4.3 in ROM

identify the boot drive by a driver reference number stored in PRAM. This works well

when drivers retain the same reference number between startups, but SCSI Manager 4.3

drivers allocate unit table entries dynamically if the device they are controlling is not on

the virtual bus.

Macintosh models that include SCSI Manager 4.3 in ROM designate the startup device

using Slot Manager values in PRAM. Slot number 0 is used for devices on the built-in bus

or buses. The dCtlSlot and dCtlSlotId fields of the driver’s device control entry

must contain the slot number and sResource ID number, respectively. These are available

in the bus inquiry data from the SIM. The dCtlExtDev field should contain both the

SCSI ID and LUN of the device that the driver is controlling. The high-order 5 bits contain

the SCSI ID (up to 31 for a 32-bit wide SCSI bus) and the low-order 3 bits contain the LUN.

Transitions Between SCSI Environments
Because SCSI Manager 4.3 can be installed as a system extension in older Macintosh

models, your device driver may be loaded before SCSI Manager 4.3 is active. This can

also occur if a NuBus or PDS expansion card loads SCSI Manager 4.3 or an equivalent

XPT from the card’s ROM. In this case, the expansion card will load a subset of the

SCSI Manager 4.3 XPT and a SIM responsible for the card’s HBA, but it will not load

a SIM for the built-in bus. This creates a situation in which SCSI Manager 4.3 is loaded

but some buses may be accessible only through the original interface.

To determine whether to use the SCSI Manager 4.3 interface, your driver should first

check for the presence of the _SCSIAtomic trap (0xA089). If the trap exists, the driver

can pass the SCSI ID of its device to the SCSIGetVirtualIDInfo function to get the

device identification record of its device. If the scsiExists field of the parameter block

returns true, the device is available through the SCSI Manager 4.3 interface. If the

scsiExists field returns false, the device is on a bus that is not available through

SCSI Manager 4.3.

The best time for your driver to perform this check is at the first accRun tick, which

occurs after all system patches are in place. The Event Manager calls your driver at this

time if you set the dNeedTime flag in the device control entry. If your driver can access

its device through SCSI Manager 4.3, it should allocate and initialize a SCSI I/O

parameter block at this time.

Even if your driver is loaded and initialized by a ROM-based SCSI Manager 4.3, you can

use the first accRun tick to check for new features that may have been installed by a

system patch.

C H A P T E R 4

SCSI Manager 4.3

Writing a SCSI Device Driver 4-13

Handling Asynchronous Requests
When a client makes a read or write request to a device driver, the Device Manager

places the request in the driver’s I/O queue. When the driver is ready to accept the

request, the Device Manager passes it to the driver’s prime routine. The prime routine

should fill in a SCSI I/O parameter block with the appropriate values and call the

SCSIExecIO function. The XPT passes the parameter block to the proper SIM, which

then adds the request to its queue and possibly starts processing it before returning back

to the driver.

If the SCSIExecIO function returns noErr, the request was accepted and the contents

of the parameter block cannot be reliably viewed by the driver. At this point, virtually

nothing can be assumed about the request. It may only have been queued, or it may

have proceeded all the way to completion.

IMPORTANT

Once a parameter block is accepted by XPT, do not attempt to examine
the parameter block until the completion routine is called. ▲

If SCSIExecIO returns an error result, the request was rejected and the completion

routine will not be called. This is usually due to an input parameter error.

Completion routines can execute before the XPT returns to your driver. Because the

completion routine may initiate a new request to the driver, it is possible that by the time

control returns to the calling function, the parameter block is being used for a completely

different transaction.

Asynchronous I/O requests from a client to a device driver can occur at interrupt time.

Because you cannot allocate memory at interrupt time, you must reserve memory for

parameter blocks, scatter/gather lists, and any other structures you need when the

driver is initialized. You cannot use the stack for this purpose (as you can for

synchronous requests) because parameters on the stack are discarded when the device

driver returns from its prime routine.

Asynchronous requests may start at any time and may end at any time. There is no

implied ordering of requests with respect to when they were issued. An earlier request

may start later, or a later request may complete earlier. However, a series of requests to

the same device (bus number, target ID, and LUN) is issued to that device in the order

received (unless the scsiSIMQHead flag is set in the scsiFlags field of the SCSI I/O

parameter block, in which case the request is inserted at the head of the queue).

Handling Immediate Requests
If your device driver supports immediate requests, it must be reentrant. The Device

Manager neither sets nor checks the drvrActive flag in the dCtlFlags field of the

device control entry before making an immediate request. Asynchronous operation

makes it even more likely that an immediate request will happen when your driver is

busy because the immediate request may have been made from application time while

your driver was asynchronous. When this happens you need to be careful not to reuse

parameter blocks or other variables that might be busy.

C H A P T E R 4

SCSI Manager 4.3

4-14 Writing a SCSI Device Driver

Virtual Memory Compatibility
Because page faults can occur while interrupts are disabled, SCSI device drivers can

receive synchronous I/O requests from the Virtual Memory Manager when the processor

interrupt level is not 0. The SCSI Manager handles the resulting SCSI transaction without

the benefit of interrupts. This requires that all synchronous wait loops be performed

either in the SCSI Manager or in the Device Manager, where code is provided to poll the

SCSI interrupt sources.

When your driver receives a synchronous I/O request, it can issue the subsequent SCSI

I/O request synchronously as well, or it can issue the SCSI request asynchronously and

return to the Device Manager. This second option is generally preferred because it

simplifies driver design. The Device Manager waits for the synchronous request to

complete, allowing your driver to handle it asynchronously. The driver should jump

to IODone after it receives the SCSI completion callback. If a single driver request

translates to multiple SCSI requests, and your driver handles them asynchronously, the

driver should not call IODone until after the callbacks for all of the SCSI requests have

been received.

IMPORTANT

Because SCSI completion routines must not cause a page fault, all
code and data used by SCSI completion routines must be held in real
memory. This is automatic for device drivers loaded in the system
heap. Applications (or drivers within applications) must use the
HoldMemory function to ensure their completion routine code and
data is held. See the chapter “Virtual Memory Manager” in
Inside Macintosh: Memory for more information. ▲

C H A P T E R 4

SCSI Manager 4.3

Writing a SCSI Interface Module 4-15

Writing a SCSI Interface Module

This section provides additional information that HBA developers need to write a

SCSI interface module.

SIM Initialization and Operation
When SCSI Manager 4.3 is present in ROM, the Start Manager loads any SIM drivers it

finds in the declaration ROM of all installed expansion cards. A SIM driver may contain

the actual SIM, or it may contain code to load the SIM from some other location (such as

a device attached to the expansion card). The Start Manager searches for SIM drivers

using the Slot Manager SNextTypeSRsrc function, and loads all drivers matching

the following criteria:

After loading a SIM driver, the Start Manager calls the driver’s open routine. If the SIM

is contained in the driver, it should register itself with the XPT at this time. If the

registration is successful, the open routine should return noErr. If the open routine

returns an error result, the Start Manager removes the driver from the unit table and

releases it from memory. A SIM loader can use this technique to remove itself after

loading and registering the actual SIM. Because no other driver entry points are used,

you do not need to implement the close, prime, status, or control routines, but they

should return appropriate errors.

For Macintosh models that do not include SCSI Manager 4.3 in ROM, your SIM can either

provide its own temporary XPT or wait until SCSI Manager 4.3 is installed by the system

before registering with the XPT. If you wait for SCSI Manager 4.3 to load, devices on your

bus cannot be used as the boot device or as the paging device for virtual memory but can

be mounted after SCSI Manager 4.3 is running and your bus is registered.

If your SIM supplies its own XPT, your SIM and XPT must be prepared for the

possibility that a system patch will install a new XPT later. To provide a consistent

environment for driver clients of your SIM when the XPT is replaced, your XPT must

maintain information about any virtual ID numbers it assigns (including a driver

registration table) and correctly fill in the XPT fields of the bus inquiry record. When

the SCSI Manager4.3 XPT loads, it uses the SCSIGetVirtualIDInfo,

SCSILookupRefNumXref, and SCSIBusInquiry functions to query your XPT, then

calls the SetTrapAddress function to install itself. Next, it uses your XPT to send a

SCSIRegisterWithNewXPT command to each registered SIM. A SIM must respond

by using the SCSIReregisterBus function to export its assigned bus number, entry

points, and static data storage pointer to the new XPT. Finally, the SCSI Manager 4.3

XPT calls your XPT with a SCSIKillXPT command. Your XPT should then release

any memory it has allocated and remove or disable any patches it may have installed.

sResource type Constant Value

spCatagory CatIntBus 12

spCType TypSIM 12

spDrvrSW DrvrSwScsi43 1

C H A P T E R 4

SCSI Manager 4.3

4-16 Writing a SCSI Interface Module

Your XPT must reserve bus number 0 for the built-in SCSI bus. For Macintosh computers

with dual SCSI buses, you must reserve bus numbers 0 and 1. If the SCSI Manager 4.3

XPT is installed after your XPT, it will assign these bus numbers to the built-in buses.

After determining the presence of the XPT, a SIM should register itself using the

SCSIRegisterBus function. The SIM initialization record for this request contains the

SIM’s function entry points, required static data storage size, and the oldCallCapable

status of the SIM. The SIM initialization record, defined by the SIMInitInfo data type,

is shown on page 4-36. The XPT allocates the requested number of bytes for the SIM’s

static storage, fills in the appropriate fields of the SIM initialization record, and then calls

the SIM’s SIMInit function. If the SIMInit function returns noErr, the XPT completes

the registration process, making the SIM available to the system. If SIMInit returns an

error, the registration request fails.

Once the registration is complete, the XPT makes calls to the SIMAction entry point

whenever a SCSIAction request is received that is destined for this bus. The XPT

passes a pointer to the parameter block and a pointer to the SIM’s static storage to

the SIMAction function. The SIM should parse the parameter block for illegal or

unsupported parameters and return an error result if necessary. After queuing the

request, the SIMAction function should return to the XPT. When the request completes,

the SIM calls the XPT’s MakeCallback function with the appropriate parameter block.

The XPT then calls the client’s completion routine.

Other types of requests should be implemented to conform to the function descriptions

provided in this chapter. Functions or features not implemented by the SIM should

return appropriate errors (for example, scsiFunctionNotAvailable or

scsiProvideFail).
The SIMInteruptPoll function is called during the Device Manager’s synchronous

wait loop to give time to the SIM when interrupts are masked. The sole parameter is a

pointer to the SIM’s static data, which is passed on the stack. Because this call does not

imply the presence of an interrupt, the SIM should check for interrupts before proceeding.

The EnteringSIM and ExitingSIM functions provide compatibility with the Virtual

Memory Manager and should be called every time the SIM is entered and exited,

respectively. In other words, these two function calls should surround all SIM entry and

exit points, including interrupt handlers and callbacks to client code made through the

MakeCallback function.

Parameter blocks must appear to the client to be queued on a per-LUN basis, because

queue freezing and unfreezing are performed one LUN at a time. The actual

implementation may vary as long as this appearance is maintained.

Supporting the Original SCSI Manager
If your SIM indicates that it is capable of supporting original SCSI Manager functions,

the XPT adds it to the list of buses that are searched when a SCSISelect request is

received.

C H A P T E R 4

SCSI Manager 4.3

Writing a SCSI Interface Module 4-17

The XPT is responsible for converting original SCSI Manager functions into the proper

format and submitting them to the SIM. It also receives the results for each of the

functions from the SIM and returns them to the client.

When it receives a SCSIGet request, the XPT simply notes that the call was made by

setting an internal flag, then returns to the caller. In response to a SCSISelect request,

the XPT generates a SCSIOldCall request and submits it to the SIM’s SIMAction

entry point. The scsiDevice field of the parameter block contains the bus number

of the SIM, the target ID specified in the SCSISelect request, and a LUN of 0. This

parameter block should be queued like any other.

When your SIM receives a SCSIOldCall request, it should attempt to select the device

and return a result code to the XPT in the scsiOldCallResult field of the parameter

block (scsiRequestComplete if successful and scsiSelectTimeout if not).

Intermediate function results are not communicated through the scsiResult field

because this would be interpreted as completion of the entire transaction rather

than only the portion of the transaction resulting from a single original function. As

subsequent original function calls are made, the XPT fills in the appropriate fields

of the parameter block and calls the SIM’s NewOldCall entry point. Table 4-1 shows

the original function parameters and the fields that are filled in by the XPT.

To provide the highest level of compatibility with the original SCSI Manager, a SIM

should be able to perform a SCSI arbitration and select process independently of a SCSI

message-out or command phase. A SIM that requires the CDB or message-out bytes in

order to perform a select operation will be unable to execute the SCSISelect function

Table 4-1 Original SCSI Manager parameter conversion

Function Parameter Direction Parameter block field Notes

SCSIGet XPT handles internally.

SCSISelect targetID → scsiDevice bus set by XPT, LUN = 0.

SCSICmd buffer
count

→
→

scsiCDB
scsiCDBLength

Field is a pointer.

SCSIRead,
SCSIWrite,
SCSIRBlind,
SCSIWBlind

tibPtr → scsiDataPtr Field is a pointer.

SCSIComplete stat
message
wait

←
←
→

scsiSCSIstatus
scsiSCSImessage
scsiTimeout

Field contains status.
Field contains message.
Time in Time Manager format.

SCSIMsgIn message ← scsiSCSImessage Field contains message.

SCSIMsgOut message → scsiSCSImessage Field contains message.

SCSIReset Translated to SCSIResetBus.

SCSIStat XPT handles internally.

C H A P T E R 4

SCSI Manager 4.3

4-18 Writing a SCSI Interface Module

properly, and must always return noErr to a SCSISelect request. This can create a

false indication of the presence of a device at a SCSI ID, causing all future SCSISelect

requests to that SCSI ID to be directed only to that bus. Devices installed on buses that

registered after that bus would not be accessible through the original interface.

Handshaking of Blind Transfers
Handshaking instructions are used to prevent bus errors when a target fails to

deliver the next byte within the processor bus error timeout period. This timeout is

250 milliseconds for the Macintosh SE and 16 microseconds for all Macintosh models

since the Macintosh II.

The SCSI Manager 4.3 SIM requires this handshaking information for blind transfers

when DMA is not available. Your SIM does not need to pay attention to the

scsiHandshake field unless your hardware requires it.

Supporting DMA
DMA typically requires that the data buffer affected by the transfer be locked (so that the

physical address does not change) and that it be non-cacheable. SCSI Manager 4.3

provides an improved version of the LockMemory function, which you can call at

interrupt time as long as the affected pages are already held in real memory. You can also

call the GetPhysical function at interrupt time, but only on pages that are locked.

Loading Drivers
The Start Manager is normally responsible for loading SCSI drivers. However, if the

startup device specified in PRAM is on a third-party HBA and the SIM is a Slot Manager

device, the Start Manager will call the boot record of the card’s declaration ROM. The

boot record code should examine the dCtlExtDev field to determine which SCSI device

is the startup device and then load a driver from that device (and only that device).

All other drivers are loaded by the Start Manager, but SIMs are given the opportunity

to override this if necessary. Before the Start Manager attempts to load a driver from a

device, it calls the SIM with a SCSILoadDriver request. If the function succeeds, the

Start Manager does nothing further with that device. If the function fails (the normal

case), the Start Manager reads the partition map on the device and loads a driver from it.

If this fails, the Start Manager calls the SIM again with a SCSILoadDriver request, this

time with the scsiDiskLoadFailed parameter set to indicate that no driver was

available on the media.

This facility allows a SIM to provide a default driver to be used instead of any driver that

may be on the device. For example, if a SIM does support the original SCSI Manager, it

can use the second SCSILoadDriver request to load a SCSI Manager 4.3-compatible

driver if none is present on the device.

C H A P T E R 4

SCSI Manager 4.3

SCSI Manager 4.3 Reference 4-19

SCSI Manager 4.3 Reference

This section describes the data structures, functions, and constants that are specific to

SCSI Manager 4.3.

The “Data Structures” section shows the C declarations for the data structures defined

by SCSI Manager 4.3.

The “SCSI Manager 4.3 Functions” section describes the functions you use to communicate

with SCSI devices, the functions that a SIM uses to communicate with the XPT, and the

functions a SIM must include in order to be compatible with SCSI Manager 4.3.

Data Structures

This section describes the parameter blocks you use to communicate with the

SCSI Manager and the data structures you use to define values within them.

IMPORTANT

Always set unused or reserved fields to 0 before passing a parameter
block to any of the SCSI Manager 4.3 functions. ▲

Simple Data Types

SCSI Manager 4.3 uses these simple data types:

typedef char SInt8;

typedef short SInt16;

typedef long SInt32;

typedef unsigned char UInt8;

typedef unsigned short UInt16;

typedef unsigned long UInt32;

Device Identification Record

You use the device identification record to specify a target device by its bus, SCSI ID,

and logical unit number (LUN). The device identification record is defined by the

DeviceIdent data type.

struct DeviceIdent

{

UInt8 diReserved;

UInt8 bus;

UInt8 targetID;

UInt8 LUN;

};

typedef struct DeviceIdent DeviceIdent;

C H A P T E R 4

SCSI Manager 4.3

4-20 SCSI Manager 4.3 Reference

Field descriptions

bus The bus number of the SIM/HBA for the target device.

targetID The SCSI ID number of the target device.

LUN The target LUN, or 0 if the device does not support logical units.

Command Descriptor Block Record

You use the command descriptor block record to pass SCSI commands to the

SCSIAction function. The SCSI commands can be stored within this structure, or

you can provide a pointer to them. You set the scsiCDBIsPointer flag in the SCSI

parameter block if this record contains a pointer.

The command descriptor block record is defined by the CDB data type.

union CDB

{

UInt8 *cdbPtr;

UInt8 cdbBytes[maxCDBLength];

};

typedef union CDB CDB, *CDBPtr;

Field descriptions

cdbPtr A pointer to a buffer containing a CDB.

cdbBytes A buffer in which you can place a CDB.

Scatter/Gather List Element

You use scatter/gather lists to specify the data buffers to be used for a transfer. A

scatter/gather list consists of one or more elements, each of which describes the location

and size of one buffer.

The scatter/gather list element is defined by the SGRecord data type.

struct SGRecord

{

Ptr SGAddr;

SInt32 SGCount;

};

typedef struct SGRecord SGRecord;

Field descriptions

SGAddr A pointer to a data buffer.

SGCount The size of the data buffer, in bytes.

C H A P T E R 4

SCSI Manager 4.3

SCSI Manager 4.3 Reference 4-21

SCSI Manager Parameter Block Header

You use the SCSI Manager parameter block to pass information to the SCSIAction

function. Because many of the functions that you access through SCSIAction require

additional information, the parameter block consists of a common header (SCSIPBHdr)

followed by function-specific fields, if any. This section describes the parameter block

header common to all SCSIAction functions. The function-specific extensions are

described in the following sections.

The SCSI Manager parameter block header is defined by the SCSI_PB data type.

#define SCSIPBHdr \

struct SCSIHdr *qLink; \

SInt16 scsiReserved1; \

UInt16 scsiPBLength; \

UInt8 scsiFunctionCode; \

UInt8 scsiReserved2; \

OSErr scsiResult; \

DeviceIdent scsiDevice; \

CallbackProc scsiCompletion;\

UInt32 scsiFlags; \

UInt8 *scsiDriverStorage;\

Ptr scsiXPTprivate; \

SInt32 scsiReserved3;

struct SCSI_PB

{

SCSIPBHdr

};

typedef struct SCSI_PB SCSI_PB;

Field descriptions

qLink A pointer to the next entry in the request queue. This field is used
internally by the SCSI Manager and must be set to 0 when the
parameter block is initialized. The SCSI Manager functions always
set this field to 0 before returning, so you do not need to set it to 0
again before reusing a parameter block.

scsiPBLength The size of the parameter block, in bytes, including the parameter
block header.

scsiFunctionCode
A function selector code that specifies the service being requested.
Table 4-2 on page 4-39 lists these codes.

scsiResult The result code returned by the XPT or SIM when the function
completes. The value scsiRequestInProgress indicates that the
request is still in progress or queued.

C H A P T E R 4

SCSI Manager 4.3

4-22 SCSI Manager 4.3 Reference

scsiDevice A 4-byte value that uniquely identifies the target device for a
request. The DeviceIdent data type designates the bus number,
target SCSI ID, and logical unit number (LUN).

scsiCompletion A pointer to a completion routine.

scsiFlags Flags indicating the transfer direction and any special handling
required for this request.

scsiDirectionMask
A bit field that specifies transfer direction, using
these constants:

scsiDirectionIn Data in
scsiDirectionOut Data out
scsiDirectionNone No data phase expected

scsiDisableAutosense
Disable the automatic REQUEST SENSE feature.

scsiCDBLinked
The parameter block contains a linked CDB. This
option may not be supported by all SIMs.

scsiQEnable Enable target queue actions. This option may not
be supported by all SIMs.

scsiCDBIsPointer
Set if the scsiCDB field of a SCSI I/O parameter
block contains a pointer. If clear, the scsiCDB
field contains the actual CDB. In either case, the
scsiCDBLength field contains the number of
bytes in the SCSI command descriptor block.

scsiInitiateSyncData
Set if the SIM should attempt to initiate a
synchronous data transfer by sending the SDTR
message. If successful, the device normally
remains in the synchronous transfer mode until it
is reset or until you specify asynchronous mode
by setting the scsiDisableSyncData flag.
Because SDTR negotiation occurs every time this
flag is set, you should set it only when negotiation
is actually needed.

scsiDisableSyncData
Disable synchronous data transfer. The SIM sends
an SDTR message with a REQ/ACK offset of 0 to
indicate asynchronous data transfer mode. You
should set this flag only when negotiation is
actually needed.

scsiSIMQHead Place the parameter block at the head of the SIM
queue. This can be used to insert error handling at
the head of a frozen queue.

scsiSIMQFreeze
Freeze the SIM queue after completing this
transaction. See “Error Recovery Techniques” on
page 4-10 for information about using this flag.

C H A P T E R 4

SCSI Manager 4.3

SCSI Manager 4.3 Reference 4-23

scsiDriverStorage
A pointer to the device driver’s private storage. This field is not
affected or used by the SCSI Manager.

SCSI I/O Parameter Block

You use the SCSI I/O parameter block to pass information to the SCSIExecIO function.

The SCSI I/O parameter block is defined by the SCSIExecIOPB data type.

#define SCSI_IO_Macro \

SCSIPBHdr \

UInt16 scsiResultFlags; \

UInt16 scsiReserved12; \

UInt8 *scsiDataPtr; \

SInt32 scsiDataLength; \

UInt8 *scsiSensePtr; \

SInt8 scsiSenseLength; \

UInt8 scsiCDBLength; \

UInt16 scsiSGListCount; \

UInt32 scsiReserved4; \

UInt8 scsiSCSIstatus; \

SInt8 scsiSenseResidual; \

UInt16 scsiReserved5; \

SInt32 scsiDataResidual; \

CDB scsiCDB; \

SInt32 scsiTimeout; \

UInt8 *scsiReserved13; \

UInt16 scsiReserved14; \

UInt16 scsiIOFlags; \

UInt8 scsiTagAction; \

scsiSIMQNoFreeze
Disable SIM queue freezing for this transaction.

scsiDoDisconnect
Explicitly allow device to disconnect.

scsiDontDisconnect
Explicitly prohibit device disconnection. If this flag
and the scsiDoDisconnect flag are both 0, the
SIM determines whether to allow or prohibit
disconnection, based on performance criteria.

scsiDataReadyForDMA
Data buffer is locked and non-cacheable.

scsiDataPhysical
Data buffer address is physical.

scsiSensePhysical
Autosense data pointer is physical.

C H A P T E R 4

SCSI Manager 4.3

4-24 SCSI Manager 4.3 Reference

UInt8 scsiReserved6; \

UInt16 scsiReserved7; \

UInt16 scsiSelectTimeout; \

UInt8 scsiDataType; \

UInt8 scsiTransferType; \

UInt32 scsiReserved8; \

UInt32 scsiReserved9; \

UInt16 scsiHandshake[8]; \

UInt32 scsiReserved10; \

UInt32 scsiReserved11; \

struct SCSI_IO *scsiCommandLink; \

UInt8 scsiSIMpublics[8]; \

UInt8 scsiAppleReserved6[8]; \

UInt16 scsiCurrentPhase; \

SInt16 scsiSelector; \

OSErr scsiOldCallResult; \

UInt8 scsiSCSImessage; \

UInt8 XPTprivateFlags; \

UInt8 XPTextras[12];

struct SCSI_IO

{

SCSI_IO_Macro

};

typedef struct SCSI_IO SCSI_IO;

typedef SCSI_IO SCSIExecIOPB;

Field descriptions

SCSIPBHdr A macro that includes the SCSI Manager parameter block header,
described on page 4-21.

scsiResultFlags
Output flags that modify the scsiResult field.

scsiSIMQFrozen
The SIM queue for this LUN is frozen because of
an error. You must call the SCSIReleaseQ
function to release the queue and resume
processing requests.

scsiAutosenseValid
An automatic REQUEST SENSE was performed
after this I/O because of a CHECK CONDITION
status message from the device. The data
contained in the scsiSensePtr buffer is valid.

scsiBusNotFree
The SCSI Manager was unable to clear the bus
after an error. You may need to call the
SCSIResetBus function to restore operation.

C H A P T E R 4

SCSI Manager 4.3

SCSI Manager 4.3 Reference 4-25

scsiDataPtr A pointer to a data buffer or scatter/gather list. You specify the data
type using the scsiDataType field.

scsiDataLength The amount of data to be transferred, in bytes.

scsiSensePtr A pointer to the autosense data buffer. If autosense is enabled (the
scsiDisableAutosense flag is not set), the SCSI Manager
returns REQUEST SENSE information in this buffer.

scsiSenseLength The size of the autosense data buffer, in bytes.

scsiCDBLength The length of the SCSI command descriptor block, in bytes.

scsiSGListCount The number of elements in the scatter/gather list.

scsiSCSIstatus The status returned by the SCSI device.

scsiSenseResidual
The automatic REQUEST SENSE residual length (that is, the
number of bytes that were expected but not transferred). This
number is negative if extra bytes had to be transferred to force the
target off of the bus.

scsiDataResidual
The data transfer residual length (that is, the number of bytes that
were expected but not transferred). This number is negative if extra
bytes had to be transferred to force the target off the bus.

scsiCDB This field can contain either the actual CDB or a pointer to the CDB.
You set the scsiCDBIsPointer flag if this field contains a pointer.

scsiTimeout The length of time the SIM should allow before reporting a timeout
of the SCSI bus. The time value is represented in Time Manager
format (positive values for milliseconds, negative values for
microseconds). The timer is started when the I/O request is sent to
the target. If the request does not complete within the specified
time, the SIM attempts to issue an ABORT message, either by
reselecting the device or by asserting the attention (/ATN) signal.
A value of 0 specifies the default timeout for the SIM. The default
timeout for the SCSI Manager 4.3 SIM is infinite (that is, no timeout).

scsiIOFlags Additional I/O flags describing the data transfer.

scsiNoParityCheck
Disable parity error detection for this transaction.

scsiDisableSelectWAtn
Do not send the IDENTIFY message for LUN
selection. The LUN is still required in the
scsiDevice field so that the request can be
placed in the proper queue. The LUN field in the
CDB is untouched. The purpose is to provide
compatibility with older devices that do not
support this aspect of the SCSI-2 specification.

scsiSavePtrOnDisconnect
Perform a SAVE DATA POINTER operation
automatically in response to a DISCONNECT
message from the target. The purpose of this flag
is to provide compatibility with devices that do
not properly implement this aspect of the SCSI-2
specification.

C H A P T E R 4

SCSI Manager 4.3

4-26 SCSI Manager 4.3 Reference

scsiTagAction Reserved.

scsiSelectTimeout
An optional SELECT timeout value, in milliseconds. The default
is 250 ms, as specified by SCSI-2. The accuracy of this period is
dependent on the HBA. A value of 0 specifies the default timeout.
Some SIMs ignore this parameter and always use a value of 250 ms.

scsiNoBucketIn
Prohibit bit-bucketing during the data-in phase
of the transaction. Bit-bucketing is the practice of
throwing away excess data bytes when a target
tries to supply more data than the initiator
expects. For example, if the CDB requests more
data than you specified in the scsiDataLength
field, the SCSI Manager normally throws away
the excess and returns the scsiDataRunError
result code. If this flag is set, the SCSI Manager
refuses any extra data, terminates the I/O
request, and leaves the bus in the data-in phase.
You must reset the bus to restore operation. This
flag is intended only for debugging purposes.

scsiNoBucketOut
Prohibit bit-bucketing during the data-out phase
of the transaction. If a target requests more data
than you specified in the scsiDataLength field,
the SCSI Manager normally sends an arbitrary
number of meaningless bytes (0xEE) until the
target releases the bus. If this flag is set, the
SCSI Manager terminates the I/O request when
the last byte is sent and leaves the bus in the
data-out phase. You must reset the bus to restore
operation. This flag is intended only for
debugging purposes.

scsiDisableWide
Disable wide data transfer negotiation for this
transaction if it had been previously enabled.
This option may not be supported by all SIMs.

scsiInitiateWide
Attempt wide data transfer negotiation for
this transaction if it is not already enabled. This
option may not be supported by all SIMs.

scsiRenegotiateSense
Attempt to renegotiate synchronous or wide
transfers before issuing a REQUEST SENSE.
This is necessary when the error was caused
by problems operating in synchronous or wide
transfer mode. It is optional because some devices
flush sense data after performing negotiation.

C H A P T E R 4

SCSI Manager 4.3

SCSI Manager 4.3 Reference 4-27

scsiDataType The data type pointed to by the scsiDataPtr field. You specify
the type using one of the following constants:

scsiTransferType
The type of transfer mode to use during the data phase. You
specify the type using one of the following constants:

scsiHandshake[8]
Handshaking instructions for blind transfers, consisting of an array
of word values, terminated by 0. The SIM polls for data ready after
transferring the amount of data specified in each successive
scsiHandshake entry. When it encounters a 0 value, the SIM
starts over at the beginning of the list. Handshaking always starts
from the beginning of the list every time a device transitions to data
phase. See “Handshaking Instructions,” beginning on page 4-9, for
more information.

scsiCommandLink
A pointer to a linked parameter block. This field provides support for
SCSI linked commands. This optional feature ensures that a set of
commands sent to a device are executed in sequential order without
interference from other applications. You create a list of commands
using this pointer to link additional parameter blocks. Each
parameter block except the last should have the scsiCDBLinked
flag set in the scsiFlags field. A CHECK CONDITION status from
the device will abort linked command execution. Linked commands
may not be supported by all SIMs.

scsiSIMpublics[8]
An additional input field available for use by SIM developers.

scsiDataBuffer
The scsiDataPtr field contains a pointer to a
contiguous data buffer, and the scsiDataLength
field contains the length of the buffer, in bytes.

scsiDataSG The scsiDataPtr field contains a pointer to a
scatter/gather list. The scsiDataLength field
contains the total number of bytes to be transferred,
and the scsiSGListCount field contains the
number of elements in the scatter/gather list.

scsiDataTIB The scsiDataPtr field contains a pointer to a
transfer instruction block. This is used by the XPT
during original SCSI Manager emulation, when
communicating with a SIM that supports this.

scsiTransferBlind
Use DMA, if available; otherwise, perform a blind
transfer using the handshaking information
contained in the scsiHandshake field.

scsiTransferPolled
Use polled transfer mode. The scsiHandshake
field is not required for this mode.

C H A P T E R 4

SCSI Manager 4.3

4-28 SCSI Manager 4.3 Reference

scsiCurrentPhase
The current SCSI bus phase reported by the SIM after handling an
original SCSI Manager function. This field is used only by the XPT and
SIM during original SCSI Manager emulation. The phases are defined
by the following constant values:

enum {

kDataOutPhase,

kDataInPhase,

kCommandPhase,

kStatusPhase,

kPhaseIllegal0,

kPhaseIllegal1,

kMessageOutPhase,

kMessageInPhase,

kBusFreePhase,

kArbitratePhase,

kSelectPhase

};

scsiSelector The function selector code that was passed to the _SCSIDispatch
trap during original SCSI Manager emulation. The SIM uses this
field to determine which original SCSI Manager function to perform.

scsiOldCallResult
The result code from an emulated original SCSI Manager function.
The SIM returns results to all original SCSI Manager functions in
this field, except for the SCSIComplete result, which it returns in
scsiResult.

scsiSCSIMessage The message byte returned by an emulated SCSIComplete
function. This field is only used by the XPT and SIM during original
SCSI Manager emulation.

XPTprivateFlagsReserved.

XPTextras[12] Reserved.

SCSI Bus Inquiry Parameter Block

You use the SCSI bus inquiry parameter block with the SCSIBusInquiry function to

get information about a bus. The SCSI bus inquiry parameter block is defined by

the SCSIBusInquiryPB data type.

struct SCSIBusInquiryPB

{

SCSIPBHdr

UInt16 scsiEngineCount;

UInt16 scsiMaxTransferType;

UInt32 scsiDataTypes;

C H A P T E R 4

SCSI Manager 4.3

SCSI Manager 4.3 Reference 4-29

UInt16 scsiIOpbSize;

UInt16 scsiMaxIOpbSize;

UInt32 scsiFeatureFlags;

UInt8 scsiVersionNumber;

UInt8 scsiHBAInquiry;

UInt8 scsiTargetModeFlags;

UInt8 scsiScanFlags;

UInt32 scsiSIMPrivatesPtr;

UInt32 scsiSIMPrivatesSize;

UInt32 scsiAsyncFlags;

UInt8 scsiHiBusID;

UInt8 scsiInitiatorID;

UInt16 scsiBIReserved0;

UInt32 scsiBIReserved1;

UInt32 scsiFlagsSupported;

UInt16 scsiIOFlagsSupported;

UInt16 scsiWeirdStuff;

UInt16 scsiMaxTarget;

UInt16 scsiMaxLUN;

SInt8 scsiSIMVendor[16];

SInt8 scsiHBAVendor[16];

SInt8 scsiControllerFamily[16];

SInt8 scsiControllerType[16];

SInt8 scsiXPTversion[4];

SInt8 scsiSIMversion[4];

SInt8 scsiHBAversion[4];

UInt8 scsiHBAslotType;

UInt8 scsiHBAslotNumber;

UInt16 scsiSIMsRsrcID;

UInt16 scsiBIReserved3;

UInt16 scsiAdditionalLength;

};

typedef struct SCSIBusInquiryPB SCSIBusInquiryPB;

Field descriptions

SCSIPBHdr A macro that includes the SCSI Manager parameter block header,
described on page 4-21.

scsiEngineCount
The number of engines on the HBA. This value is 0 for a built-in
SCSI bus. See the CAM specification for information about HBA
engines.

scsiMaxTransferType
The number of data transfer types available on the HBA.

C H A P T E R 4

SCSI Manager 4.3

4-30 SCSI Manager 4.3 Reference

scsiDataTypes A bit mask describing the data types supported by the SIM/HBA.
Bits 3 through 15 and bit 31 are reserved by Apple Computer, Inc.
Bits 16 through 30 are available for use by SIM developers. The
following bits are currently defined. These types correspond to the
scsiDataType field of the SCSI I/O parameter block.

enum {

scsiBusDataBuffer = 0x00000001,

scsiBusDataTIB = 0x00000002,

scsiBusDataSG = 0x00000004,

/* bits 3 to 15 are reserved by Apple */

/* bits 16 to 30 are available for 3rd parties */

scsiBusDataReserved = 0x80000000

};

scsiIOpbSize The minimum size of a SCSI I/O parameter block for this SIM.

scsiMaxIOpbSize The minimum size of a SCSI I/O parameter block for all currently
registered SIMs. That is, the largest registered scsiIOpbSize.

scsiFeatureFlags
These flags describe various physical characteristics of the SCSI bus.

scsiVersionNumber
The version number of the SIM/HBA.

scsiBusInternal
The bus is at least partly internal to the computer.

scsiBusExternal
The bus extends outside of the computer.

scsiBusInternalExternal
The bus is both internal and external.

scsiBusInternalExternalUnknown
The internal/external state of the bus is unknown.

scsiBusCacheCoherentDMA
DMA is cache coherent.

scsiBusOldCallCapable
The SIM supports the original SCSI Manager
interface.

scsiBusDifferential
The bus uses a differential SCSI interface.

scsiBusFastSCSI
The bus supports SCSI-2 fast data transfers.

scsiBusDMAavailable
DMA is available.

C H A P T E R 4

SCSI Manager 4.3

SCSI Manager 4.3 Reference 4-31

scsiHBAInquiry Flags describing the capabilities of the bus.

scsiTargetModeFlags
Reserved.

scsiScanFlags Reserved.

scsiSIMPrivatesPtr
A pointer to the SIM’s private storage.

scsiSIMPrivatesSize
The size of the SIM’s private storage, in bytes.

scsiAsyncFlags Reserved.

scsiHiBusID The highest bus number currently registered with the XPT. If no
buses are registered, this field contains 0xFF (the ID of the XPT).

scsiInitiatorID
The SCSI ID of the HBA. This value is 7 for a built-in SCSI bus.

scsiFlagsSupported
A bit mask that defines which scsiFlags bits are supported.

scsiIOFlagsSupported
A bit mask that defines which scsiIOFlags bits are supported.

scsiWeirdStuff Flags that identify unusual aspects of a SIM’s operation.

scsiBusMDP Supports the MODIFY DATA POINTER message.

scsiBusWide32 Supports 32-bit wide transfers.

scsiBusWide16 Supports 16-bit wide transfers.

scsiBusSDTR Supports synchronous transfers.

scsiBusLinkedCDB
 Supports linked commands.

scsiBusTagQ Supports tagged queuing.

scsiBusSoftReset
 Supports soft reset.

scsiOddDisconnectUnsafeRead1
Indicates that a disconnect or other phase change
on a odd byte boundary during a read operation
will result in inaccurate residual counts or data
loss. If your device can disconnect on odd bytes,
use polled transfers instead of blind.

scsiOddDisconnectUnsafeWrite1
Indicates that a disconnect or other phase change
on a odd byte boundary during a write operation
will result in inaccurate residual counts or data
loss. If your device can disconnect on odd bytes,
use polled transfers instead of blind.

scsiBusErrorsUnsafe
Indicates that a delay of more than 16 microseconds
or a phase change during a blind transfer on a non-
handshaked boundary may cause a system crash.
If you cannot predict where delays or disconnects
will occur, use polled transfers.

C H A P T E R 4

SCSI Manager 4.3

4-32 SCSI Manager 4.3 Reference

scsiMaxTarget The highest SCSI ID value supported by the HBA.

scsiMaxLUN The highest logical unit number supported by the HBA.

scsiSIMVendor[16]
An ASCII text string that identifies the SIM vendor. This field
returns 'Apple Computer' for a built-in SCSI bus.

scsiHBAVendor[16]
An ASCII text string that identifies the HBA vendor. This field
returns 'Apple Computer' for a built-in SCSI bus.

scsiControllerFamily[16]
An optional ASCII text string that identifies the family of parts to
which the SCSI controller chip belongs. This information is
provided at the discretion of the HBA vendor.

scsiControllerType[16]
An optional ASCII text string that identifies the specific type of SCSI
controller chip. This information is provided at the discretion of the
HBA vendor.

scsiXPTversion[4]
An ASCII text string that identifies the version number of the XPT.
You should use the other fields of this parameter block to check for
specific features, rather than relying on this value.

scsiSIMversion[4]
An ASCII text string that identifies the version number of the SIM.
You should use the other fields of this parameter block to check for
specific features, rather than relying on this value.

scsiHBAversion[4]
An ASCII text string that identifies the version number of the HBA.
You should use the other fields of this parameter block to check for
specific features, rather than relying on this value.

scsiHBAslotType The slot type, if any, used by this HBA. You specify the type using
one of the following constants:

scsiRequiresHandshake
Indicates that a delay of more than 16 microseconds
or a phase change during a blind transfer on a
non-handshaked boundary may result in inaccurate
residual counts or data loss. If you cannot predict
where delays or disconnects will occur, use polled
transfers.

scsiTargetDrivenSDTRSafe
Indicates that the SIM supports target-initiated
synchronous data transfer negotiation. If your
device supports this feature and this bit is not set,
you must set the scsiDisableSelectWAtn flag
in the scsiIOFlags field.

scsiMotherboardBus
A built-in SCSI bus.

scsiNuBus A NuBus slot.

scsiPDSBus A processor-direct slot.

C H A P T E R 4

SCSI Manager 4.3

SCSI Manager 4.3 Reference 4-33

scsiHBAslotNumber
The slot number for the SIM. Device drivers should copy this value
into the dCtlSlot field of the device control entry. This value is 0
for a built-in SCSI bus.

scsiSIMsRsrcID The sResource ID for the SIM. Device drivers should copy this value
into the dCtlSlotID field of the device control entry. This value is
0 for a built-in SCSI bus.

scsiAdditionalLength
The additional size of this parameter block, in bytes. If this structure
includes extra fields to return additional information, this field
contains the number of additional bytes.

SCSI Abort Command Parameter Block

You use the SCSI abort command parameter block to identify the SCSI I/O parameter

block to be canceled by the SCSIAbortCommand function. The SCSI abort command

parameter block is defined by the SCSIAbortCommandPB data type.

struct SCSIAbortCommandPB

{

SCSIPBHdr

SCSI_IO * scsiIOptr;

};

typedef struct SCSIAbortCommandPB SCSIAbortCommandPB;

Field descriptions

SCSIPBHdr A macro that includes the SCSI Manager parameter block header,
described on page 4-21.

scsiIOptr A pointer to the parameter block to be canceled.

SCSI Terminate I/O Parameter Block

You use the SCSI terminate I/O parameter block to identify the SCSI I/O parameter

block to be canceled by the SCSITerminateIO function. The SCSI terminate I/O

parameter block is defined by the SCSITerminateIOPB data type.

struct SCSITerminateIOPB

{

SCSIPBHdr

SCSI_IO * scsiIOptr;

};

typedef struct SCSITerminateIOPB SCSITerminateIOPB;

Field descriptions

SCSIPBHdr A macro that includes the SCSI Manager parameter block header,
described on page 4-21.

C H A P T E R 4

SCSI Manager 4.3

4-34 SCSI Manager 4.3 Reference

scsiIOptr A pointer to the parameter block to be canceled.

SCSI Virtual ID Information Parameter Block

You use the SCSI virtual ID information parameter block with the

SCSIGetVirtualIDInfo function to get the device identification record for a device

on the virtual bus. The SCSI virtual ID information parameter block is defined by

the SCSIGetVirtualIDInfoPB data type.

struct SCSIGetVirtualIDInfoPB

{

SCSIPBHdr

UInt16 scsiOldCallID;

Boolean scsiExists;

};

typedef struct SCSIGetVirtualIDInfoPB SCSIGetVirtualIDInfoPB;

Field descriptions

SCSIPBHdr A macro that includes the SCSI Manager parameter block header,
described on page 4-21. The device information record is returned
in the scsiDevice field of the parameter block header.

scsiOldCallID The virtual SCSI ID of the device you are searching for.

scsiExists The XPT returns true in this field if the scsiDevice field contains
a valid device identification record.

SCSI Load Driver Parameter Block

The Start Manager uses this parameter block with the SCSILoadDriver function to

load a driver for a SCSI device. The SCSI load driver parameter block is defined by

the SCSILoadDriverPB data type.

struct SCSILoadDriverPB

{

SCSIPBHdr

SInt16 scsiLoadedRefNum;

Boolean scsiDiskLoadFailed;

};

typedef struct SCSILoadDriverPB SCSILoadDriverPB;

Field descriptions

SCSIPBHdr A macro that includes the SCSI Manager parameter block header,
described on page 4-21.

scsiLoadedRefNum
If the driver is successfully loaded, this field contains the driver
reference number returned by the SIM.

C H A P T E R 4

SCSI Manager 4.3

SCSI Manager 4.3 Reference 4-35

scsiDiskLoadFailed
If this field is set to true, the SIM should attempt to load its own
driver regardless of whether there is one on the device. If this field
is set to false, the SIM has the option of loading a driver from the
device or using one of its own.

SCSI Driver Identification Parameter Block

You use the SCSI driver identification parameter block with the

SCSICreateRefNumXref, SCSILookupRefNumXref, and SCSIRemoveRefNumXref

functions to exchange device driver registration information. The SCSI driver

identification parameter block is defined by the SCSIDriverPB data type.

struct SCSIDriverPB

{

SCSIPBHdr

SInt16 scsiDriver;

UInt16 scsiDriverFlags;

DeviceIdent scsiNextDevice;

};

typedef struct SCSIDriverPB SCSIDriverPB;

Field descriptions

SCSIPBHdr A macro that includes the SCSI Manager parameter block header,
described on page 4-21.

scsiDriver The driver reference number of the device driver associated with
this device identification record.

scsiDriverFlags
Driver information flags. These flags are not interpreted by the XPT
but can be used to provide information about the driver to other
clients. The following flags are defined:

scsiNextDevice The device identification record of the next device in the driver
registration list.

scsiDeviceSensitive
Only the device driver should access this device.
SCSI utilities and other applications that bypass
drivers should check this flag before accessing a
device.

scsiDeviceNoOldCallAccess
This driver or device does not accept original
SCSI Manager requests.

C H A P T E R 4

SCSI Manager 4.3

4-36 SCSI Manager 4.3 Reference

SIM Initialization Record

You use the SIM initialization record to provide information about your SIM when you

register it with the XPT using the SCSIRegisterBus function. The SIM initialization

record is defined by the SIMInitInfo data type.

struct SIMInitInfo {

UInt8 *SIMstaticPtr;

SInt32 staticSize;

SIMInitProc SIMInit;

SIMActionProc SIMAction;

SCSIProc SIM_ISR;

InterruptPollProc SIMInterruptPoll;

SIMActionProc NewOldCall;

UInt16 ioPBSize;

Boolean oldCallCapable;

UInt8 simInfoUnused1;

SInt32 simInternalUse;

SCSIProc XPT_ISR;

SCSIProc EnteringSIM;

SCSIProc ExitingSIM;

MakeCallbackProc MakeCallback;

UInt16 busID;

UInt16 simInfoUnused3;

SInt32 simInfoUnused4;

};

typedef struct SIMInitInfo SIMInitInfo;

Field descriptions

SIMstaticPtr A pointer to the storage allocated by the XPT for the SIM’s static
variables.

staticSize The amount of memory requested by the SIM for storing its static
variables.

SIMInit A pointer to the SIM’s initialization function. See the description of
the SIMInit function on page 4-60 for more information.

SIMAction A pointer to the SIM function that handles SCSIAction requests.
See the description of the SIMAction function on page 4-61 for
more information.

SIM_ISR Reserved.

SIMInterruptPoll
A pointer to the SIM’s interrupt polling function. The Device
Manager periodically calls this routine while waiting for a
synchronous request to complete if the processor’s interrupt priority
level is not 0. This allows the Virtual Memory Manager to initiate
SCSI transactions when interrupts are disabled. See the description of
the SIMInterruptPoll function on page 4-61 for more information.

C H A P T E R 4

SCSI Manager 4.3

SCSI Manager 4.3 Reference 4-37

NewOldCall If the oldCallCapable field is set to true, this field contains a
pointer to the SIM function that handles original SCSI Manager
requests. See the description of the NewOldCall function
beginning on page 4-63 for more information.

ioPBSize The minimum size that a SCSI I/O parameter block must be for use
with this SIM.

oldCallCapable A Boolean value that indicates whether the SIM emulates original
SCSI Manager functions.

simInfoUnused1 Reserved.

simInternalUse A long word available for use by the SIM. This field is not affected
or used by the SCSI Manager.

XPT_ISR Reserved.

EnteringSIM A pointer to the XPT EnteringSIM function. This function
provides support for virtual memory. Your SIM must call this
function prior to executing any other SIM code. See the description
of the EnteringSIM function on page 4-58 for more information.

ExitingSIM A pointer to the XPT ExitingSIM function. Your SIM must call this
function before passing control to any code that could cause a page
fault, including completion routines. See the description of the
ExitingSIM function on page 4-59 for more information.

MakeCallback A pointer to the XPT MakeCallback function. Your SIM must call
this function after completing a transaction. The XPT then calls the
completion routine specified in the scsiCompletion field of the
parameter block header. See the description of the MakeCallback
function on page 4-59 for more information.

busID The bus number assigned by the XPT to this SIM/HBA.

SCSI Manager 4.3 Functions

This section describes the functions you use to communicate with SCSI devices and with

the XPT and SIM components of SCSI Manager 4.3.

■ “Client Functions” describes the functions that applications and device drivers use to
communicate with SCSI devices and the XPT.

■ “SIM Support Functions” describes the functions a SIM uses to register its bus and
communicate with the XPT.

■ “SIM Internal Functions” describes the functions that a SIM must provide in order to
be compatible with SCSI Manager 4.3 and the functions that a SIM must include if it
supports original SCSI Manager emulation.

Client Functions

This section describes the functions that clients (applications and device drivers) use to

communicate with SCSI devices and the XPT.

C H A P T E R 4

SCSI Manager 4.3

4-38 SCSI Manager 4.3 Reference

SCSIAction

You use the SCSIAction function to initiate a SCSI transaction or request a service from

the XPT or SIM.

OSErr SCSIAction(SCSI_PB *scsiPB);

scsiPB A pointer to a SCSI Manager parameter block.

Parameter block

DESCRIPTION

The SCSIAction function initiates the request specified by the scsiFunctionCode

field of the parameter block. Certain types of requests are handled by the XPT, but most

are handled by the SIM. Table 4-2 lists the function selector codes. See the following

sections for descriptions of the functions you access through SCSIAction.

When called asynchronously, SCSIAction normally returns the NoErr result code,

indicating that the request was queued successfully. The result of the SCSI transaction is

returned in the scsiResult field upon completion. If the SCSIAction function returns

an error code, the request was not queued and the completion routine will not be called.

When the completion routine is called, it receives the A5 world that existed when the

SCSIAction request was received. If A5 was invalid when the request was made, it

is also invalid in the completion routine.

Your completion routine should use the following function prototype:

pascal void (*CallbackProc) (void * scsiPB);

There is no implied ordering of asynchronous requests made to different devices. An

earlier request may be started later, and a later request may complete earlier. However, a

series of requests to the same device is issued to that device in the order received, except

when the scsiSIMQHead flag is set in the scsiFlags field of the parameter block.

→ scsiPBLength UInt16 The size of the parameter block.
→ scsiFunctionCode UInt8 The function selector code.
← scsiResult OSErr The returned result code.
→ scsiDevice DeviceIdent A 4-byte value that uniquely

identifies the target device.
→ scsiCompletion CallbackProc A pointer to a completion

routine. If this field is set to
nil, the function is executed
synchronously.

→ scsiFlags UInt32 Flags indicating the transfer
direction and any special
handling required for the
request. See page 4-22 for
descriptions of these flags.

→ scsiDriverStorage UInt8 * Optional pointer to the device
driver’s private storage.

C H A P T E R 4

SCSI Manager 4.3

SCSI Manager 4.3 Reference 4-39

When called synchronously, the SCSIAction function returns the actual result of the

operation. It also places this result in the scsiResult field.

RESULT CODES

Note

Result codes for specific SCSIAction function requests are listed
in the following sections. See page 4-90 for a list of all result codes. ◆

Table 4-2 SCSIAction function selector codes

Code Function Operation

00 SCSINop No operation.

01 SCSIExecIO Execute a SCSI I/O transaction.

02 Reserved

03 SCSIBusInquiry Bus inquiry.

04 SCSIReleaseQ Release a frozen SIM queue.

05–0F Reserved

10 SCSIAbortCommand Abort a SCSI command.

11 SCSIResetBus Reset the SCSI bus.

12 SCSIResetDevice Reset a SCSI device.

13 SCSITerminateIO Terminate I/O transaction.

14–7F Reserved

80 SCSIGetVirtualIDInfo Return DeviceIdent of a virtual SCSI ID.

81 Reserved

82 SCSILoadDriver Load a driver from a SCSI device.

83 Reserved

84 SCSIOldCall SIM support function for original SCSI
Manager emulation.

85 SCSICreateRefNumXref Register a device driver.

86 SCSILookupRefNumXref Find a driver reference number.

87 SCSIRemoveRefNumXref Deregister a device driver.

88 SCSIRegisterWthNewXPT XPT was replaced; SIM needs to reregister.

89–BF Reserved

C0–FF Vendor unique Requests in this range are passed directly to
the SIM without evaluation by the XPT.

noErr 0 Asynchronous request successfully queued, or synchronous request
successfully completed

C H A P T E R 4

SCSI Manager 4.3

4-40 SCSI Manager 4.3 Reference

SCSINop

The SCSINop function does nothing.

OSErr SCSIAction(SCSI_PB *scsiPB);

scsiPB A pointer to a SCSI Manager parameter block.

Parameter block

DESCRIPTION

The SCSINop function performs no action, returns no values in the parameter block, and

does not call a completion routine. It is provided for compatibility with the CAM

specification, and may be useful for debugging.

RESULT CODES

SCSIExecIO

You use the SCSIExecIO function to perform SCSI I/O operations.

OSErr SCSIAction(SCSIExecIOPB *scsiPB);

scsiPB A pointer to a SCSI I/O parameter block, which is described on page 4-23.

Parameter block

→ scsiFunctionCode UInt8 The SCSINop function selector code (0x00).

noErr 0 No error

→ scsiPBLength UInt16 The size of the parameter block. This
value must be equal to or greater
than the scsiIOpbSize for the SIM.

→ scsiFunctionCode UInt8 The SCSIExecIO function selector
code (0x01).

← scsiResult OSErr The returned result code.
→ scsiDevice DeviceIdent The device identification record.
→ scsiCompletion CallbackProc A pointer to a completion routine.

If this field is set to nil, the function
is executed synchronously.

→ scsiFlags UInt32 Flags indicating the transfer direction
and any special handling required
for the request. See page 4-22 for
descriptions of these flags.

→ scsiDriverStorage UInt8 * Optional pointer to the device
driver’s private storage.

C H A P T E R 4

SCSI Manager 4.3

SCSI Manager 4.3 Reference 4-41

DESCRIPTION

The SCSIExecIO function sends a request to a SIM to carry out a SCSI transaction. The

SIM performs all the actions necessary to fulfill the request, including arbitrating for the

bus, selecting the device, sending the CDB, receiving or sending data, performing

disconnect operations, and so on. The parameter block contains all the information

required for the SIM to complete the SCSI request, including issuing a REQUEST SENSE

command if necessary.

RESULT CODES

← scsiResultFlags UInt16 Output flags that modify the
scsiResult field. See page 4-24.

→ scsiDataPtr UInt8 * A pointer to a data buffer or
scatter/gather list.

→ scsiDataLength UInt32 The amount of data to be transferred.
→ scsiSensePtr UInt8 * A pointer to the autosense buffer.
→ scsiSenseLength UInt8 The size of the autosense buffer.
→ scsiCDBLength UInt8 The size of the CDB.
→ scsiSGListCount UInt16 The number of elements in the

scatter/gather list.
← scsiSCSIstatus UInt8 Status returned by the SCSI device.
← scsiSenseResidual SInt8 The autosense residual length.
← scsiDataResidual SInt32 The data transfer residual length.
→ scsiCDB CDB The CDB, or a pointer to the CDB,

depending on the setting of the
scsiCDBIsPointer flag.

→ scsiTimeout SInt32 The SCSI bus timeout period.
→ scsiIOFlags UInt16 Additional I/O flags. See page 4-25.
→ scsiSelectTimeout UInt16 Optional SELECT timeout value.
→ scsiDataType UInt8 The data type pointed to by the

scsiDataPtr field. See page 4-27.
→ scsiTransferType UInt8 The transfer mode (polled or blind).

See page 4-27.
→ scsiHandshake[8] UInt16 Handshaking instructions.
→ scsiCommandLink SCSI_IO * Optional pointer to a linked CDB.

noErr 0 No error
scsiRequestInProgress 1 Parameter block request is in progress
scsiCDBLengthInvalid -7863 The CDB length supplied is not

supported by this SIM; typically this
means it was too big

scsiTransferTypeInvalid -7864 The scsiTransferType requested is
not supported by this SIM

scsiDataTypeInvalid -7865 SIM does not support the requested
scsiDataType

scsiIDInvalid -7866 The initiator ID is invalid
scsiLUNInvalid -7867 The logical unit number is invalid
scsiTIDInvalid -7868 The target ID is invalid
scsiBusInvalid -7869 The bus ID is invalid
scsiRequestInvalid -7870 The parameter block request is invalid

C H A P T E R 4

SCSI Manager 4.3

4-42 SCSI Manager 4.3 Reference

scsiFunctionNotAvailable -7871 The requested function is not supported
by this SIM

scsiPBLengthError -7872 The parameter block length supplied
was too small for this SIM

scsiQLinkInvalid -7881 The qLink field was not 0
scsiNoSuchXref -7882 No driver has been cross-referenced

with this device
scsiDeviceConflict -7883 Attempt to register more than one driver

to a device
scsiNoHBA -7884 No HBA detected
scsiDeviceNotThere -7885 SCSI device not installed or available
scsiProvideFail -7886 Unable to provide the requested service
scsiBusy -7887 SCSI subsystem is busy
scsiTooManyBuses -7888 SIM registration failed because the XPT

registry is full
scsiCDBReceived -7910 The SCSI CDB was received
scsiNoNexus -7911 Nexus is not established
scsiTerminated -7912 Parameter block request terminated by

the host
scsiBDRsent -7913 A SCSI bus device reset (BDR) message

was sent to the target
scsiWrongDirection -7915 Data phase was in an unexpected

direction
scsiSequenceFail -7916 Target bus phase sequence failure
scsiUnexpectedBusFree -7917 Unexpected bus free phase
scsiDataRunError -7918 Data overrun/underrun error
scsiAutosenseFailed -7920 Automatic REQUEST SENSE command

failed
scsiParityError -7921 An uncorrectable parity error occurred
scsiSCSIBusReset -7922 Execution of this parameter block was

halted because of a SCSI bus reset
scsiMessageRejectReceived -7923 REJECT message received
scsiIdentifyMessageRejected -7924 The target issued a REJECT message in

response to the IDENTIFY message; the
LUN probably does not exist

scsiCommandTimeout -7925 The timeout value for this parameter
block was exceeded and the parameter
block was aborted

scsiSelectTimeout -7926 Target selection timeout
scsiUnableToTerminate -7927 Unable to terminate I/O parameter

block request
scsiNonZeroStatus -7932 The target returned non-zero status

upon completion of the request
scsiUnableToAbort -7933 Unable to abort parameter block request
scsiRequestAborted -7934 Parameter block request aborted by the

host

C H A P T E R 4

SCSI Manager 4.3

SCSI Manager 4.3 Reference 4-43

SCSIBusInquiry

You use the SCSIBusInquiry function to get information about a SCSI bus.

OSErr SCSIAction(SCSIBusInquiryPB *scsiPB);

scsiPB A pointer to a SCSI bus inquiry parameter block, which is described
on page 4-28.

Parameter block

→ scsiPBLength UInt16 The size of the parameter block.
→ scsiFunctionCode UInt8 The SCSIBusInquiry function

selector code (0x03).
← scsiResult OSErr The returned result code.
→ scsiDevice DeviceIdent The device identification record.

Only the bus number is required.
→ scsiCompletion CallbackProc Unused. Must be nil.
← scsiEngineCount UInt16 The number of HBA engines.
← scsiMaxTransferType UInt16 The number of data transfer

types available on the HBA.
← scsiDataTypes UInt32 The data types supported.
← scsiIOpbSize UInt16 The minimum parameter block

size for this SIM.
← scsiMaxIOpbSize UInt16 The largest parameter block size

currently registered.
← scsiFeatureFlags UInt32 Features of the SIM/HBA.
← scsiVersionNumber UInt8 The version of the SIM/HBA
← scsiHBAInquiry UInt8 Features of the SIM/HBA.
← scsiSIMPrivatesPtr UInt32 A pointer to the SIM’s storage.
← scsiSIMPrivatesSize UInt32 The size of the SIM’s storage.
← scsiHiBusID UInt8 The highest registered bus number.
← scsiInitiatorID UInt8 SCSI ID of the HBA.
← scsiFlagsSupported UInt32 Bit mask of supported

scsiFlags.
← scsiIOFlagsSupported UInt16 Bit mask of supported

scsiIOFlags.
← scsiWeirdStuff UInt16 Additional flags.
← scsiMaxTarget UInt16 The highest SCSI ID value

supported by the HBA.
← scsiMaxLUN UInt16 The highest logical unit number

supported by the HBA.
← scsiSIMVendor SInt8[16] SIM vendor string.
← scsiHBAVendor SInt8[16] HBA vendor string.
← scsiControllerFamily SInt8[16] Controller family string.
← scsiControllerType SInt8[16] Controller type string.
← scsiXPTversion SInt8[4] XPT version string.
← scsiSIMversion SInt8[4] SIM version string.
← scsiHBAversion SInt8[4] HBA version string.
← scsiHBAslotType UInt8 The slot type of the HBA.

C H A P T E R 4

SCSI Manager 4.3

4-44 SCSI Manager 4.3 Reference

DESCRIPTION

The SCSIBusInquiry function returns information about the SIM and HBA for a bus.

This function is typically used to find the minimum size of the SCSI I/O parameter block

for a particular SIM. You can also use this function to determine whether a bus supports

various optional features such as synchronous or wide transfer modes. Because this

function is always executed synchronously, the scsiCompletion field must be set to nil.

To find all buses, first request information about the XPT by setting the bus number in

the scsiDevice field to 0xFF, then use the value returned in the scsiHiBusID field to

set the limits of the search.

RESULT CODES

SCSIReleaseQ

You use the SCSIReleaseQ function to release a frozen queue for a LUN.

OSErr SCSIAction(SCSI_PB *scsiPB);

scsiPB A pointer to a SCSI Manager parameter block.

Parameter block

DESCRIPTION

The SCSIReleaseQ function releases a frozen I/O queue for the logical unit number

specified in the scsiDevice field. If an I/O request returns with the scsiSIMQFrozen

flag set in the scsiResultFlags field, you must call this function to restore normal

operation.

← scsiHBAslotNumber UInt8 The slot number of the HBA.
← scsiSIMsRsrcID UInt16 The sResource ID of the SIM.
← scsiAdditionalLength UInt16 The additional size of this

parameter block, if any.

noErr 0 No error
scsiBusInvalid -7869 The bus ID is invalid
scsiRequestInvalid -7870 The parameter block request is invalid
scsiPBLengthError -7872 The parameter block is too small for this SIM
scsiQLinkInvalid -7881 The qLink field was not 0
scsiNoHBA -7884 No HBA detected
scsiBusy -7887 SCSI subsystem is busy

→ scsiPBLength UInt16 The size of the parameter block.
→ scsiFunctionCode UInt8 The SCSIReleaseQ function

selector code (0x04).
← scsiResult OSErr The returned result code.
→ scsiDevice DeviceIdent The device identification record.
→ scsiCompletion CallbackProc Unused. Must be set to nil.

C H A P T E R 4

SCSI Manager 4.3

SCSI Manager 4.3 Reference 4-45

Queue freezing provides the opportunity to insert error-handling requests at the

beginning of the queue using the scsiSIMQHead flag. You then release the queue using

this function. Subsequent errors will continue to freeze the queue, allowing you to step

through the queue one request at a time without aborting any other pending requests.

Because this function is always executed synchronously, the scsiCompletion field

must be set to nil. Unlike other synchronous functions, however, you can call

SCSIReleaseQ from a completion routine.

RESULT CODES

SEE ALSO

See “Error Recovery Techniques” on page 4-10 for more information about queue

freezing.

SCSIAbortCommand

You can use the SCSIAbortCommand function to cancel an I/O request.

OSErr SCSIAction(SCSIAbortCommandPB *scsiPB);

scsiPB A pointer to a SCSI abort command parameter block, which is described
on page 4-33.

Parameter block

noErr 0 No error
scsiIDInvalid -7866 The initiator ID is invalid
scsiLUNInvalid -7867 The logical unit number is invalid
scsiTIDInvalid -7868 The target ID is invalid
scsiBusInvalid -7869 The bus ID is invalid
scsiRequestInvalid -7870 The parameter block request is invalid
scsiPBLengthError -7872 The parameter block is too small for this SIM
scsiQLinkInvalid -7881 The qLink field was not 0

→ scsiPBLength UInt16 The size of the parameter block.
→ scsiFunctionCode UInt8 The SCSIAbortCommand function

selector code (0x10).
← scsiResult OSErr The returned result code.
→ scsiDevice DeviceIdent The device identification record.
→ scsiCompletion CallbackProc A pointer to a completion routine.

If this field is set to nil, the function
is executed synchronously.

→ scsiDriverStorage UInt8 * Optional pointer to the device
driver’s private storage.

→ scsiIOptr SCSI_IO * A pointer to the SCSI I/O parameter
block to be canceled.

C H A P T E R 4

SCSI Manager 4.3

4-46 SCSI Manager 4.3 Reference

DESCRIPTION

The SCSIAbortCommand function cancels the SCSIExecIO request identified by the

scsiIOptr field. If the request has not yet been delivered to the device, it is removed

from the queue and its completion routine is called with a result code of

scsiRequestAborted. If the request has already been started, the SIM attempts to

send an ABORT message to the device, either by asserting the /ATN signal or by

reselecting the device. The function returns the scsiUnableToAbort result code if the

specified request has already been completed.

SPECIAL CONSIDERATIONS

Because the interrupt that calls the completion routine can pre-empt the

SCSIAbortCommand request, this function can produce unexpected results if the

completion routine for the canceled request reuses the parameter block.

RESULT CODES

SEE ALSO

See the description of the SCSITerminateIO function on page 4-48 for information

about another method of canceling a request.

SCSIResetBus

You use the SCSIResetBus function to reset a SCSI bus.

OSErr SCSIAction(SCSI_PB *scsiPB);

scsiPB A pointer to a SCSI Manager parameter block.

Parameter block

noErr 0 No error
scsiBusInvalid -7869 The bus ID is invalid
scsiRequestInvalid -7870 The parameter block request is invalid
scsiPBLengthError -7872 The parameter block is too small for this SIM
scsiQLinkInvalid -7881 The qLink field was not 0
scsiUnableToAbort -7933 Unable to abort parameter block request

→ scsiPBLength UInt16 The size of the parameter block.
→ scsiFunctionCode UInt8 The SCSIResetBus function

selector code (0x11).
← scsiResult OSErr The returned result code.
→ scsiDevice DeviceIdent The device identification record.

Only the bus number is required.
→ scsiCompletion CallbackProc A pointer to a completion

routine. If set to nil, the function
is executed synchronously.

C H A P T E R 4

SCSI Manager 4.3

SCSI Manager 4.3 Reference 4-47

DESCRIPTION

The SCSIResetBus function directs the HBA to assert the SCSI bus reset signal, causing

all devices on the bus to clear pending I/O and forcing the bus into the bus free phase. In

addition, the SIM calls the completion routines for all requests that were already

delivered to devices. The appropriate LUN queue is frozen for each of the requests that

were reset, unless the scsiSIMQNoFreeze flag is set.

SPECIAL CONSIDERATIONS

The SCSIResetBus function interrupts SCSI communications and can cause data loss.

You should use this function only to restore operation in the event that a device refuses

to release the bus. You can use the SCSIResetDevice function to reset a single device

when the SCSI bus is operational and the device is still responding to selection.

RESULT CODES

SCSIResetDevice

You use the SCSIResetDevice function to reset a SCSI device.

OSErr SCSIAction(SCSI_PB *scsiPB);

scsiPB A pointer to a SCSI Manager parameter block.

Parameter block

→ scsiDriverStorage UInt8 * Optional pointer to the device
driver’s private storage.

noErr 0 No error
scsiBusInvalid -7869 The bus ID is invalid
scsiRequestInvalid -7870 The parameter block request is invalid
scsiPBLengthError -7872 The parameter block is too small for this SIM
scsiQLinkInvalid -7881 The qLink field was not 0

→ scsiPBLength UInt16 The size of the parameter block.
→ scsiFunctionCode UInt8 The SCSIResetDevice function

selector code (0x12).
← scsiResult OSErr The returned result code.
→ scsiDevice DeviceIdent The device identification record.
→ scsiCompletion CallbackProc A pointer to a completion routine.

If set to nil, the function is
executed synchronously.

→ scsiDriverStorage UInt8 * Optional pointer to the device
driver’s private storage.

C H A P T E R 4

SCSI Manager 4.3

4-48 SCSI Manager 4.3 Reference

DESCRIPTION

The SCSIResetDevice function attempts to send a BUS DEVICE RESET message to

the target. If the device is currently on the bus, the SIM asserts the /ATN signal and

sends the message at the next message-out phase. If the target is not on the bus, the SIM

selects it and sends an IDENTIFY message followed by a BUS DEVICE RESET message.

SPECIAL CONSIDERATIONS

The BUS DEVICE RESET message clears all I/O transactions for all logical units of the

target device. This function may result in data loss and should be used only to restore

operation in the event that a device fails to respond to other messages.

RESULT CODES

SCSITerminateIO

You can use the SCSITerminateIO function to cancel an I/O request.

OSErr SCSIAction(SCSITerminateIOPB *scsiPB);

scsiPB A pointer to a SCSI terminate I/O parameter block, which is described on
page 4-33.

Parameter block

noErr 0 No error
scsiBusInvalid -7869 The bus ID is invalid
scsiRequestInvalid -7870 The parameter block request is invalid
scsiPBLengthError -7872 The parameter block is too small for

this SIM
scsiQLinkInvalid -7881 The qLink field was not 0
scsiMessageRejectReceived -7923 REJECT message received

→ scsiPBLength UInt16 The size of the parameter block.
→ scsiFunctionCode UInt8 The SCSITerminateIO function

selector code (0x13).
← scsiResult OSErr The returned result code.
→ scsiDevice DeviceIdent The device identification record.
→ scsiCompletion CallbackProc A pointer to a completion routine.

If this field is set to nil, the function
is executed synchronously.

→ scsiDriverStorage UInt8 * Optional pointer to the device
driver’s private storage.

→ scsiIOptr SCSI_IO * A pointer to the SCSI I/O parameter
block to be canceled.

C H A P T E R 4

SCSI Manager 4.3

SCSI Manager 4.3 Reference 4-49

DESCRIPTION

The SCSITerminateIO function cancels the SCSIExecIO request identified by the

scsiIOptr field. If the request has not yet been delivered to the device, it is removed

from the queue and its completion routine is called with a result code of

scsiTerminated. If the request has already been started, the SIM attempts to send a

TERMINATE IO PROCESS message to the device, either by asserting the /ATN signal or

by reselecting the device. The function returns the scsiUnableToTerminate result

code if the specified request has already been completed.

The SCSITerminateIO function differs from the SCSIAbortCommand function

(described on page 4-45) only in the message it sends over the SCSI bus. TERMINATE IO
PROCESS is an optional SCSI-2 message that instructs the device to complete a request

normally although prematurely, while attempting to maintain media integrity.

SPECIAL CONSIDERATIONS

Because the interrupt that calls the completion routine can pre-empt the

SCSITerminateIO request, this function can produce unexpected results if the

completion routine for the canceled request reuses the parameter block.

RESULT CODES

SCSIGetVirtualIDInfo

You can use the SCSIGetVirtualIDInfo funtion to get the device identification record

for a virtual SCSI ID.

OSErr SCSIAction(SCSIGetVirtualInfoPB *scsiPB);

scsiPB A pointer to a SCSI virtual ID information parameter block, which is
described on page 4-34.

Parameter block

noErr 0 No error
scsiBusInvalid -7869 The bus ID is invalid
scsiRequestInvalid -7870 The parameter block request is invalid
scsiPBLengthError -7872 The parameter block is too small for this SIM
scsiQLinkInvalid -7881 The qLink field was not 0
scsiUnableToTerminate -7927 Unable to terminate I/O parameter block request

→ scsiPBLength UInt16 The size of the parameter block.
→ scsiFunctionCode UInt8 The SCSIGetVirtualIDInfo

function selector code (0x80).
← scsiResult OSErr The returned result code.
← scsiDevice DeviceIdent The device identification record.
→ scsiCompletion CallbackProc Unused. Must be set to nil.
→ scsiOldCallID UInt16 The virtual SCSI ID to search for.

C H A P T E R 4

SCSI Manager 4.3

4-50 SCSI Manager 4.3 Reference

DESCRIPTION

The SCSIGetVirtualIDInfo function returns the device identification record of a

device on the virtual bus. This function is typically used by a device driver during the

transition from a ROM-based original SCSI Manager to SCSI Manager 4.3. If a device

with the specified SCSI ID is not found on the virtual bus, or the device exists but is not

accessible through the SCSI Manager 4.3 interface, the scsiExists field returns false

and the scsiDevice field should be ignored.

Because this function is always executed synchronously, the scsiCompletion field

must be nil.

RESULT CODES

SCSILoadDriver

The Start Manager uses the SCSILoadDriver function to provide an opportunity for a

SIM to load a driver other than one found on the media.

OSErr SCSIAction(SCSILoadDriverPB *scsiPB);

scsiPB A pointer to a SCSI load driver parameter block, which is described on
page 4-34.

Parameter block

← scsiExists Boolean Returns true if the scsiDevice
field contains a valid device
identification record.

noErr 0 No error
scsiTIDInvalid -7868 The target ID is invalid
scsiPBLengthError -7872 The parameter block is too small for this SIM
scsiQLinkInvalid -7881 The qLink field was not 0

→ scsiPBLength UInt16 The size of the parameter block.
→ scsiFunctionCode UInt8 The SCSILoadDriver function

selector code (0x82).
← scsiResult OSErr The returned result code.
→ scsiDevice DeviceIdent The device identification record.
→ scsiCompletion CallbackProc A pointer to a completion routine.

If this field is set to nil, the
function is executed synchronously.

→ scsiDriverStorage UInt8 * Optional pointer to the device
driver’s private storage.

← scsiLoadedRefNum UInt16 The driver reference number
returned by the SIM.

→ scsiDiskLoadFailed Boolean Set to true if a driver could not be
loaded from the media.

C H A P T E R 4

SCSI Manager 4.3

SCSI Manager 4.3 Reference 4-51

DESCRIPTION

The SCSILoadDriver function is called by the Start Manager to load device drivers for

SCSI devices. You can use this function to load a driver for a device that was not

available at system startup.

The Start Manager can call this function both before and after attempting to load a driver

from the media. On the first attempt, the scsiDiskLoadFailed field is set to false,

indicating to the SIM that it can choose to load a driver from the media or install another

(typically newer) driver of its own choosing.

If the first attempt to load a driver fails, the Start Manager calls the SCSILoadDriver

function a second time, with the scsiDiskLoadFailed field set to true to indicate

that a driver could not be loaded from the media. The SIM then loads its own driver, if

possible, or returns an error result.

SPECIAL CONSIDERATIONS

The SCSILoadDriver function may move memory; you should not call it at interrupt

time.

RESULT CODES

SCSICreateRefNumXref

You use the SCSICreateRefNumXref function to register a device driver with the XPT.

OSErr SCSIAction(SCSIDriverPB *scsiPB);

scsiPB A pointer to a SCSI driver identification parameter block, which is
described on page 4-35.

Parameter block

noErr 0 No error
scsiFunctionNotAvailable -7871 The requested function is not supported by

this SIM

→ scsiPBLength UInt16 The size of the parameter block.
→ scsiFunctionCode UInt8 The SCSICreateRefNumXref

function selector code (0x85).
← scsiResult OSErr The returned result code.
→ scsiDevice DeviceIdent The device identification record.
→ scsiCompletion CallbackProc Unused. Must be set to nil.
→ scsiDriver SInt16 The driver reference number.
→ scsiDriverFlags UInt16 Optional driver flags.

C H A P T E R 4

SCSI Manager 4.3

4-52 SCSI Manager 4.3 Reference

DESCRIPTION

The SCSICreateRefNumXref function adds an element to the XPT’s driver registration

table. You specify a device identification record in the scsiDevice field and a driver

reference number in the scsiDriver field. The scsiDriverFlags field provides

information about the driver that other clients can access using the

SCSILookupRefNumXref function. The XPT does not interpret these flags.

A device identification record can have only one driver reference number associated

with it, but a driver reference number may be registered to multiple devices. This

function returns the scsiDeviceConflict result code if a driver is already registered

to the specified device identification record.

Because this function is always executed synchronously, the scsiCompletion field

must be set to nil.

SPECIAL CONSIDERATIONS

The SCSICreateRefNumXref function is executed synchronously and may move

memory; you should not call it at interrupt time.

RESULT CODES

SEE ALSO

See “Loading and Initializing a Driver,” beginning on page 4-11, for more information

about how device drivers are registered with the XPT.

SCSILookupRefNumXref

You can use the SCSILookupRefNumXref function to determine if a driver is installed

for a SCSI device.

OSErr SCSIAction(SCSIDriverPB *scsiPB);

scsiPB A pointer to a SCSI driver identification parameter block, which is
described on page 4-35.

Parameter block

noErr 0 No error
scsiQLinkInvalid -7881 The qLink field was not 0
scsiDeviceConflict -7883 Attempt to register more than one driver to a device

→ scsiPBLength UInt16 The size of the parameter block.
→ scsiFunctionCode UInt8 The SCSILookupRefNumXref

function selector code (0x86).
← scsiResult OSErr The returned result code.
→ scsiDevice DeviceIdent The device identification record.
→ scsiCompletion CallbackProc Unused. Must be set to nil.

C H A P T E R 4

SCSI Manager 4.3

SCSI Manager 4.3 Reference 4-53

DESCRIPTION

The SCSILookupRefNumXref function returns the driver reference number for a

device. You specify a device identification record in the scsiDevice field, and the

function returns the driver reference number in the scsiDriver field. If no driver is

registered for the device, the function returns nil in the scsiDriver field.

The scsiDriverFlags field returns the flags that were set when the driver was

registered. The scsiNextDevice field returns the device identification record of the

next device in the driver registration table. If this is the last device in the table, the

function returns 0xFF in the scsiNextDevice.bus field.

To find all registered drivers you should first call this function with a value of 0xFF in

the scsiDevice.bus field. The function returns the device identification record of the

first device in the list in the scsiNextDevice field. You can then find other drivers by

moving the scsiNextDevice value into the scsiDevice field and repeating the

operation until the function returns 0xFF in the scsiNextDevice.bus field.

Because this function is always executed synchronously, the scsiCompletion field

must be set to nil.

RESULT CODES

SCSIRemoveRefNumXref

You use the SCSIRemoveRefNumXref function to deregister a device driver with the XPT.

OSErr SCSIAction(SCSIDriverPB *scsiPB);

scsiPB A pointer to a SCSI driver identification parameter block, which is
described on page 4-35.

Parameter block

← scsiDriver SInt16 The driver reference number.
← scsiDriverFlags UInt16 Optional driver flags.
← scsiNextDevice DeviceIdent The device identification record of

the next device in the driver
registration table.

noErr 0 No error
scsiQLinkInvalid -7881 The qLink field was not 0

→ scsiPBLength UInt16 The size of the parameter block.
→ scsiFunctionCode UInt8 The SCSIRemoveRefNumXref

function selector code (0x87).
← scsiResult OSErr The returned result code.
→ scsiDevice DeviceIdent The device identification record.
→ scsiCompletion CallbackProc Unused. Must be set to nil.

C H A P T E R 4

SCSI Manager 4.3

4-54 SCSI Manager 4.3 Reference

DESCRIPTION

The SCSIRemoveRefNumXref function removes a driver entry from the XPT’s driver

registration table. You specify the device identification record in the scsiDevice field.

Because this function is always executed synchronously, the scsiCompletion field

must be set to nil.

SPECIAL CONSIDERATIONS

The SCSIRemoveRefNumXref function is executed synchronously, and may move

memory; you should not call it at interrupt time.

RESULT CODES

SEE ALSO

See “Loading and Initializing a Driver,” beginning on page 4-11, for more information

about how device drivers are registered with the XPT.

SIM Support Functions

This section describes the functions a SIM uses to register its bus and communicate with

the XPT. If you are writing a SIM, you use these functions to

■ register, deregister, or reregister your SIM with the XPT

■ remove the existing XPT if you replace it

■ inform the XPT when your code is running

■ call a completion routine

SCSIRegisterBus

You use the SCSIRegisterBus function to register a SIM and HBA for use with the XPT.

OSErr SCSIRegisterBus(SIMInitInfo *SIMinfoPtr);

SIMinfoPtr A pointer to a SIM initialization record, which is described on page 4-36.

Parameter block

noErr 0 No error
scsiQLinkInvalid -7881 The qLink field was not 0
scsiNoSuchXref -7882 No driver has been cross-referenced with this device

← SIMstaticPtr UInt8 * A pointer to the allocated
static storage.

→ staticSize SInt32 The amount of memory
requested for static storage.

C H A P T E R 4

SCSI Manager 4.3

SCSI Manager 4.3 Reference 4-55

DESCRIPTION

You use the SIM initialization record to specify the characteristics of the HBA, the SIM’s

function entry points, and the number of bytes required for static data storage (global

variables). The XPT returns a pointer to the allocated storage and a bus number that

identifies the bus in all future transactions. In addition, the XPT returns pointers to the

EnteringSIM, ExitingSIM, and MakeCallback functions.

Before assigning a bus number, the XPT calls the SIM’s SIMInit function, which

instructs the SIM to initialize itself. If the SIMInit function returns noErr, the XPT

assigns a bus number and returns from the SCSIRegisterBus function. At this point

the SIM is installed and should be ready to accept requests.

SPECIAL CONSIDERATIONS

The SCSIRegisterBus function may move memory; you should not call it at interrupt

time.

RESULT CODES

SEE ALSO

See “Writing a SCSI Interface Module,” beginning on page 4-15, for more information

about using this function.

→ SIMInit SIMInitProc A pointer to the SIMInit
function.

→ SIMAction SIMActionProc A pointer to the SIMAction
function.

→ SIMInterruptPoll InterruptPollProc A pointer to the
SIMInterruptPoll
function.

→ NewOldCall SIMActionProc A pointer to the
NewOldCall function.

→ ioPBSize UInt16 The SCSI I/O parameter
block size for this SIM.

→ oldCallCapable Boolean Set to true if the SIM
emulates original SCSI
Manager functions.

← EnteringSIM SCSIProc A pointer to the
EnteringSIM function.

← ExitingSIM SCSIProc A pointer to the
ExitingSIM function.

← MakeCallback MakeCallbackProc A pointer to the
MakeCallback function.

← busID UInt16 The bus number assigned to
this SIM/HBA.

noErr 0 No error
scsiTooManyBuse
s

-7888 SIM registration failed because the XPT registry is full

C H A P T E R 4

SCSI Manager 4.3

4-56 SCSI Manager 4.3 Reference

SCSIDeregisterBus

You can use the SCSIDeregisterBus function to deregister a bus that is no longer

available.

OSErr SCSIDeregisterBus(SCSI_PB *scsiPB);

scsiPB A pointer to a SCSI Manager parameter block.

Parameter block

DESCRIPTION

The SCSIDeregisterBus function attempts to remove the SIM specified by the

scsiDevice.bus field of the parameter block. The XPT marks the bus number as

invalid and any subsequent requests to it are rejected. This function is not normally used

by the Macintosh Operating System and may not be supported in all implementations.

Because this function is always executed synchronously, the scsiCompletion field

must be set to nil.

SPECIAL CONSIDERATIONS

The SCSIDeregisterBus function may move memory; you should not call it at

interrupt time.

RESULT CODES

SCSIReregisterBus

You can use the SCSIReregisterBus function to reregister a bus if its entry points

change or if the XPT is replaced.

OSErr SCSIReregisterBus(SIMInitInfo *SIMinfoPtr);

SIMinfoPtr A pointer to a SIM initialization record, which is described on page 4-36.

→ scsiPBLength UInt16 The size of the parameter block.
← scsiResult OSErr The returned result code.
→ scsiDevice DeviceIdent The device identification record.

Only the bus number is required.
→ scsiCompletion CallbackProc Unused. Must be set to nil.

noErr 0 No error
scsiBusInvalid -7869 The bus ID is invalid
scsiFunctionNotAvailable -7871 The function is not supported by this SIM

C H A P T E R 4

SCSI Manager 4.3

SCSI Manager 4.3 Reference 4-57

Parameter block

DESCRIPTION

You normally call the SCSIReregisterBus function in response to a

SCSIRegisterWithNewXPT request. This function is identical to SCSIRegisterBus

except that the bus number and static storage pointer are passed to the XPT, rather than

being returned by it. In addition, the XPT does not call the SIMInit function.

This function allows a SIM to retain its bus number and static storage if the XPT changes.

It is also useful if you need to change the SIM’s function entry points or other

information.

SPECIAL CONSIDERATIONS

The SCSIReregisterBus function may move memory; you should not call it at

interrupt time.

RESULT CODES

→ SIMstaticPtr UInt8 * A pointer to the SIM’s
existing static storage.

→ staticSize SInt32 The size of the SIM’s static
storage.

→ SIMInit SIMInitProc A pointer to the SIMInit
function.

→ SIMAction SIMActionProc A pointer to the SIMAction
function.

→ SIMInterruptPoll InterruptPollProc A pointer to the
SIMInterruptPoll
function.

→ NewOldCall SIMActionProc A pointer to the
NewOldCall function.

→ ioPBSize UInt16 The SCSI I/O parameter
block size for this SIM.

→ oldCallCapable Boolean Set to true if the SIM
emulates original SCSI
Manager functions.

← EnteringSIM SCSIProc A pointer to the
EnteringSIM function.

← ExitingSIM SCSIProc A pointer to the
ExitingSIM function.

← MakeCallback MakeCallbackProc A pointer to the
MakeCallback function.

→ busID UInt16 The bus number requested.

noErr 0 No error
scsiBusInvalid -7869 The bus ID is invalid
scsiTooManyBuses -7888 SIM registration failed because the XPT registry is full

C H A P T E R 4

SCSI Manager 4.3

4-58 SCSI Manager 4.3 Reference

SCSIKillXPT

You use the SCSIKillXPT function to remove an XPT that has been replaced.

OSErr SCSIKillXPT(void *);

DESCRIPTION

The SCSIKillXPT function forces the XPT to release any memory it allocated and

remove any patches it may have installed. This function is typically called by a new XPT

after it has installed itself and reregistered all existing SIMs.

SPECIAL CONSIDERATIONS

The SCSIKillXPT function may move memory; you should not call it at interrupt time.

RESULT CODES

EnteringSIM

You use the EnteringSIM function to inform the XPT that your SIM code is running.

void EnteringSIM();

DESCRIPTION

The EnteringSIM function informs the XPT that subsequent code is not reentrant and

instructs the Virtual Memory Manager to defer execution of VBL tasks, Time Manager

tasks, completion routines, and any other code that could cause a page fault. A SIM must

call this function whenever its code begins executing and call the corresponding

ExitingSIM function on exit.

SPECIAL CONSIDERATIONS

You get the address of this function from the EnteringSIM field of the SIM

initialization record.

SEE ALSO

See “Writing a SCSI Interface Module,” beginning on page 4-15, for more information

about using this function.

noErr 0 No error

C H A P T E R 4

SCSI Manager 4.3

SCSI Manager 4.3 Reference 4-59

ExitingSIM

The ExitingSIM function is the counterpart to the EnteringSIM function.

void ExitingSIM();

DESCRIPTION

The ExitingSIM function informs the XPT that the SIM is about to pass control to an

external routine that might cause a page fault. A SIM must call this function before

returning to the XPT or calling a completion routine.

SPECIAL CONSIDERATIONS

You get the address of this function from the ExitingSIM field of the SIM initialization

record.

SEE ALSO

See “Writing a SCSI Interface Module,” beginning on page 4-15, for more information

about using this function.

MakeCallback

You use the MakeCallback function to signal the XPT to call a completion routine.

void MakeCallback(SCSI_IO *scsiPB);

scsiPB A pointer to a SCSI I/O parameter block, which is described on page 4-23.

Parameter block

DESCRIPTION

The MakeCallback function instructs the XPT to execute the completion routine in the

SCSI I/O parameter block. The XPT restores the client’s A5 world and then calls the

completion routine. A SIM should always use this function rather than calling

completion routines directly because the XPT may chose to defer the actual execution of

the routine until page faults are safe.

You should surround a call to MakeCallback with calls to ExitingSIM and

EnteringSIM so that the Virtual Memory Manager can properly handle any page faults

caused by the completion routine.

→ scsiCompletion CallbackProc A pointer to a completion routine.

C H A P T E R 4

SCSI Manager 4.3

4-60 SCSI Manager 4.3 Reference

SPECIAL CONSIDERATIONS

You get the address of this function from the MakeCallback field of the SIM

initialization record.

SEE ALSO

See “Writing a SCSI Interface Module,” beginning on page 4-15, for more information

about using this function.

SIM Internal Functions

This section describes the functions that a SIM must provide to be compatible

with SCSI Manager 4.3 and the functions that a SIM must include if it supports

original SCSI Manager emulation. These functions are called by the XPT to control

or provide information to the SIM.

See “Writing a SCSI Interface Module,” beginning on page 4-15, for more information

about using these functions.

SIMInit

The XPT calls this function to initialize a SIM. The SIMInit function must conform to

the following type definition:

typedef OSErr (*SIMInitProc) (Ptr SIMinfoPtr);

SIMinfoPtr A pointer to a SIM initialization record, which is described on page 4-36.

DESCRIPTION

The XPT calls this function after a SIM has called SCSIRegisterBus. Before returning

from the SCSIRegisterBus function, the XPT calls this function to initialize the SIM.

The SIM is responsible for initializing the HBA.

The XPT passes a pointer to the SIM initialization record, which contains pointers to

the SIM’s static data storage and the required XPT entry points (EnteringSIM,

ExitingSIM, and MakeCallback).

RESULT CODES

noErr 0 No error
scsiNoHBA -7884 No HBA detected

C H A P T E R 4

SCSI Manager 4.3

SCSI Manager 4.3 Reference 4-61

SIMAction

The XPT calls this function when a SCSIAction request is received that needs to be

serviced by the SIM. The SIMAction function must conform to the following type

definition:

typedef void (*SIMActionProc) (void * scsiPB, Ptr SIMGlobals);

scsiPB A pointer to a SCSI Manager parameter block.

SIMGlobals A pointer to the SIM’s static data storage.

DESCRIPTION

The SIMAction function is responsible for handling SCSIAction requests directed to

the SIM’s bus. The XPT passes the client’s parameter block to the SIM, which should

then queue the request, execute it, and call the completion routine. The SIM must

conform to the behavior defined for the SCSIAction function.

In addition to supporting all client functions, the SIMAction function may optionally

support two requests made by the XPT, SCSIOldCall and SCSIRegisterWithNewXPT.

RESULT CODES

The SIMAction function returns a result code in the scsiResult field of the parameter

block. The code should be appropriate for the SCSIAction request being processed.

SIMInterruptPoll

The XPT calls this function when interrupts are disabled during a synchronous wait

loop, to give the SIM an opportunity to handle interrupts from the HBA. The

SIMAction function must conform to the following type definition:

typedef void (*InterruptPollProc) (Ptr SIMGlobals);

SIMGlobals A pointer to the SIM’s static data storage.

DESCRIPTION

If the Device Manager is waiting for a synchronous request to complete, and processor

interrupts are masked at level 2 (the level of NuBus interrupts) or higher, the XPT

periodically calls the SIMInterruptPoll function for each SIM. The SIM can then

check whether an interrupt is pending from the HBA, and execute its interrupt service

routine if necessary.

C H A P T E R 4

SCSI Manager 4.3

4-62 SCSI Manager 4.3 Reference

SCSIOldCall

The XPT calls this function when a client calls the original SCSI Manager function

SCSISelect.

typedef void (*SIMActionProc) (void * scsiPB, Ptr SIMGlobals);

scsiPB A pointer to a SCSI I/O parameter block, which is described on page 4-23.

SIMGlobals A pointer to the SIM’s static data storage.

Parameter block

DESCRIPTION

This function indicates the beginning of an original SCSI Manager transaction. A SIM

that supports original SCSI Manager emulation should attempt to select the device

described in the scsiDevice field. Because the entire SCSI transaction is not completed

by a call to SCSIOldCall, the result code for this function is returned in the

scsiOldCallResult field rather than the scsiResult field, as with other functions.

Subsequent original SCSI Manager function calls for this transaction are made through

the NewOldCall function.

If the SIM successfully selects the device, it should queue the parameter block like any

other SCSI I/O parameter block. The parameter block should not be removed until the

NewOldCall function completes a SCSIComplete command.

To provide full compatibility with the original SCSI Manager, a SIM must be able to

perform a SCSI arbitration and select process independent of a SCSI message-out or

command phase. If the SIM requires the CDB or message-out bytes it will not be able to

perform the select operation at the time of the SCSIOldCall request. The SIM should

return noErr in the scsiOldCallResult field and wait for a subsequent I/O request

before actually selecting the device.

RESULT CODES

The SCSIOldCall function returns an appropriate SCSISelect result code in the

scsiOldCallResult field of the parameter block.

→ scsiPBLength UInt16 The size of the parameter block.
→ scsiFunctionCode UInt8 The SCSIOldCall function selector

code (0x84).
→ scsiDevice DeviceIdent The device identification record.
→ scsiCompletion CallbackProc A pointer to a completion routine.

If this field is set to nil, the function
is executed synchronously.

→ scsiDriverStorage UInt8 * Optional pointer to the device
driver’s private storage.

← scsiCurrentPhase UInt16 The current SCSI bus phase.
→ scsiSelector SInt16 The SCSISelect trap selector (0x02).
← scsiOldCallResult OSErr The result code from SCSISelect.

C H A P T E R 4

SCSI Manager 4.3

SCSI Manager 4.3 Reference 4-63

NewOldCall

The XPT calls this function when a client calls any of the original SCSI Manager

functions other than SCSISelect (which is handled by SCSIOldCall). The

NewOldCall function must conform to the following type definition:

typedef void (*SIMActionProc) (void * scsiPB, Ptr SIMGlobals);

scsiPB A pointer to a SCSI I/O parameter block, which is described on page 4-23.

SIMGlobals A pointer to the SIM’s static data storage.

Parameter block

DESCRIPTION

After an original SCSI Manager transaction begins, the NewOldCall function receives all

subsequent original SCSI Manager function requests until the transaction is completed.

The XPT converts all original SCSI Manager function requests (except SCSIGet and

SCSIStat) into SCSI Manager 4.3 parameter block requests and sends them to the

appropriate SIM.

A SIM uses the scsiSelector field of the parameter block to determine which

function to perform and should return the current bus phase and message byte in the

appropriate fields after each request.

The XPT converts a SCSIReset request into a SCSIResetBus request and sends it to

all SIMs that support original SCSI Manager emulation. The XPT handles SCSIStat

requests itself, using the information returned in the scsiCurrentPhase field.

RESULT CODES

Result codes from all emulated functions except SCSIComplete are returned in the

scsiOldCallResult field. The SCSIComplete result is returned in scsiResult.

This indicates to the XPT that the transaction is complete and that the SIM is ready to

start a new original SCSI Manager transaction. See the chapter “SCSI Manager” in this

book for a list of original SCSI Manager result codes.

→ scsiPBLength UInt16 The size of the parameter block.
← scsiResult OSErr The SCSIComplete result code.
→ scsiDevice DeviceIdent The device identification record.
→ scsiCompletion CallbackProc A pointer to a completion routine.

If this field is set to nil, the function
is executed synchronously.

→ scsiDriverStorage UInt8 * Optional pointer to the device
driver’s private storage.

← scsiCurrentPhase UInt16 The current SCSI bus phase.
→ scsiSelector SInt16 The _SCSIDispatch trap selector.
← scsiOldCallResult OSErr The function result code.
← scsiSCSImessage UInt8 The SCSIComplete message byte.

C H A P T E R 4

SCSI Manager 4.3

4-64 SCSI Manager 4.3 Reference

SCSIRegisterWithNewXPT

This function informs a SIM that a new XPT layer has been installed. The SIM should call

the SCSIReregisterBus function to register itself with the new XPT.

typedef void (*SIMActionProc) (void * scsiPB, Ptr SIMGlobals);

scsiPB A pointer to a SCSI Manager parameter block.

SIMGlobals A pointer to the SIM’s static data storage.

Parameter block

DESCRIPTION

After a new XPT installs itself, and before it removes the old XPT, it sends the

SCSIRegisterWithNewXPT request to all SIMs registered with the old XPT. Each SIM

should then call the SCSIReregisterBus function to register with the new XPT. This

allows SIMs to keep their existing bus number and static data storage when installing

themselves in a new XPT.

RESULT CODES

→ scsiPBLength UInt16 The size of the parameter block.
→ scsiFunctionCode UInt8 The SCSIRegisterWithNewXPT

function selector code (0x88).

noErr 0 No error
scsiQLinkInvalid -7881 The qLink field was not 0

C H A P T E R 4

SCSI Manager 4.3

Summary of SCSI Manager 4.3 4-65

Summary of SCSI Manager 4.3

C Summary

Constants

enum {

scsiVERSION = 43

};

/* SCSI Manager function codes */

enum {

SCSINop = 0x00, /* no operation */

SCSIExecIO = 0x01, /* execute a SCSI IO transaction */

SCSIBusInquiry = 0x03, /* bus inquiry */

SCSIReleaseQ = 0x04, /* release a frozen SIM queue */

SCSIAbortCommand = 0x10, /* abort a SCSI command */

SCSIResetBus = 0x11, /* reset the SCSI bus */

SCSIResetDevice = 0x12, /* reset a SCSI device */

SCSITerminateIO = 0x13, /* terminate I/O transaction */

SCSIGetVirtualIDInfo = 0x80, /* return DeviceIdent of virtual ID */

SCSILoadDriver = 0x82, /* load a driver from a SCSI device */

SCSIOldCall = 0x84, /* begin old-API emulation */

SCSICreateRefNumXref = 0x85, /* register a device driver */

SCSILookupRefNumXref = 0x86, /* find a driver reference number */

SCSIRemoveRefNumXref = 0x87, /* deregister a device driver */

SCSIRegisterWithNewXPT = 0x88, /* XPT replaced; SIM must reregister */

vendorUnique = 0xC0 /* 0xC0 through 0xFF */

};

/* allocation lengths for parameter block fields */

enum {

handshakeDataLength = 8, /* handshake data length */

maxCDBLength = 16, /* space for the CDB bytes/pointer */

vendorIDLength = 16 /* ASCII string length for vendor ID */

};

C H A P T E R 4

SCSI Manager 4.3

4-66 Summary of SCSI Manager 4.3

/* types for the scsiTransferType field */

enum {

scsiTransferBlind = 0, /* DMA if available, otherwise blind */

scsiTransferPolled /* polled */

};

/* types for the scsiDataType field */

enum {

scsiDataBuffer = 0, /* single contiguous buffer supplied */

scsiDataTIB = 1, /* TIB supplied (ptr in scsiDataPtr) */

scsiDataSG = 2 /* scatter/gather list supplied */

};

/* flags for the scsiResultFlags field */

enum {

scsiSIMQFrozen = 0x0001, /* the SIM queue is frozen */

scsiAutosenseValid = 0x0002, /* autosense data valid for target */

scsiBusNotFree = 0x0004 /* SCSI bus is not free */

};

/* bit numbers of the scsiFlags field */

enum {

kbSCSIDisableAutosense = 29, /* disable autosense feature */

kbSCSIFlagReservedA = 28,

kbSCSIFlagReserved0 = 27,

kbSCSICDBLinked = 26, /* the PB contains a linked CDB */

kbSCSIQEnable = 25, /* target queue actions are enabled */

kbSCSICDBIsPointer = 24, /* the CDB field contains a pointer */

kbSCSIFlagReserved1 = 23,

kbSCSIInitiateSyncData = 22, /* attempt sync data transfer and SDTR */

kbSCSIDisableSyncData = 21, /* disable sync, go to async */

kbSCSISIMQHead = 20, /* place PB at the head of SIM queue */

kbSCSISIMQFreeze = 19, /* freeze the SIM queue */

kbSCSISIMQNoFreeze = 18, /* disable SIM queue freezing */

kbSCSIDoDisconnect = 17, /* definitely do disconnect */

kbSCSIDontDisconnect = 16, /* definitely don't disconnect */

kbSCSIDataReadyForDMA = 15, /* data buffer(s) are ready for DMA */

kbSCSIFlagReserved3 = 14,

kbSCSIDataPhysical = 13, /* S/G buffer data ptrs are physical */

kbSCSISensePhysical = 12, /* autosense buffer ptr is physical */

kbSCSIFlagReserved5 = 11,

kbSCSIFlagReserved6 = 10,

kbSCSIFlagReserved7 = 9,

kbSCSIFlagReserved8 = 8,

C H A P T E R 4

SCSI Manager 4.3

Summary of SCSI Manager 4.3 4-67

kbSCSIDataBufferValid = 7, /* data buffer valid */

kbSCSIStatusBufferValid = 6, /* status buffer valid */

kbSCSIMessageBufferValid= 5, /* message buffer valid */

kbSCSIFlagReserved9 = 4

};

/* bit masks for the scsiFlags field */

enum {

scsiDirectionMask = 0xC0000000, /* data direction mask */

scsiDirectionNone = 0xC0000000, /* data direction (11: no data) */

scsiDirectionReserved = 0x00000000, /* data direction (00: reserved) */

scsiDirectionOut = 0x80000000, /* data direction (10: DATA OUT) */

scsiDirectionIn = 0x40000000, /* data direction (01: DATA IN) */

scsiDisableAutosense = 0x20000000, /* disable auto sense feature */

scsiFlagReservedA = 0x10000000,

scsiFlagReserved0 = 0x08000000,

scsiCDBLinked = 0x04000000, /* the PB contains a linked CDB */

scsiQEnable = 0x02000000, /* target queue actions enabled */

scsiCDBIsPointer = 0x01000000, /* the CDB field is a pointer */

scsiFlagReserved1 = 0x00800000,

scsiInitiateSyncData = 0x00400000, /* attempt sync data xfer & SDTR */

scsiDisableSyncData = 0x00200000, /* disable sync, go to async */

scsiSIMQHead = 0x00100000, /* place PB at the head of queue */

scsiSIMQFreeze = 0x00080000, /* freeze the SIM queue */

scsiSIMQNoFreeze = 0x00040000, /* disallow SIM Q freezing */

scsiDoDisconnect = 0x00020000, /* definitely do disconnect */

scsiDontDisconnect = 0x00010000, /* definitely don't disconnect */

scsiDataReadyForDMA = 0x00008000, /* buffer(s) are ready for DMA */

scsiFlagReserved3 = 0x00004000,

scsiDataPhysical = 0x00002000, /* S/G buffer ptrs are physical */

scsiSensePhysical = 0x00001000, /* autosense ptr is physical */

scsiFlagReserved5 = 0x00000800,

scsiFlagReserved6 = 0x00000400,

scsiFlagReserved7 = 0x00000200,

scsiFlagReserved8 = 0x00000100

};

/* bit masks for the scsiIOFlags field */

enum {

scsiNoParityCheck = 0x0002, /* disable parity checking */

scsiDisableSelectWAtn = 0x0004, /* disable select w/Atn */

scsiSavePtrOnDisconnect = 0x0008, /* SaveDataPointer on disconnect */

scsiNoBucketIn = 0x0010, /* don’t bit-bucket on input */

scsiNoBucketOut = 0x0020, /* don’t bit-bucket on output */

C H A P T E R 4

SCSI Manager 4.3

4-68 Summary of SCSI Manager 4.3

scsiDisableWide = 0x0040, /* disable wide negotiation */

scsiInitiateWide = 0x0080, /* initiate wide negotiation */

scsiRenegotiateSense = 0x0100, /* renegotiate sync/wide */

scsiIOFlagReserved0080 = 0x0080,

scsiIOFlagReserved8000 = 0x8000

};

/* SIM queue actions. */

enum {

scsiSimpleQTag = 0x20, /* tag for a simple queue */

scsiHeadQTag = 0x21, /* tag for head of queue */

scsiOrderedQTag = 0x22 /* tag for ordered queue */

};

/* scsiHBAInquiry field bits */

enum {

scsiBusMDP = 0x80, /* supports Modify Data Pointer message */

scsiBusWide32 = 0x40, /* supports 32-bit wide SCSI */

scsiBusWide16 = 0x20, /* supports 16-bit wide SCSI */

scsiBusSDTR = 0x10, /* supports SDTR message */

scsiBusLinkedCDB = 0x08, /* supports linked CDBs */

scsiBusTagQ = 0x02, /* supports tag queue message */

scsiBusSoftReset = 0x01 /* supports soft reset */

};

/* scsiDataTypes field bits */

/* bits 0-15 Apple-defined, 16-30 vendor unique, 31 = reserved */

enum {

scsiBusDataBuffer = (1<<scsiDataBuffer), /* single buffer */

scsiBusDataTIB = (1<<scsiDataTIB), /* TIB (ptr in scsiDataPtr) */

scsiBusDataSG = (1<<scsiDataSG), /* scatter/gather list */

scsiBusDataReserved = 0x80000000

};

/* scsiScanFlags field bits */

enum {

scsiBusScansDevices = 0x80, /* bus scans and maintains device list */

scsiBusScansOnInit = 0x40, /* bus scans at startup */

scsiBusLoadsROMDrivers = 0x20 /* may load ROM drivers for targets */

};

C H A P T E R 4

SCSI Manager 4.3

Summary of SCSI Manager 4.3 4-69

/* scsiFeatureFlags field bits */

enum {

scsiBusInternalExternalMask = 0x000000C0, /* internal/external mask*/

scsiBusInternalExternalUnknown = 0x00000000, /* unknown if in or out */

scsiBusInternalExternal = 0x000000C0, /* both inside and outside */

scsiBusInternal = 0x00000080, /* bus goes inside the box */

scsiBusExternal = 0x00000040, /* bus goes outside the box */

scsiBusCacheCoherentDMA = 0x00000020, /* DMA is cache coherent */

scsiBusOldCallCapable = 0x00000010, /* SIM supports old API */

scsiBusDifferential = 0x00000004, /* uses differential bus */

scsiBusFastSCSI = 0x00000002, /* HBA supports fast SCSI */

scsiBusDMAavailable = 0x00000001 /* DMA is available */

};

/* scsiWeirdStuff field bits */

enum {

/* disconnects on odd byte boundries are unsafe with DMA or blind reads */

scsiOddDisconnectUnsafeRead1 = 0x0001,

/* disconnects on odd byte boundries unsafe with DMA or blind writes */

scsiOddDisconnectUnsafeWrite1 = 0x0002,

/* non-handshaked delays or disconnects on blind transfer may hang */

scsiBusErrorsUnsafe = 0x0004,

/* non-handshaked delays or disconnects on blind transfer may corrupt */

scsiRequiresHandshake = 0x0008,

/* targets that initiate synchronous negotiations are supported */

scsiTargetDrivenSDTRSafe = 0x0010

};

/* scsiHBAslotType values */

enum {

scsiMotherboardBus = 0x01, /* a built-in Apple bus */

scsiNuBus = 0x02, /* a SIM on a NuBus card */

scsiPDSBus = 0x03 /* a SIM on a PDS card */

};

/* flags for the scsiDriverFlags field */

enum {

scsiDeviceSensitive = 0x0001, /* only driver should access this device */

scsiDeviceNoOldCallAccess = 0x0002 /* device does not support old API */

};

C H A P T E R 4

SCSI Manager 4.3

4-70 Summary of SCSI Manager 4.3

/* SCSI Phases (used by SIMs that support the original SCSI Manager) */

enum {

kDataOutPhase, /* encoded MSG, C/D, I/O bits */

kDataInPhase,

kCommandPhase,

kStatusPhase,

kPhaseIllegal0,

kPhaseIllegal1,

kMessageOutPhase,

kMessageInPhase,

kBusFreePhase, /* additional phases */

kArbitratePhase,

kSelectPhase

};

Data Types

/* SCSI callback function prototypes */

typedef pascal void (*CallbackProc) (void * scsiPB);

typedef void (*AENCallbackProc) (void);

typedef OSErr (*SIMInitProc) (Ptr SIMinfoPtr);

typedef void (*SIMActionProc) (void * scsiPB, Ptr SIMGlobals);

typedef void (*SCSIProc) (void);

typedef void (*MakeCallbackProc) (void * scsiPB);

typedef SInt32 (*InterruptPollProc) (Ptr SIMGlobals);

struct DeviceIdent

{

UInt8 diReserved; /* reserved */

UInt8 bus; /* SCSI - bus number */

UInt8 targetID; /* SCSI - target SCSI ID */

UInt8 LUN; /* SCSI - logical unit number */

};

typedef struct DeviceIdent DeviceIdent;

union CDB

{

UInt8 *cdbPtr; /* pointer to the CDB, or */

UInt8 cdbBytes[maxCDBLength]; /* the actual CDB to send */

};

typedef union CDB CDB, *CDBPtr;

C H A P T E R 4

SCSI Manager 4.3

Summary of SCSI Manager 4.3 4-71

struct SGRecord

{

Ptr SGAddr; /* scatter/gather buffer address */

UInt32 SGCount; /* buffer size */

};

typedef struct SGRecord SGRecord;

#define SCSIPBHdr \

struct SCSIHdr *qLink; /* internal use, must be nil */ \

SInt16 scsiReserved1; /* -> reserved for input */ \

UInt16 scsiPBLength; /* -> length of the entire PB */ \

UInt8 scsiFunctionCode; /* -> function selector */ \

UInt8 scsiReserved2; /* <- reserved for output*/ \

OSErr scsiResult; /* <- returned result */ \

DeviceIdent scsiDevice; /* -> device ID (bus+target+LUN) */ \

CallbackProc scsiCompletion; /* -> completion routine pointer */ \

UInt32 scsiFlags; /* -> assorted flags */ \

UInt8 *scsiDriverStorage; /* <> pointer for driver private use */ \

Ptr scsiXPTprivate; /* private field for XPT */ \

SInt32 scsiReserved3; /* reserved */

struct SCSI_PB

{

SCSIPBHdr

};

typedef struct SCSI_PB SCSI_PB;

#define SCSI_IO_Macro \

SCSIPBHdr /* header information fields */ \

UInt16 scsiResultFlags; /* <- flags that modify scsiResult */ \

UInt16 scsiReserved12; /* -> reserved */ \

UInt8 *scsiDataPtr; /* -> data pointer */ \

UInt32 scsiDataLength; /* -> data transfer length */ \

UInt8 *scsiSensePtr; /* -> autosense data buffer pointer */ \

UInt8 scsiSenseLength; /* -> size of the autosense buffer */ \

UInt8 scsiCDBLength; /* -> number of bytes for the CDB */ \

UInt16 scsiSGListCount; /* -> number of S/G list entries */ \

UInt32 scsiReserved4; /* <- reserved for output */ \

UInt8 scsiSCSIstatus; /* <- returned SCSI device status */ \

SInt8 scsiSenseResidual; /* <- autosense residual length */ \

UInt16 scsiReserved5; /* <- reserved for output */ \

SInt32 scsiDataResidual; /* <- data residual length */ \

CDB scsiCDB; /* -> actual CDB or pointer to CDB */ \

SInt32 scsiTimeout; /* -> timeout value */ \

C H A P T E R 4

SCSI Manager 4.3

4-72 Summary of SCSI Manager 4.3

UInt8 *scsiReserved13; /* -> reserved */ \

UInt16 scsiReserved14; /* -> reserved */ \

UInt16 scsiIOFlags; /* -> additional I/O flags */ \

UInt8 scsiTagAction; /* -> what to do for tag queuing */ \

UInt8 scsiReserved6; /* -> reserved for input */ \

UInt16 scsiReserved7; /* -> reserved for input */ \

UInt16 scsiSelectTimeout; /* -> select timeout value */ \

UInt8 scsiDataType; /* -> data description type */ \

UInt8 scsiTransferType; /* -> transfer type (blind/polled) */ \

UInt32 scsiReserved8; /* -> reserved for input */ \

UInt32 scsiReserved9; /* -> reserved for input */ \

UInt16 scsiHandshake[handshakeDataLength]; /* -> handshake info */ \

UInt32 scsiReserved10; /* -> reserved for input */ \

UInt32 scsiReserved11; /* -> reserved for input */ \

struct SCSI_IO *scsiCommandLink; /* -> linked command pointer */ \

UInt8 scsiSIMpublics[8]; /* -> reserved for SIM input */ \

UInt8 scsiAppleReserved6[8]; /* -> reserved for input */ \

/* XPT private fields for original SCSI Manager emulation */ \

UInt16 scsiCurrentPhase; /* <- bus phase after old call */ \

SInt16 scsiSelector; /* -> selector for old call */ \

OSErr scsiOldCallResult; /* <- result of old call */ \

UInt8 scsiSCSImessage; /* <- SCSIComplete message byte */ \

UInt8 XPTprivateFlags; /* <> XPT private flags */ \

UInt8 XPTextras[12]; /* reserved */

struct SCSI_IO

{

SCSI_IO_Macro

};

typedef struct SCSI_IO SCSI_IO;

typedef SCSI_IO SCSIExecIOPB;

struct SCSIBusInquiryPB

{

SCSIPBHdr /* header information fields */

UInt16 scsiEngineCount; /* <- number of engines on HBA */

UInt16 scsiMaxTransferType; /* <- number of xfer types supported */

UInt32 scsiDataTypes; /* <- data types supported by this SIM */

UInt16 scsiIOpbSize; /* <- size of SCSI_IO PB for this SIM */

UInt16 scsiMaxIOpbSize; /* <- largest SCSI_IO PB for all SIMs */

UInt32 scsiFeatureFlags; /* <- supported features flags field */

UInt8 scsiVersionNumber; /* <- version number for the SIM/HBA */

UInt8 scsiHBAInquiry; /* <- mimic of INQ byte 7 for the HBA */

UInt8 scsiTargetModeFlags; /* <- flags for target mode support */

C H A P T E R 4

SCSI Manager 4.3

Summary of SCSI Manager 4.3 4-73

UInt8 scsiScanFlags; /* <- scan related feature flags */

UInt32 scsiSIMPrivatesPtr; /* <- pointer to SIM private data */

UInt32 scsiSIMPrivatesSize; /* <- size of SIM private data */

UInt32 scsiAsyncFlags; /* <- reserved for input */

UInt8 scsiHiBusID; /* <- highest path ID in the subsystem */

UInt8 scsiInitiatorID; /* <- ID of the HBA on the SCSI bus */

UInt16 scsiBIReserved0; /* reserved */

UInt32 scsiBIReserved1; /* reserved */

UInt32 scsiFlagsSupported; /* <- which scsiFlags are supported */

UInt16 scsiIOFlagsSupported; /* <- which scsiIOFlags are supported */

UInt16 scsiWeirdStuff; /* <- flags for strange behavior */

UInt16 scsiMaxTarget; /* <- maximum target ID supported */

UInt16 scsiMaxLUN; /* <- maximum LUN supported */

SInt8 scsiSIMVendor[vendorIDLength]; /* <- vendor ID of the SIM */

SInt8 scsiHBAVendor[vendorIDLength]; /* <- vendor ID of the HBA */

SInt8 scsiControllerFamily[vendorIDLength]; /* <- controller family */

SInt8 scsiControllerType[vendorIDLength]; /* <- controller model */

SInt8 scsiXPTversion[4]; /* <- version number of XPT */

SInt8 scsiSIMversion[4]; /* <- version number of SIM */

SInt8 scsiHBAversion[4]; /* <- version number of HBA */

UInt8 scsiHBAslotType; /* <- type of slot this HBA is in */

UInt8 scsiHBAslotNumber; /* <- slot number of this HBA */

UInt16 scsiSIMsRsrcID; /* <- sResource ID of this SIM */

UInt16 scsiBIReserved3; /* <- reserved for input */

UInt16 scsiAdditionalLength; /* <- additional length of PB */

};

typedef struct SCSIBusInquiryPB SCSIBusInquiryPB;

struct SCSIAbortCommandPB

{

SCSIPBHdr /* header information fields */

SCSI_IO *scsiIOptr; /* -> pointer to the PB to abort */

};

typedef struct SCSIAbortCommandPB SCSIAbortCommandPB;

struct SCSITerminateIOPB

{

SCSIPBHdr /* header information fields */

SCSI_IO *scsiIOptr; /* -> pointer to the PB to terminate */

};

typedef struct SCSITerminateIOPB SCSITerminateIOPB;

C H A P T E R 4

SCSI Manager 4.3

4-74 Summary of SCSI Manager 4.3

struct SCSIGetVirtualIDInfoPB

{

SCSIPBHdr /* header information fields */

UInt16 scsiOldCallID; /* -> SCSI ID of device in question */

Boolean scsiExists; /* <- true if device exists */

};

typedef struct SCSIGetVirtualIDInfoPB SCSIGetVirtualIDInfoPB;

struct SCSIDriverPB

{

SCSIPBHdr /* header information fields */

SInt16 scsiDriver; /* -> driver refNum, for CreateRefNumXref */

/* <- for LookupRefNumXref */

UInt16 scsiDriverFlags; /* <> details of driver/device */

DeviceIdent scsiNextDevice; /* <- DeviceIdent of the next driver */

};

typedef struct SCSIDriverPB SCSIDriverPB;

struct SCSILoadDriverPB

{

SCSIPBHdr /* header information fields */

SInt16 scsiLoadedRefNum; /* <- SIM returns driver reference number */

Boolean scsiDiskLoadFailed; /* -> if true, previous call failed */

};

typedef struct SCSILoadDriverPB SCSILoadDriverPB;

struct SIMInitInfo

{

UInt8 *SIMstaticPtr; /* <- pointer to the SIM's static data */

SInt32 staticSize; /* -> size requested for SIM static data */

SIMInitProc SIMInit; /* -> pointer to the SIMInit function */

SIMActionProc SIMAction; /* -> pointer to the SIMAction function */

SCSIProc SIM_ISR; /* reserved */

InterruptPollProc SIMInterruptPoll; /* -> pointer to SIMInterruptPoll */

SIMActionProc NewOldCall; /* -> pointer to NewOldCall function */

UInt16 ioPBSize; /* -> size of SCSI_IO PB for this SIM */

Boolean oldCallCapable; /* -> true if SIM handles old-API calls */

UInt8 simInfoUnused1; /* reserved */

SInt32 simInternalUse; /* not affected or viewed by XPT */

SCSIProc XPT_ISR; /* reserved */

SCSIProc EnteringSIM; /* <- pointer to EnteringSIM function */

SCSIProc ExitingSIM; /* <- pointer to ExitingSIM function */

MakeCallbackProc MakeCallback; /* <- pointer to MakeCallback function */

UInt16 busID; /* <- bus number for the registered bus */

C H A P T E R 4

SCSI Manager 4.3

Summary of SCSI Manager 4.3 4-75

UInt16 simInfoUnused3; /* <- reserved */

SInt32 simInfoUnused4; /* <- reserved */

};

typedef struct SIMInitInfo SIMInitInfo;

Functions

OSErr SCSIAction (SCSI_PB *scsiPB);

OSErr SCSIRegisterBus (SIMInitInfo *SIMinfoPtr);

OSErr SCSIDeregisterBus (SCSI_PB *scsiPB);

OSErr SCSIReregisterBus (SIMInitInfo *SIMinfoPtr);

OSErr SCSIKillXPT (void *);

Pascal Summary

Constants

CONST

scsiVERSION = 43;

{SCSI Manager function codes}

SCSINop = $00; {no operation}

SCSIExecIO = $01; {execute a SCSI IO transaction}

SCSIBusInquiry = $03; {bus inquiry}

SCSIReleaseQ = $04; {release a frozen SIM queue}

SCSIAbortCommand = $10; {abort a SCSI command}

SCSIResetBus = $11; {reset the SCSI bus}

SCSIResetDevice = $12; {reset a SCSI device}

SCSITerminateIO = $13; {terminate I/O transaction}

SCSIGetVirtualIDInfo = $80; {return DeviceIdent of virtual ID}

SCSILoadDriver = $82; {load a driver from a SCSI device}

SCSIOldCall = $84; {begin old-API emulation}

SCSICreateRefNumXref = $85; {register a device driver}

SCSILookupRefNumXref = $86; {find a driver reference number}

SCSIRemoveRefNumXref = $87; {deregister a device driver}

SCSIRegisterWithNewXPT = $88; {XPT replaced; SIM must reregister}

vendorUnique = $C0; {$C0 through $FF}

C H A P T E R 4

SCSI Manager 4.3

4-76 Summary of SCSI Manager 4.3

{allocation lengths for parameter block fields}

handshakeDataLength = 8; {handshake data length}

maxCDBLength = 16; {space for the CDB bytes/pointer}

vendorIDLength = 16; {ASCII string length for Vendor ID}

{types for the scsiTransferType field}

scsiTransferBlind = 0; {DMA if available, otherwise blind}

scsiTransferPolled = 1; {polled}

{types for the scsiDataType field}

scsiDataBuffer = 0; {single contiguous buffer supplied}

scsiDataTIB = 1; {TIB supplied (ptr in scsiDataPtr)}

scsiDataSG = 2; {scatter/gather list supplied}

{flags for the scsiResultFlags field}

scsiSIMQFrozen = $0001; {the SIM queue is frozen}

scsiAutosenseValid = $0002; {autosense data valid for target}

scsiBusNotFree = $0004; {SCSI bus is not free}

{bit numbers in the scsiFlags field}

kbSCSIDisableAutosense = 29; {disable auto sense feature}

kbSCSIFlagReservedA = 28;

kbSCSIFlagReserved0 = 27;

kbSCSICDBLinked = 26; {the PB contains a linked CDB}

kbSCSIQEnable = 25; {target queue actions are enabled}

kbSCSICDBIsPointer = 24; {the CDB field contains a pointer}

kbSCSIFlagReserved1 = 23;

kbSCSIInitiateSyncData = 22; {attempt sync data transfer and SDTR}

kbSCSIDisableSyncData = 21; {disable sync, go to async}

kbSCSISIMQHead = 20; {place PB at the head of SIM queue}

kbSCSISIMQFreeze = 19; {freeze the SIM queue}

kbSCSISIMQNoFreeze = 18; {disable SIM queue freezing}

kbSCSIDoDisconnect = 17; {definitely do disconnect}

kbSCSIDontDisconnect = 16; {definitely don't disconnect}

kbSCSIDataReadyForDMA = 15; {data buffer(s) are ready for DMA}

kbSCSIFlagReserved3 = 14;

kbSCSIDataPhysical = 13; {S/G buffer data ptrs are physical}

kbSCSISensePhysical = 12; {autosense buffer ptr is physical}

kbSCSIFlagReserved5 = 11;

kbSCSIFlagReserved6 = 10;

kbSCSIFlagReserved7 = 9;

kbSCSIFlagReserved8 = 8;

kbSCSIDataBufferValid = 7; {data buffer valid}

C H A P T E R 4

SCSI Manager 4.3

Summary of SCSI Manager 4.3 4-77

kbSCSIStatusBufferValid = 6; {status buffer valid}

kbSCSIMessageBufferValid = 5; {message buffer valid}

kbSCSIFlagReserved9 = 4;

{bit masks for the scsiFlags field}

scsiDirectionMask = $C0000000; {data direction mask}

scsiDirectionNone = $C0000000; {data direction (11: no data)}

scsiDirectionReserved = $00000000; {data direction (00: reserved)}

scsiDirectionOut = $80000000; {data direction (10: DATA OUT)}

scsiDirectionIn = $40000000; {data direction (01: DATA IN)}

scsiDisableAutosense = $20000000; {disable auto sense feature}

scsiFlagReservedA = $10000000;

scsiFlagReserved0 = $08000000;

scsiCDBLinked = $04000000; {the PB contains a linked CDB}

scsiQEnable = $02000000; {target queue actions enabled}

scsiCDBIsPointer = $01000000; {the CDB field is a pointer}

scsiFlagReserved1 = $00800000;

scsiInitiateSyncData = $00400000; {attempt sync data xfer & SDTR}

scsiDisableSyncData = $00200000; {disable sync; go to async}

scsiSIMQHead = $00100000; {place PB at the head of queue}

scsiSIMQFreeze = $00080000; {freeze the SIM queue}

scsiSIMQNoFreeze = $00040000; {disallow SIM Q freezing}

scsiDoDisconnect = $00020000; {definitely do disconnect}

scsiDontDisconnect = $00010000; {definitely don't disconnect}

scsiDataReadyForDMA = $00008000; {buffer(s) are ready for DMA}

scsiFlagReserved3 = $00004000;

scsiDataPhysical = $00002000; {S/G buffer ptrs are physical}

scsiSensePhysical = $00001000; {autosense ptr is physical}

scsiFlagReserved5 = $00000800;

scsiFlagReserved6 = $00000400;

scsiFlagReserved7 = $00000200;

scsiFlagReserved8 = $00000100;

{bit masks for the scsiIOFlags field}

scsiNoParityCheck = $0002; {disable parity checking}

scsiDisableSelectWAtn = $0004; {disable select w/Atn}

scsiSavePtrOnDisconnect = $0008; {SaveDataPointer on disconnect}

scsiNoBucketIn = $0010; {don’t bit-bucket on input}

scsiNoBucketOut = $0020; {don’t bit-bucket on output}

scsiDisableWide = $0040; {disable wide negotiation}

scsiInitiateWide = $0080; {initiate wide negotiation}

scsiRenegotiateSense = $0100; {renegotiate sync/wide}

scsiIOFlagReserved0080 = $0080;

scsiIOFlagReserved8000 = $8000;

C H A P T E R 4

SCSI Manager 4.3

4-78 Summary of SCSI Manager 4.3

{SIM queue actions}

scsiSimpleQTag = $20; {tag for a simple queue}

scsiHeadQTag = $21; {tag for head of queue}

scsiOrderedQTag = $22; {tag for ordered queue}

{scsiHBAInquiry field bits}

scsiBusMDP = $80; {supports Modify Data Pointer message}

scsiBusWide32 = $40; {supports 32-bit wide SCSI}

scsiBusWide16 = $20; {supports 16-bit wide SCSI}

scsiBusSDTR = $10; {supports SDTR message}

scsiBusLinkedCDB = $08; {supports linked CDBs}

scsiBusTagQ = $02; {supports tag queue message}

scsiBusSoftReset = $01; {supports soft reset}

{scsiDataTypes field bits}

{bits 0-15 Apple-defined, 16-30 vendor unique, 31 = reserved}

scsiBusDataBuffer = $00000001; {single buffer}

scsiBusDataTIB = $00000002; {TIB (pointer in scsiDataPtr)}

scsiBusDataSG = $00000004; {scatter/gather list}

scsiBusDataReserved = $80000000;

{scsiScanFlags field bits}

scsiBusScansDevices = $80; {bus scans and maintains device list}

scsiBusScansOnInit = $40; {bus scans at startup}

scsiBusLoadsROMDrivers = $20; {may load ROM drivers for targets}

{scsiFeatureFlags field bits}

scsiBusInternalExternalMask = $000000C0; {internal/external mask}

scsiBusInternalExternalUnknown = $00000000; {unknown if in or out}

scsiBusInternalExternal = $000000C0; {both inside and outside}

scsiBusInternal = $00000080; {bus goes inside the box}

scsiBusExternal = $00000040; {bus goes outside the box}

scsiBusCacheCoherentDMA = $00000020; {DMA is cache coherent}

scsiBusOldCallCapable = $00000010; {SIM supports old-API}

scsiBusDifferential = $00000004; {uses differential bus}

scsiBusFastSCSI = $00000002; {HBA supports fast SCSI}

scsiBusDMAavailable = $00000001; {DMA is available}

{scsiWeirdStuff field bits}

scsiOddDisconnectUnsafeRead1 = $0001; {odd byte disconnects unsafe}

scsiOddDisconnectUnsafeWrite1 = $0002; {odd byte disconnects unsafe}

scsiBusErrorsUnsafe = $0004; {delays or disconnects may hang}

scsiRequiresHandshake = $0008; {delays/disconnects may corrupt}

scsiTargetDrivenSDTRSafe = $0010; {target-driven STDR supported}

C H A P T E R 4

SCSI Manager 4.3

Summary of SCSI Manager 4.3 4-79

{scsiHBAslotType values}

scsiMotherboardBus = $01; {a built-in Apple bus}

scsiNuBus = $02; {a SIM on a NuBus card}

scsiPDSBus = $03; {a SIM on a PDS card}

{flags for the scsiDriverFlags field}

scsiDeviceSensitive = $0001; {only driver should access the device}

scsiDeviceNoOldCallAccess = $0002; {device does not support old API}

{SCSI Phases (used by SIMs that support the original SCSI Manager)}

kDataOutPhase = $00; {encoded MSG, C/D, I/O bits}

kDataInPhase = $01;

kCommandPhase = $02;

kStatusPhase = $03;

kPhaseIllegal0 = $04;

kPhaseIllegal1 = $05;

kMessageOutPhase = $06;

kMessageInPhase = $07;

kBusFreePhase = $08; {additional phases}

kArbitratePhase = $09;

kSelectPhase = $0A;

Data Types

TYPE

{SCSI callback function prototypes}

CallbackProc = ProcPtr;

AENCallbackProc = ProcPtr;

SIMInitProc = ProcPtr;

SIMActionProc = ProcPtr;

SCSIProc = ProcPtr;

MakeCallbackProc = ProcPtr;

InterruptPollProc = ProcPtr;

TYPE

DI =

PACKED RECORD

diReserved: Byte; {reserved}

bus: Byte; {SCSI - bus number}

targetID: Byte; {SCSI - target SCSI ID}

LUN: Byte; {SCSI - logical unit number}

END;

DeviceIdent = DI;

C H A P T E R 4

SCSI Manager 4.3

4-80 Summary of SCSI Manager 4.3

CDBRec =

PACKED RECORD

CASE Integer OF

0: cdbPtr: ^Byte; {pointer to the CDB, or}

1: cdbBytes: ARRAY [0..15] OF Byte; {the actual CDB to send}

END;

CDB = CDBRec;

CDBPtr = ^CDBRec;

SGR =

PACKED RECORD

SGAddr: Ptr; {scatter/gather buffer address}

SGCount: LongInt; {buffer size}

END;

SGRecord = SGR;

SCSIHdr =

PACKED RECORD

qLink: ^SCSIHdr; { internal use, must be NIL}

scsiReserved1: Integer; {-> reserved for input}

scsiPBLength: Integer; {-> length of the entire PB}

scsiFunctionCode: Byte; {-> function selector}

scsiReserved2: Byte; {<- reserved for output}

scsiResult: OSErr; {<- returned result}

scsiDevice: DeviceIdent; {-> device ID (bus+target+LUN)}

scsiCompletion: CallbackProc; {-> completion routine pointer}

scsiFlags: LongInt; {-> assorted flags}

scsiDriverStorage: ^Byte; {<> pointer for driver private use}

scsiXPTprivate: Ptr; { private field for XPT}

scsiReserved3: LongInt; { reserved}

END;

SCSI_PB = SCSIHdr;

SCSI_IO =

PACKED RECORD

qLink: ^SCSIHdr; { internal use, must be NIL}

scsiReserved1: Integer; {-> reserved for input}

scsiPBLength: Integer; {-> length of the entire PB}

scsiFunctionCode: Byte; {-> function selector}

scsiReserved2: Byte; {<- reserved for output}

scsiResult: OSErr; {<- returned result}

scsiDevice: DeviceIdent; {-> device ID (bus+target+LUN)}

scsiCompletion: CallbackProc; {-> completion routine pointer}

scsiFlags: LongInt; {-> assorted flags}

C H A P T E R 4

SCSI Manager 4.3

Summary of SCSI Manager 4.3 4-81

scsiDriverStorage: ^Byte; {<> pointer for driver private use}

scsiXPTprivate: Ptr; { private field for XPT}

scsiReserved3: LongInt; { reserved}

scsiResultFlags: Integer; {<- flags that modify scsiResult}

scsiReserved12: Integer; {-> reserved}

scsiDataPtr: ^Byte; {-> data pointer}

scsiDataLength: LongInt; {-> data transfer length}

scsiSensePtr: ^Byte; {-> autosense data buffer pointer}

scsiSenseLength: Byte; {-> size of the autosense buffer}

scsiCDBLength: Byte; {-> number of bytes for the CDB}

scsiSGListCount: Integer; {-> number of S/G list entries}

scsiReserved4: LongInt; {<- reserved for output}

scsiSCSIstatus: Byte; {<- returned SCSI device status}

scsiSenseResidual: Char; {<- autosense residual length}

scsiReserved5: Integer; {<- reserved for output}

scsiDataResidual: LongInt; {<- data residual length}

scsiCDB: CDB; {-> actual CDB or pointer to CDB}

scsiTimeout: LongInt; {-> timeout value}

scsiReserved13: ^Byte; {-> reserved}

scsiReserved14: Integer; {-> reserved}

scsiIOFlags: Integer; {-> additional I/O flags}

scsiTagAction: Byte; {-> what to do for tag queuing}

scsiReserved6: Byte; {-> reserved for input}

scsiReserved7: Integer; {-> reserved for input}

scsiSelectTimeout: Integer; {-> select timeout value}

scsiDataType: Byte; {-> data description type}

scsiTransferType: Byte; {-> transfer type (blind/polled)}

scsiReserved8: LongInt; {-> reserved for input}

scsiReserved9: LongInt; {-> reserved for input}

scsiHandshake: ARRAY [0..7] OF Integer; {-> handshake info}

scsiReserved10: LongInt; {-> reserved for input}

scsiReserved11: LongInt; {-> reserved for input}

scsiCommandLink: ^SCSI_IO; {-> linked command pointer}

scsiSIMpublics: ARRAY [0..7] OF Byte; {-> reserved for SIM input}

scsiAppleReserved6: ARRAY [0..7] OF Byte; {-> reserved for input}

scsiCurrentPhase: Integer; {<- bus phase after old call}

scsiSelector: Integer; {-> selector for old call}

scsiOldCallResult: OSErr; {<- result of old call}

scsiSCSImessage: Byte; {<- SCSIComplete message byte}

XPTprivateFlags: Byte; {<> XPT private flags}

XPTextras: ARRAY [0..11] OF Byte; {reserved}

END;

SCSIExecIOPB = SCSI_IO;

C H A P T E R 4

SCSI Manager 4.3

4-82 Summary of SCSI Manager 4.3

SCSIBusInquiryPB =

PACKED RECORD

qLink: ^SCSIHdr; { internal use, must be NIL}

scsiReserved1: Integer; {-> reserved for input}

scsiPBLength: Integer; {-> length of the entire PB}

scsiFunctionCode: Byte; {-> function selector}

scsiReserved2: Byte; {<- reserved for output}

scsiResult: OSErr; {<- returned result}

scsiDevice: DeviceIdent; {-> device ID (bus+target+LUN)}

scsiCompletion: CallbackProc; {-> completion routine pointer}

scsiFlags: LongInt; {-> assorted flags}

scsiDriverStorage: ^Byte; {<> pointer for driver private use}

scsiXPTprivate: Ptr; { private field for XPT}

scsiReserved3: LongInt; { reserved}

scsiEngineCount: Integer; {<- number of engines on HBA}

scsiMaxTransferType: Integer; {<- number of xfer types supported}

scsiDataTypes: LongInt; {<- data types supported by SIM}

scsiIOpbSize: Integer; {<- size of SCSI_IO PB for SIM}

scsiMaxIOpbSize: Integer; {<- largest SCSI_IO PB registered}

scsiFeatureFlags: LongInt; {<- supported features flags field}

scsiVersionNumber: Byte; {<- version number for the SIM/HBA}

scsiHBAInquiry: Byte; {<- mimic of INQ byte 7 for HBA}

scsiTargetModeFlags: Byte; {<- flags for target mode support}

scsiScanFlags: Byte; {<- scan related feature flags}

scsiSIMPrivatesPtr: LongInt; {<- pointer to SIM private data}

scsiSIMPrivatesSize: LongInt; {<- size of SIM private data}

scsiAsyncFlags: LongInt; {<- reserved for input}

scsiHiBusID: Byte; {<- highest bus ID registered}

scsiInitiatorID: Byte; {<- ID of the HBA on the SCSI bus}

scsiBIReserved0: Integer; { reserved}

scsiBIReserved1: LongInt; { reserved}

scsiFlagsSupported: LongInt; {<- which scsiFlags are supported}

scsiIOFlagsSupported: Integer; {<- which scsiIOFlags supported}

scsiWeirdStuff: Integer; {<- flags for strange behavior}

scsiMaxTarget: Integer; {<- maximum target ID supported}

scsiMaxLUN: Integer; {<- maximum LUN supported}

scsiSIMVendor: ARRAY [0..15] OF Char; {<- vendor ID of the SIM}

scsiHBAVendor: ARRAY [0..15] OF Char; {<- vendor ID of the HBA}

scsiControllerFamily: ARRAY [0..15] OF Char; {<- controller family}

scsiControllerType: ARRAY [0..15] OF Char; {<- controller model}

scsiXPTversion: ARRAY [0..3] OF Char; {<- version number of XPT}

scsiSIMversion: ARRAY [0..3] OF Char; {<- version number of SIM}

scsiHBAversion: ARRAY [0..3] OF Char; {<- version number of HBA}

C H A P T E R 4

SCSI Manager 4.3

Summary of SCSI Manager 4.3 4-83

scsiHBAslotType: Byte; {<- type of slot this HBA is in}

scsiHBAslotNumber: Byte; {<- slot number of this HBA}

scsiSIMsRsrcID: Integer; {<- sResource ID of this SIM}

scsiBIReserved3: Integer; {<- reserved for input}

scsiAdditionalLength: Integer; {<- additional length of PB}

END;

SCSIAbortCommandPB =

PACKED RECORD

qLink: ^SCSIHdr; { internal use, must be NIL}

scsiReserved1: Integer; {-> reserved for input}

scsiPBLength: Integer; {-> length of the entire PB}

scsiFunctionCode: Byte; {-> function selector}

scsiReserved2: Byte; {<- reserved for output}

scsiResult: OSErr; {<- returned result}

scsiDevice: DeviceIdent; {-> device ID (bus+target+LUN)}

scsiCompletion: CallbackProc; {-> completion routine pointer}

scsiFlags: LongInt; {-> assorted flags}

scsiDriverStorage: ^Byte; {<> pointer for driver private use}

scsiXPTprivate: Ptr; { private field for XPT}

scsiReserved3: LongInt; { reserved}

scsiIOptr: ^SCSI_IO; {-> pointer to the PB to abort}

END;

SCSITerminateIOPB =

PACKED RECORD

qLink: ^SCSIHdr; { internal use, must be NIL}

scsiReserved1: Integer; {-> reserved for input}

scsiPBLength: Integer; {-> length of the entire PB}

scsiFunctionCode: Byte; {-> function selector}

scsiReserved2: Byte; {<- reserved for output}

scsiResult: OSErr; {<- returned result}

scsiDevice: DeviceIdent; {-> device ID (bus+target+LUN)}

scsiCompletion: CallbackProc; {-> completion routine pointer}

scsiFlags: LongInt; {-> assorted flags}

scsiDriverStorage: ^Byte; {<> pointer for driver private use}

scsiXPTprivate: Ptr; { private field for XPT}

scsiReserved3: LongInt; { reserved}

scsiIOptr: ^SCSI_IO; {-> pointer to the PB to terminate}

END;

SCSIGetVirtualIDInfoPB =

PACKED RECORD

qLink: ^SCSIHdr; { internal use, must be NIL}

C H A P T E R 4

SCSI Manager 4.3

4-84 Summary of SCSI Manager 4.3

scsiReserved1: Integer; {-> reserved for input}

scsiPBLength: Integer; {-> length of the entire PB}

scsiFunctionCode: Byte; {-> function selector}

scsiReserved2: Byte; {<- reserved for output}

scsiResult: OSErr; {<- returned result}

scsiDevice: DeviceIdent; {-> device ID (bus+target+LUN)}

scsiCompletion: CallbackProc; {-> completion routine pointer}

scsiFlags: LongInt; {-> assorted flags}

scsiDriverStorage: ^Byte; {<> pointer for driver private use}

scsiXPTprivate: Ptr; { private field for XPT}

scsiReserved3: LongInt; { reserved}

scsiOldCallID: Integer; {-> SCSI ID of device in question}

scsiExists: Boolean; {<- true if device exists}

END;

SCSIDriverPB =

PACKED RECORD

qLink: ^SCSIHdr; { internal use, must be NIL}

scsiReserved1: Integer; {-> reserved for input}

scsiPBLength: Integer; {-> length of the entire PB}

scsiFunctionCode: Byte; {-> function selector}

scsiReserved2: Byte; {<- reserved for output}

scsiResult: OSErr; {<- returned result}

scsiDevice: DeviceIdent; {-> device ID (bus+target+LUN)}

scsiCompletion: CallbackProc; {-> completion routine pointer}

scsiFlags: LongInt; {-> assorted flags}

scsiDriverStorage: ^Byte; {<> pointer for driver private use}

scsiXPTprivate: Ptr; { private field for XPT}

scsiReserved3: LongInt; { reserved}

scsiDriver: Integer; {<> driver reference number}

scsiDriverFlags: Integer; {<> details of driver/device}

scsiNextDevice: DeviceIdent; {<- DeviceIdent of the next driver}

END;

SCSILoadDriverPB =

PACKED RECORD

qLink: ^SCSIHdr; { internal use, must be NIL}

scsiReserved1: Integer; {-> reserved for input}

scsiPBLength: Integer; {-> length of the entire PB}

scsiFunctionCode: Byte; {-> function selector}

scsiReserved2: Byte; {<- reserved for output}

scsiResult: OSErr; {<- returned result}

scsiDevice: DeviceIdent; {-> device ID (bus+target+LUN)}

scsiCompletion: CallbackProc; {-> completion routine pointer}

C H A P T E R 4

SCSI Manager 4.3

Summary of SCSI Manager 4.3 4-85

scsiFlags: LongInt; {-> assorted flags}

scsiDriverStorage: ^Byte; {<> pointer for driver private use}

scsiXPTprivate: Ptr; { private field for XPT}

scsiReserved3: LongInt; { reserved}

scsiLoadedRefNum: Integer; {<- SIM returns driver refNum}

scsiDiskLoadFailed: Boolean; {-> if true, previous call failed}

END;

SIMInitInfo =

PACKED RECORD

SIMstaticPtr: ^Byte; {<- pointer to SIM's static data}

staticSize: LongInt; {-> requested SIM static data size}

SIMInit: SIMInitProc; {-> SIMInit function pointer}

SIMAction: SIMActionProc; {-> SIMAction function pointer}

SIM_ISR: SCSIProc; { reserved}

SIMInterruptPoll: InterruptPollProc; {-> SIMInterruptPoll function}

NewOldCall: SIMActionProc; {-> NewOldCall function pointer}

ioPBSize: Integer; {-> size of SCSI_IO PB for SIM}

oldCallCapable: Boolean; {-> true if SIM supports old-API}

simInfoUnused1: Byte; { reserved}

simInternalUse: LongInt; { not affected or viewed by XPT}

XPT_ISR: SCSIProc; { reserved}

EnteringSIM: SCSIProc; {<- EnteringSIM function pointer}

ExitingSIM: SCSIProc; {<- ExitingSIM function pointer}

MakeCallback: MakeCallbackProc; {<- MakeCallback function ptr}

busID: Integer; {<- bus number assigned by XPT}

simInfoUnused3: Integer; {<- reserved}

simInfoUnused4: LongInt; {<- reserved}

END;

Routines

FUNCTION SCSIAction (VAR ioPtr: SCSI_PB): OSErr;

FUNCTION SCSIRegisterBus (VAR ioPtr: SIMInitInfo): OSErr;

FUNCTION SCSIDeregisterBus (VAR ioPtr: SIMInitInfo): OSErr;

FUNCTION SCSIReregisterBus (VAR ioPtr: SIMInitInfo): OSErr;

FUNCTION SCSIKillXPT (VAR ioPtr: SIMInitInfo): OSErr;

C H A P T E R 4

SCSI Manager 4.3

4-86 Summary of SCSI Manager 4.3

Assembly-Language Summary

Data Structures

The Device Identification Record

The Command Descriptor Block Record

The Scatter/Gather List Element

The SCSI Manager Parameter Block Header

The SCSI I/O Parameter Block

0 diReserved byte reserved
1 bus byte bus number
2 targetID byte target SCSI ID
3 LUN byte logical unit number

0 cdbPtr long CDB buffer pointer
4 cdbBytes 16 bytes CDB buffer

0 SGAddr long buffer pointer
4 SGCount long buffer size

0 qLink long used internally by the SCSI Manager
4 scsiReserved word reserved
6 scsiPBLength word parameter block size
8 scsiFunctionCode byte function selector code
9 scsiReserved2 byte reserved

10 scsiResult word result code
12 scsiDevice 4 bytes device ID (bus number, target ID, LUN)
16 scsiCompletion long completion routine
20 scsiFlags long flags
24 scsiDriverStorage long driver private data
28 scsiXPTprivate long reserved
32 scsiReserved3 long reserved

0 SCSIPBHdr 36 bytes parameter block header
36 scsiResultFlags word I/O result flags
38 scsiReserved12 word reserved
40 scsiDataPtr long data buffer pointer
44 scsiDataLength long data buffer size
48 scsiSensePtr long autosense buffer pointer
52 scsiSenseLength byte autosense buffer size
53 scsiCDBLength byte CDB size
54 scsiSGListCount word number of scatter/gather list entries
56 scsiReserved4 long reserved
60 scsiSCSIstatus byte SCSI device status

C H A P T E R 4

SCSI Manager 4.3

Summary of SCSI Manager 4.3 4-87

The SCSI Bus Inquiry Parameter Block

61 scsiSenseResidual byte autosense residual length
62 scsiReserved5 word reserved
64 scsiDataResidual long data transfer residual length
68 scsiCDB 16 bytes command descriptor block record
84 scsiTimeout long timeout value, in Time Manager format
88 scsiReserved13 long reserved
92 scsiReserved14 long reserved
94 scsiIOFlags word I/O flags
96 scsiTagAction byte reserved
97 scsiReserved6 byte reserved
98 scsiReserved7 word reserved

100 scsiSelectTimeout word selection timeout value, in milliseconds
102 scsiDataType byte data type of scsiDataPtr
103 scsiTransferType byte transfer mode (polled or blind)
104 scsiReserved8 long reserved
108 scsiReserved9 long reserved
112 scsiHandshake 16 bytes handshaking instructions
128 scsiReserved10 long reserved
132 scsiReserved1 long reserved
136 scsiCommandLink long linked parameter block pointer
140 scsiSIMpublics 8 bytes additional input to SIM
148 scsiAppleReserved6 8 bytes reserved
156 scsiCurrentPhase word bus phase after original SCSI Manager function
158 scsiSelector word _SCSIDispatch selector for original function
160 scsiOldCallResult word result code of original function
162 scsiSCSImessage byte SCSIComplete message byte
163 XPTprivateFlags byte reserved
164 XPTextras 12 bytes reserved

0 SCSIPBHdr 36 bytes parameter block header
36 scsiEngineCount word number of engines on the HBA
38 scsiMaxTransferType word number of data transfer types supported
40 scsiDataTypes long bit map of supported data types
44 scsiIOpbSize word SCSI I/O parameter block size for this SIM
46 scsiMaxIOpbSize word largest parameter block for any registered SIM
48 scsiFeatureFlags long bus feature flags
52 scsiVersionNumber byte SIM/HBA version number
53 scsiHBAInquiry byte bus capability flags
54 scsiTargetModeFlags byte reserved
55 scsiScanFlags byte scan feature flags
56 scsiSIMPrivatesPtr long SIM private data pointer
60 scsiSIMPrivatesSize long SIM private data size
64 scsiAsyncFlags long reserved
68 scsiHiBusID byte highest registered bus number
69 scsiInitiatorID byte SCSI ID of the HBA
70 scsiBIReserved0 word reserved
72 scsiBIReserved1 long reserved
76 scsiFlagsSupported long bit map of supported scsiFlags

C H A P T E R 4

SCSI Manager 4.3

4-88 Summary of SCSI Manager 4.3

The SCSI Abort Command Parameter Block

The SCSI Terminate I/O Parameter Block

The SCSI Virtual ID Information Parameter Block

The SCSI Load Driver Parameter Block

The SCSI Driver Identification Parameter Block

80 scsiIOFlagsSupported word bit map of supported scsiIOFlags
82 scsiWeirdStuff word miscellaneous flags
84 scsiMaxTarget word highest SCSI ID supported by the HBA
86 scsiMaxLUN word highest LUN supported by the HBA
88 scsiSIMVendor 16 bytes SIM vendor string

104 scsiHBAVendor 16 bytes HBA vendor string
120 scsiControllerFamily 16 bytes SCSI controller family string
136 scsiControllerType 16 bytes SCSI controller type string
152 scsiXPTversion 4 bytes XPT version string
156 scsiSIMversion 4 bytes SIM version string
160 scsiHBAversion 4 bytes HBA version string
164 scsiHBAslotType byte HBA slot type
165 scsiHBAslotNumber byte HBA slot number
166 scsiSIMsRsrcID word SIM sResource ID
168 scsiBIReserved3 word reserved
170 scsiAdditionalLength word additional size of the parameter block

0 SCSIPBHdr 36 bytes parameter block header
36 scsiIOptr long SCSI I/O parameter block pointer

0 SCSIPBHdr 36 bytes parameter block header
36 scsiIOptr long SCSI I/O parameter block pointer

0 SCSIPBHdr 36 bytes parameter block header
36 scsiOldCallID word virtual SCSI ID of the device to search for
38 scsiExists byte Boolean (true if the device was found)

0 SCSIPBHdr 36 bytes parameter block header
36 scsiLoadedRefNum word driver reference number
38 scsiDiskLoadFailed byte Boolean (true if a driver could not be loaded)

0 SCSIPBHdr 36 bytes parameter block header
36 scsiDriver word driver reference number
38 scsiDriverFlags word driver flags
40 scsiNextDevice 4 bytes device ID of the next device in the list

C H A P T E R 4

SCSI Manager 4.3

Summary of SCSI Manager 4.3 4-89

The SIM Initialization Record

Trap Macros

Trap Macros Requiring Routine Selectors

_SCSIAtomic

0 SIMstaticPtr long SIM private data pointer
4 staticSize long SIM private data size
8 SIMInit long SIMInit function pointer

12 SIMAction long SIMAction function pointer
16 SIM_ISR long reserved
20 SIMInterruptPoll long SIMInterruptPoll function pointer
24 NewOldCall long NewOldCall function pointer
28 ioPBSize word SCSI I/O parameter block size for this SIM
30 oldCallCapable byte Boolean (true if SIM accepts original functions)
31 simInfoUnused1 byte reserved
32 simInternalUse long SIM private data
36 XPT_ISR long reserved
40 EnteringSIM long EnteringSIM function pointer
44 ExitingSIM long ExitingSIM function pointer
48 MakeCallback long MakeCallback function pointer
52 busID word bus number
54 simInfoUnused3 word reserved
56 simInfoUnused4 long reserved

Selector Routine

$0001 SCSIAction

$0002 SCSIRegisterBus

$0003 SCSIDeregisterBus

$0004 SCSIReregisterBus

$0005 SCSIKillXPT

C H A P T E R 4

SCSI Manager 4.3

4-90 Summary of SCSI Manager 4.3

Result Codes

noErr 0 No error
scsiRequestInProgress 1 Parameter block request is in progress
scsiCDBLengthInvalid -7863 The CDB length supplied is not supported by this SIM;

typically this means it was too big
scsiTransferTypeInvalid -7864 The scsiTransferType is not supported by this SIM
scsiDataTypeInvalid -7865 SIM does not support the requested scsiDataType
scsiIDInvalid -7866 The initiator ID is invalid
scsiLUNInvalid -7867 The logical unit number is invalid
scsiTIDInvalid -7868 The target ID is invalid
scsiBusInvalid -7869 The bus ID is invalid
scsiRequestInvalid -7870 The parameter block request is invalid
scsiFunctionNotAvailable -7871 The requested function is not supported by this SIM
scsiPBLengthError -7872 The parameter block length is too small for this SIM
scsiQLinkInvalid -7881 The qLink field was not 0
scsiNoSuchXref -7882 No driver has been cross-referenced with this device
scsiDeviceConflict -7883 Attempt to register more than one driver to a device
scsiNoHBA -7884 No HBA detected
scsiDeviceNotThere -7885 SCSI device not installed or available
scsiProvideFail -7886 Unable to provide the requested service
scsiBusy -7887 SCSI subsystem is busy
scsiTooManyBuses -7888 SIM registration failed because the XPT registry is full
scsiCDBReceived -7910 The SCSI CDB was received
scsiNoNexus -7911 Nexus is not established
scsiTerminated -7912 Parameter block request terminated by the host
scsiBDRsent -7913 A SCSI bus device reset (BDR) message was sent to

the target
scsiWrongDirection -7915 Data phase was in an unexpected direction
scsiSequenceFail -7916 Target bus phase sequence failure
scsiUnexpectedBusFree -7917 Unexpected bus free phase
scsiDataRunError -7918 Data overrun/underrun error
scsiAutosenseFailed -7920 Automatic REQUEST SENSE command failed
scsiParityError -7921 An uncorrectable parity error occurred
scsiSCSIBusReset -7922 Execution of this parameter block was halted because of

a SCSI bus reset
scsiMessageRejectReceived -7923 REJECT message received
scsiIdentifyMessageRejected -7924 The target issued a REJECT message in response to the

IDENTIFY message; the LUN probably does not exist
scsiCommandTimeout -7925 The timeout value for this parameter block was

exceeded and the parameter block was aborted
scsiSelectTimeout -7926 Target selection timeout
scsiUnableToTerminate -7927 Unable to terminate I/O parameter block request
scsiNonZeroStatus -7932 The target returned non-zero status upon completion of

the request
scsiUnableToAbort -7933 Unable to abort parameter block request
scsiRequestAborted -7934 Parameter block request aborted by the host

Contents 5-1

C H A P T E R 5

Contents

ADB Manager

About the Apple Desktop Bus 5-3

Characteristics of ADB Devices 5-3

About the ADB Manager 5-5

ADB Commands 5-7

ADB Transactions 5-9

ADB Device Registers 5-9

Register 0 5-10

Register 3 5-10

Default ADB Device Address and Device Handler Identification 5-11

ADB Device Table 5-13

Address Resolution 5-15

ADB Communication 5-17

Using the ADB Manager 5-22

Checking for the ADB Manager 5-22

Getting Information About ADB Devices 5-22

Communicating With ADB Devices 5-24

Writing an ADB Device Handler 5-29

Installing an ADB Device Handler 5-30

Creating an ADB Device Handler 5-36

ADB Manager Reference 5-37

Data Structures 5-37

ADB Data Block 5-37

ADB Information Block 5-38

ADB Operation Block 5-38

ADB Manager Routines 5-39

Initializing the ADB Manager 5-39

Communicating Through the ADB 5-40

Getting ADB Device Information 5-42

Setting ADB Device Information 5-44

Application-Defined Routines 5-45

C H A P T E R 5

5-2 Contents

ADB Device Handlers 5-45

ADB Command Completion Routines 5-47

Summary of the ADB Manager 5-48

Pascal Summary 5-48

Data Types 5-48

ADB Manager Routines 5-48

Application-Defined Routines 5-49

C Summary 5-49

Data Types 5-49

ADB Manager Functions 5-50

Application-Defined Functions 5-50

Assembly-Language Summary 5-51

Data Structures 5-51

Trap Macros 5-51

Global Variables 5-51

Result Codes 5-51

C H A P T E R 5

About the Apple Desktop Bus 5-3

ADB Manager

This chapter describes the ADB Manager, the part of the Macintosh Operating System

that allows you to get information about and communicate with hardware devices

attached to the Apple Desktop Bus (ADB). On most Macintosh computers, the ADB

is used to communicate with the keyboard, the mouse, and other user-input devices.

The Macintosh Operating System contains standard keyboard and mouse handling

routines that automatically take care of all required ADB access operations. Applications

typically receive keyboard and mouse input by calling the Event Manager, not by calling

the ADB Manager. For complete information about receiving and interpreting keyboard

and mouse input, see the chapter “Event Manager” in Inside Macintosh: Macintosh Toolbox
Essentials.

This chapter begins with an overview of the Apple Desktop Bus and the ADB Manager.

It also shows how to

■ get information about devices attached to the ADB

■ communicate with devices on the ADB at a very low level

■ write a device handler for a new user-input device that connects to the ADB

For detailed information about the ADB hardware, see Guide to the Macintosh Family
Hardware, second edition.

About the Apple Desktop Bus

The Apple Desktop Bus is a low-speed serial bus that connects input devices, such as

keyboards, mouse devices, and graphics tablets, to a Macintosh computer or to other

hardware equipment. For information on the number of devices that you can connect

to the ADB, see Guide to the Macintosh Family Hardware, second edition. Macintosh

computers come equipped with one or two ADB connectors. Although a particular

model might include two ADB connectors, all models come with only one Apple

Desktop Bus.

The ADB is Apple Computer’s standard interface for input devices such as keyboards

and mouse devices. Apple provides a mouse with each Macintosh computer, except for

models equipped with a trackball. Additionally, Apple provides various ADB keyboard

options, such as the Apple Standard keyboard, the Apple Extended keyboard, and the

Apple Adjustable keyboard.

Characteristics of ADB Devices

An ADB device is any input device that can connect to the ADB and meets the design

requirements described in the Apple Desktop Bus Specification.

C H A P T E R 5

ADB Manager

5-4 About the Apple Desktop Bus

IMPORTANT

Apple Computer, Inc. owns patents on the Apple Desktop Bus (ADB).
If you want to manufacture a device that works with the ADB
software, you must obtain a license and device handler ID
from Apple Computer, Inc. Write to this address:

Apple Software Licensing

Apple Computer, Inc.

1 Infinite Loop

Cupertino, CA 95014

A license includes a copy of the Apple Desktop Bus Specification. ▲

An ADB device generally communicates with the Macintosh Operating System through

a device handler —a set of low level routines designed to interact with a specific

ADB device. The Macintosh Operating System already includes device handlers

for Apple-supplied keyboards and mouse devices. You need to write your own device

handler and the code that installs it only if you are designing your own ADB device.

For more information on writing and installing an ADB device handler, see “Writing an

ADB Device Handler” on page 5-29.

A properly designed ADB device has the following features:

■ the memory in which to store data

■ a default ADB device address and device handler ID

■ the ability to detect and respond to bus collisions

■ the ability to assert a service request signal

Each ADB device may contain up to four device registers, which you can read from

or write to using certain ADB commands. One of these device registers stores the

device’s default ADB device address and device handler ID, both provided by

Apple Software Licensing.

Each ADB device has a default address and initially responds to all ADB commands

at that address. A default ADB device address is a 4-bit bus address that uniquely

identifies the general type of device (such as a mouse or keyboard). An ADB device
handler ID (or device handler identification) is an 8-bit value that identifies a more

specific classification of the device type (such as the Apple Extended keyboard) or

specific mode of operation (such as whether the keyboard differentiates between the

Right and Left Shift keys). For more information on both these items, see “Default ADB

Device Address and Device Handler Identification” on page 5-11.

To avoid collision of multiple ADB devices over the bus, an ADB device must be able

to detect when another ADB device is transmitting data at the same time. For more

information on collision detection, see “Address Resolution,” beginning on page

page 5-15.

An ADB device cannot initiate a data transaction. It must therefore be able to inform the

ADB Manager that it needs to transmit new data by asserting a service request signal. (In

addition, the ADB Manager continually queries ADB devices to see if they have data to

C H A P T E R 5

ADB Manager

About the ADB Manager 5-5

send.) For more details on service request signals, see “ADB Communication,” beginning

on page page 5-17.

About the ADB Manager

The ADB Manager is the part of the Macintosh Operating System that allows you to

get information about and communicate with hardware devices attached to the Apple

Desktop Bus. Most applications never need to interact with the ADB Manager, but can

instead call the appropriate Event Manager routines for information about user actions

on ADB devices such as keyboards or mouse devices. Also note that the ADB Manager

does not interact with the Device Manager, but handles all ADB devices and ADB device

handlers itself.

The ADB Manager handles three main tasks. First, at system startup, the ADB Manager

builds the ADB device table, which contains the default ADB device address, device

handler ID, and other identifying information for each ADB device. Whenever the ADB

is reinitialized, the ADB Manager reinitializes the ADB device table. Second, if two or

more ADB devices share the same default ADB device address when the ADB is building

the ADB device table or when the ADB is reinitialized, the ADB Manager assigns each

device a new ADB device address until no address conflict exists. This process is known

as address resolution (see page 5-15 for more information). Third, the ADB Manager

retrieves new data from the ADB devices and sends it to the appropriate device handler.

In general, ADB devices communicate with the Operating System only through the ADB

Manager. The ADB Manager, in turn, calls a device handler to process data from the

device. The device handler interprets data transmitted by the ADB device, and in some

cases, passes this information to the Event Manager. A single device handler can manage

more than one device of the same type (for example, the device handler for the Apple

Extended keyboard can manage several keyboards). A single device handler can also

manage more than one device type if the different device type emulates the device type

associated with the particular device handler (for example, a mouse device handler can

manage both a mouse and a graphics tablet emulating a mouse).

A device handler receives all data from its associated ADB device through the ADB

Manager. The ADB Manager continually checks to see if ADB devices have new data

to send. When the ADB Manager receives new data from an ADB device, it sends the

data to the appropriate device handler. The device handler interprets the data and, if

appropriate, places an event into the event queue using the PostEvent function. (For

more information on PostEvent, see Inside Macintosh: Macintosh Toolbox Essentials.)
For example, if the user types a key on the keyboard, the ADB Manager retrieves this

data and sends the data to the device handler for the keyboard, which in turn places an

event into the event queue. Figure 5-1 shows the relationship between the ADB Manager,

device handlers, and the Event Manager.

C H A P T E R 5

ADB Manager

5-6 About the ADB Manager

Figure 5-1 The ADB Manager and device handlers

C H A P T E R 5

ADB Manager

About the ADB Manager 5-7

The ADB Manager retrieves data from an ADB device as a result of its normal polling

process. The ADB Manager polls a device by sending it a command requesting it to

return the contents of one of its registers. (Note that an ADB device should respond

to the specific ADB command, Talk Register 0, only if the device has new data to send.

See the next section, “ADB Commands,” for more information.)

In general, the ADB Manager repeatedly polls the last ADB device that sent new data

except under two circumstances: when it receives a service request signal, and when it

builds the ADB device table. In these cases, the ADB Manager also polls other ADB

devices. When responding to a service request signal, the ADB Manager polls all known

addresses containing an ADB device until all pending data is transmitted and no device

asserts a service request signal. When building the ADB device table, the ADB Manager

polls each ADB device connected to the bus. For more information on the ADB device

table, see “ADB Device Table” on page 5-13.

In general, only device handlers use the ADB Manager to communicate with devices.

The normal polling of ADB devices performed by the ADB Manager retrieves data

for the device handlers; your application should call the appropriate Event Manager

routines for information about the user’s input on ADB devices. If necessary, however,

you can directly communicate with an ADB device using the ADBOp routine. You

should use the ADBOp routine only for special purposes where you need to directly

communicate with an ADB device (for example, to set the LED lights on an

Apple Extended keyboard). Remember that in most circumstances, you do not

need to call ADBOp.

ADB Commands
An ADB command is a 1-byte value that specifies the ADB device address of a device

and encodes the desired action the target device should perform. In some cases,

additional data may follow an ADB command. For example, the ADB Manager may

transmit data to the device or the device may respond to a command by transmitting one

or more bytes of data back to the ADB Manager. It’s important to realize, however, that

ADB devices never issue commands to the ADB Manager. At most, the device can assert

a service request signal to request that the ADB Manager poll the bus for any devices

wishing to transmit data. For more information on how ADB devices communicate with

the ADB Manager, see “ADB Communication,”beginning on page page 5-17.

The ADB Manager can send any of four bus commands to an ADB device. Three of these

commands, Talk, Listen, and Flush, are addressed to specific registers on a specific

device. For more information on these registers, see “ADB Device Registers” on page 5-9.

The fourth command, SendReset, applies to all ADB devices.

■ Talk. The ADB Manager sends a Talk command to a device to fetch user input (or
other data) from the device. The Talk command requests that a specified device send
the contents of a specified device register across the bus. After the device sends the
data from the specified register, the ADB Manager places the data into a buffer in
RAM, which the ADB Manager makes available for use by device handlers or (in rare
cases) applications. In the case of a Talk Register 0 command, the ADB device should
respond to the ADB Manager only if it has new data to send.

C H A P T E R 5

ADB Manager

5-8 About the ADB Manager

■ Listen. The ADB Manager sends a Listen command to a device to instruct it to
prepare to receive additional data. The Listen command indicates which data register
is to receive the data. After sending a Listen command, the ADB Manager then
transfers data from a buffer in RAM to the device. The device must overwrite the
existing contents of the specified register with the new data.

■ Flush. The ADB Manager sends a Flush command to a device to force it to flush any
existing user-input data from a specified device register. The device should prepare
itself to receive any further input from the user.

■ SendReset. The ADB Manager uses a SendReset command to force all devices on
the bus to reset themselves to their startup states. Each device should clear any of its
pending device actions and prepare to accept new ADB commands and user input
data immediately. Note that the ADB device does not actually receive the SendReset
command but recognizes that it should reset itself when the bus is driven low by the 3
millisecond reset pulse. Your application should never send the SendReset command.

 Figure 5-2 shows the command formats for the Talk, Listen, and Flush commands.

Figure 5-2 Command formats for Talk, Listen, and Flush

Bits 0 through 1 specify the ADB device register, bits 2 through 3 specify the command

code, and bits 4 through 7 specify the device address.

Figure 5-3 shows the command format for the SendReset command.

Figure 5-3 Command format for SendReset

C H A P T E R 5

ADB Manager

About the ADB Manager 5-9

The first four bits of the SendReset command identify this command. Because the

SendReset command applies to all ADB devices, bits 4 through 7 do not specify the

address of a particular device. As previously described, an ADB device never receives

a SendReset command; instead, the device resets itself in response to the 3 millisecond

pulse.

ADB Transactions
An ADB transaction is a bus communication between the computer and an ADB device.

A transaction consists of a command sent by the computer, followed by a data packet of

several bytes sent either by the computer or a device. An ADB command consists of four

parts:

■ an Attention signal

■ a Sync signal

■ one command byte

■ one stop bit

Figure 5-4 shows a typical ADB transaction, consisting of a command followed by a data

packet.

Figure 5-4 A typical ADB transaction

ADB Device Registers
Each device connected to the Apple Desktop Bus may provide up to four registers for

storing data. These registers are referred to as ADB device registers. An ADB device

can implement these registers as it chooses; that is, an ADB register does not have to

correspond to an actual hardware register on the ADB device. An ADB device is accessed

C H A P T E R 5

ADB Manager

5-10 About the ADB Manager

over the ADB by reading from or writing to these registers. Each ADB device register

may store between 2 and 8 bytes of data.

The ADB device registers are numbered 0 through 3. Register 0 and register 3 are defined

according to the specifications described in the next two sections. Register 1 and register

2 are device-dependent and can be defined by a device for any purpose.

Register 0

For most devices, register 0 is used to hold data that needs to be fetched by the

Macintosh Operating System. For example, register 0 of the Apple Standard keyboard

contains information about the key pressed by the user.

The ADB Manager polls all ADB devices to determine which one asserted a service

request signal by sending a Talk Register 0 command to each device in turn. A device

should respond to a Talk Register 0 command only if it has new data to send. For more

information about polling, see “ADB Communication,” beginning on page 5-17.

Table 5-1 shows the bits of register 0 as defined by the Apple Standard keyboard. Note

that these bits represent key transition codes (also called raw key codes). For examples

of the bits of register 0 used for the Apple standard mouse and the Apple Extended

keyboard, see Guide to the Macintosh Family Hardware, second edition.

Register 3

The bits in register 3 are defined by the ADB Manager. Figure 5-5 shows the defined bits

for register 3, which include the default ADB device address, the device handler ID, a

service request enable field, an exceptional event field, and several reserved bits.

Table 5-1 Register 0 in the Apple Standard keyboard

Bit Description

15 Key status for first key; 0 = down

14–8 Key transition code for first key; a 7-bit ASCII value

7 Key status for second key; 0 = down

6–0 Key transition code for second key; a 7-bit ASCII value

C H A P T E R 5

ADB Manager

About the ADB Manager 5-11

Figure 5-5 Format of device register 3

Table 5-2 provides a description of each bit in register 3.

The functions of some of the bits in register 3 are discussed in detail in this chapter. For

information on service request signals, “ADB Communication,” beginning on page 5-17.

For information on the default ADB device address and device handler ID, see the next

section.

Default ADB Device Address and Device Handler Identification
As previously described, each ADB device has a default ADB device address and device

handler identification (or device handler ID). Together, the default ADB device address

and device handler ID identify the general type of device (such as a mouse or keyboard)

as well as a more specific classification of the device type (such as the Apple Extended

keyboard) or specific mode of operation (such as whether the keyboard differentiates

between the Right and Left Shift keys).

A default ADB device address is a 4-bit bus address that uniquely identifies devices of

the same type. The currently defined default ADB device addresses have values between

1 and 7. Table 5-3 shows the defined default ADB device addresses and their device type

categories. Though it is not mandatory that an ADB device’s default address define the

Table 5-2 Bits in device register 3

Bit Description

15 Reserved; must be 0

14 Exceptional event, device specific; always 1 if not used

13 Service request enable; 1 = enabled

12 Reserved; must be 0

11–8 ADB device address

7–0 Device handler ID

C H A P T E R 5

ADB Manager

5-12 About the ADB Manager

device type, doing so significantly reduces the possibility of multiple devices on the ADB

sharing the same default address. Most device default addresses are movable addresses,

which means that they can be replaced with a new address. If two ADB devices have the

same default address, the ADB Manager must move one of the devices to a new address.

An example of this process is described in detail in “Address Resolution,” beginning

on page 5-15.

Note

The default address $0 is reserved for the Macintosh computer.
Addresses $8 through $E are reserved by the ADB Manager for
dynamically relocating devices to resolve address collision. ◆

The ADB device handler ID is an 8-bit value that further identifies the specific device

type or its mode of operation. For example, an Apple Standard keyboard has a device

handler ID of 1, while an Apple Extended keyboard has a device handler ID of 2.

An ADB device can support several device handler IDs and change its mode of

operation according to its current device handler ID. The Apple Extended keyboard, for

example, supports two device handler IDs: $02 and $03. The Apple Extended keyboard

uses $02 as a device handler ID by default. When its device handler ID is changed to $03,

the Apple Extended keyboard sends separate key codes for the Left and Right Shift keys.

A device handler, application, or the ADB Manager can request a device to change its

device handler ID by sending it a Listen Register 3 command. If a device accepts a

new device handler ID, it sends that device handler ID in response to any subsequent

Listen Register 3 command. An ADB device should respond to a request to change its

device handler ID only if it recognizes the device handler ID; otherwise, it should ignore

the request and continue to send its default device handler ID in response to a Listen

Register 3 command. For example, if the Apple Extended keyboard is requested to

change its device handler ID to $52, the keyboard ignores this request. When an ADB

device handler changes its device handler ID anytime after the ADB Manager sets initial

values for that device in the ADB device table (that is, after initial address resolution is

complete), the ADB Manager does not update the device’s entry in the ADB device table.

Table 5-3 Defined default ADB device addresses

Default
address Device type Example

$1 Protection devices Software execution control devices

$2 Encoded devices Keyboards

$3 Relative-position devices Mouse devices

$4 Absolute-position devices Tablets

$5 Data transfer devices Low-speed ADB modems

$6 Any other Reserved

$7 Any other Appliances/miscellaneous

C H A P T E R 5

ADB Manager

About the ADB Manager 5-13

Apple reserves certain device handler IDs for special purposes, as shown in Table 5-4.

ADB devices must recognize and respond appropriately to these special device handler

IDs. When a device receives a Listen Register 3 command containing a special device

handler ID, the device should immediately perform the specified action. Note, however,

that the device should not change its device handler ID to the special device handler ID

specified by the Listen Register 3 command.

Note

The special device handler ID $00 can also be returned by a device that
fails a self-test. ◆

ADB Device Table

The ADB Manager creates the ADB device table and places it in the system heap during

system startup. The ADB Manager also reinitializes the ADB device table whenever the

ADB is reinitialized (as a result of a call to the ADBReinit procedure, for example). For

each ADB device, the ADB device table contains an ADB device table entry. The device

table entry specifies the device’s handler ID, default ADB device address and current

ADB address, as well as the address of the device handler and the address of the area

in RAM used for global storage by the handler. For information on the address ADB

device and device handler ID, see “Default ADB Device Address and Device Handler

Identification” on page 5-11. For information on device handlers, see “Writing an ADB

Device Handler” on page 5-29.

Once the ADB Manager has set the initial values for an ADB device in the ADB device

table, thereafter it updates the device table entry only to reflect changes to a device’s

device handler routine and data area pointer. If an ADB device changes its device

handler ID, the ADB Manager does not update the ADB device table to reflect this

change. To find out the new device handler ID for a device, you must send the device

a Talk Register 3 command.

Table 5-4 Special device handler IDs

ID
value Description

$FF Instructs the device to initiate a self-test.

$FE Instructs the device to change its ADB device address (as stored in bits 8–11
of register 3) to the new address set in the command if no collision has been
detected.

$FD Instructs the device to change its ADB device address (as stored in bits 8–11
of register 3) to the new address set in the command if the activator is
pressed. (See Guide to the Macintosh Family Hardware, second edition, for
complete details on activators.)

$00 Instructs the device to change its ADB device address (as stored in bits 8–11
of register 3) and enable bit (bit 13) to the new values set in the command.

C H A P T E R 5

ADB Manager

5-14 About the ADB Manager

The ADB device table is accessible only through the ADB Manager routines GetIndADB,

GetADBInfo, and SetADBInfo. The GetIndADB and GetADBInfo routines return

information from the device table in an ADB data block, defined by the ADBDataBlock

data type. These routines are described in detail later in this chapter.

At system startup, the ADB Manager sends a Talk Register 3 command to each device

to retrieve its default ADB device address and device handler ID. For an Apple ADB

device, the ADB Manager immediately places in the device table the address of the

appropriate device handler provided by Apple for that device. Each nonstandard device,

however, requires its own handler installation code to place the address of its device

handler in the table. For information on installing a device handler, see “Installing an

ADB Device Handler,”beginning on page 5-30.

If more than one ADB device has the same default ADB device address, the ADB

Manager performs address resolution. For more information, see “Address Resolution,”

beginning on page 5-15.

Table 5-5 shows an example of an ADB device table after all ADB devices have

responded to polling and have been assigned unique ADB device addresses by the

ADB Manager. This example shows just one way that address resolution might occur.

The leftmost column shows the device table index. In this example, four devices are

connected to the ADB: three keyboards and a mouse. The keyboard at index $1 has

a device handler ID of $01, specifying that it is an Apple Standard keyboard. The

remaining two keyboards at index $3 and index $4 each have a device handler ID of $02,

specifying that they are both Apple Extended keyboards. Because they are the same type

of device, all three keyboards have a default ADB device address of $2. Each ADB device

must have a unique ADB device address. The ADB Manager therefore performs address

resolution by assigning each Apple Extended keyboard a new and unoccupied ADB

address. See “Address Resolution,” beginning on page 5-15, for complete details

on address resolution.

Table 5-5 Typical ADB device table at initialization

Index
Device
handler ID

Current
address

Default
address

Address of
device handler
routine

Address of
handler’s
data area

$1 $01 $2 $2 (keyboard) $4080AB46 $5450

$2 $01 $3 $3 (mouse) $4080AAE6 $0000

$3 $02 $E $2 (keyboard) $4080AB46 $548C

$4 $02 $D $2 (keyboard) $4080AB46 $548C

$5 $00 $0 $0 $0 $0

$6 $00 $0 $0 $0 $0

$F $00 $0 $0 $0 $0

C H A P T E R 5

ADB Manager

About the ADB Manager 5-15

Although the ADB Manager assigns each keyboard a unique current address, note that

all three keyboards use the same device handler, which in this example is located at

address $4080AB46. The device handler, however, stores data for the two keyboard

types in different areas in RAM. In this example, the address of the data area for the two

Apple Extended keyboards is at $548C, compared to the address of the data area for the

Apple Standard keyboard located at $5450.

In contrast, the mouse at index $2 is the only ADB device of its type and therefore has the

same default and current address. Also, the mouse uses a different device handler than

the keyboards use, which in this example is located at address $4080AAE6. Finally, the

mouse device handler does not need to use area in RAM for storage. As a result, the

value for its data area is $0000.

Address Resolution

Each ADB device has a default ADB device address and initially responds to all ADB

commands at that address. If two or more ADB devices respond to commands sent to

a particular address, this is referred to as address collision. Due to the design of ADB

devices and the ability of the ADB Manager to perform address resolution, most address

collision occurs only at initial startup or when you reset the ADB. Furthermore, once the

ADB Manager reassigns those addresses in conflict, subsequent address collision is quite

rare.

Collision detection is the ability of an ADB device to detect that another ADB device

is transmitting data at the same time. An ADB device should be able to detect a bus

collision if it is bringing the bus high when another device is bringing the bus low.

Whenever an ADB device attempts to bring the bus high, it should verify whether

the bus actually goes high. If the bus instead goes low, this indicates that another device

is also trying to send data. The device detecting the collision must immediately stop

transmitting and save the data it was sending. Because the detecting device is no

longer transmitting data, the device driving the bus low is not able to detect the other

device. As a result, only one of the two colliding devices—the device driving the bus

high—actually detects the collision.

When the ADB Manager performs address resolution, it reassigns default ADB device

addresses so that all devices have a unique address. The new address locations are

always between $8 through $E. Because these locations are dynamic, there is no way to

predict the order in which the ADB Manager assigns new addresses to ADB devices or

the exact address that it assigns to a given device. For the ADB Manager to accomplish

address resolution, an ADB device must meet two design requirements: first, it must

have collision detection, and second, it must always respond to a Talk Register 3

command by returning a random device address in bits 8 through 11.

A random device address is a four-bit value; an ADB device must return a random

device address to the ADB Manager in response to a Talk Register 3 command. An

ADB device is designed to respond only to a Talk Register 3 command that is specifically

addressed to it. Because the address of an ADB device is already confirmed by its ability

to respond to the Talk Register 3 command, the device does not need to provide its ADB

C H A P T E R 5

ADB Manager

5-16 About the ADB Manager

device address to identify itself. The ability of devices to send random addresses plays a

crucial role in collision detection.

At system startup, the ADB Manager polls all ADB devices at each ADB address and

begins the process of building the ADB device table by sending a Talk Register 3

command to each device. Each ADB device at a specific address attempts to respond

by sending a random device address. If more than one ADB device shares an address,

however, each device that detects a collision immediately stops transmitting data. The

device that has not detected the collision completes sending its random address across

the bus.

In response, the ADB Manager sends to the original address a Listen Register 3

command that contains a new ADB device address and a device handler ID of $FE. A

new ADB device address is always a value between $8 and $E. A device handler ID of

$FE instructs a device to change to the new device address only if it does not detect a

collision. Any detecting devices will therefore ignore the next Listen Register 3 command

containing a new ADB device address. As a result, only the device that did not detect the

collision moves to the new address; the detecting devices remain at the original address.

The ADB Manager now sends another Talk Register 3 command to the new address to

verify that the device moved to that location. In response, the moved device must once

again return a random address.

The ADB Manager repeats this process until it receives no response when it sends a Talk

Register 3 command to the shared address. This indicates that no devices reside at the

address and that it is an available address location for a device. The ADB Manager then

moves the first device it relocated to a new address back to its original address.

Figure 5-6 shows three keyboards, a mouse, and a graphics tablet. In this example,

assume these ADB devices are all connected to an ADB. This example describes one

possible order and method that the ADB Manager might use to relocate ADB devices.

Remember, however, that the specific implementation of address resolution is private

to the ADB Manager.

Figure 5-6 Resolving address conflicts

In the example shown in Figure 5-6, all three keyboards are the same device type; thus,

they share the same default ADB device address ($2). When the ADB Manager begins to

build the device table by sending a Talk Register 3 command to address $2, all three

C H A P T E R 5

ADB Manager

About the ADB Manager 5-17

keyboards attempt to respond and address collision occurs. The ADB Manager then

begins the process of address resolution.

In this particular example, the ADB Manager first sends a Listen Register 3 command

that specifies a device handler ID of $FE and a new device address of $E to the ADB

device at address $2. Only the keyboard that did not detect the collision responds to this

command and moves to address $E. Next, the ADB Manager sends a Talk Register 3

command to address $E to confirm that the keyboard has relocated there. Once the

relocated keyboard responds with a random address, the ADB Manager again sends a

Talk Register 3 command to address $2. Because two keyboards still remain at address

$2, address collision occurs again. The ADB Manager therefore sends a Listen Register 3

command that specifies a device handler ID of $FE and a new device address of $D to

the ADB device at address $2. Only the keyboard that did not detect the collision moves

to address $D. There is now only one keyboard remaining at address $2. When the ADB

Manager sends another Talk Register 3 command to address $2, the single keyboard

does not detect a collision. It therefore accepts the next Listen Register 3 command from

the ADB Manager that tells it to move to a new address ($C). Once more, the ADB

Manager sends a Talk Register 3 command to address $2. When it receives no response

from any devices, the ADB Manager moves the keyboard relocated to address $E back

to address $2.

In contrast, the mouse and the graphics tablet are the only devices of their type

connected to the ADB. As a result, neither device shares a default address with another

device; the mouse is located at address $3 and the graphics tablet is located at address

$4. When the ADB Manager builds the device table, no address collision occurs for either

device and they remain at their original addresses.

For more information on the ADB device table, see “ADB Device Table” on page 5-13.

ADB Communication

ADB devices cannot issue commands to the ADB Manager. Communication is

accomplished in two ways. First, the ADB Manager performs polling of the ADB devices,

and second, each ADB device can assert a service request signal to inform the ADB

Manager that it has data to send. The ADB Manager passes the data sent by each ADB

device to the associated device handler. In general, the ADB Manager continuously polls

the active ADB device, which is the last device that sent new data after requesting

service with a service request signal. The default active device is located at address $3,

which is usually the mouse.

Polling (or autopolling) is accomplished by the ADB Manager repeatedly sending Talk

Register 0 commands to an ADB device to see if it has new data to return. Register 0 is

therefore the primary register for transferring data for all ADB devices. For an example

of the register 0 contents for the Apple Standard keyboard, see Table 5-1 on page 5-10.

C H A P T E R 5

ADB Manager

5-18 About the ADB Manager

Note

If the data that is significant to the ADB device resides in an ADB
register other than register 0, the device handler must directly retrieve
the data from that register. For example, the Apple Extended keyboard
contains data in both register 0 and register 2. The keyboard device
handler must therefore directly retrieve the register 2 contents. ◆

Figure 5-7 shows three ADB devices connected to the bus (a keyboard, a mouse, and

a graphics tablet) and the ADB Manager performing polling.

Figure 5-7 Polling the ADB

An ADB device should respond to a Talk Register 0 command only if it has new data to

send to the ADB Manager; that is, if the status of the device has changed since the last

Talk Register 0 command. For example, Figure 5-8 shows a situation where the mouse

is the active device. The ADB Manager polls the mouse, sending a Talk Register 0

command. If the mouse has new data to send, it should respond. Whenever the mouse

responds with new data to a Talk Register 0 command, the ADB Manager sends this new

data to the mouse handler, which uses the PostEvent function to place an event in the

event queue.

C H A P T E R 5

ADB Manager

About the ADB Manager 5-19

Figure 5-8 How an ADB device responds to a polling request by the ADB Manager

Note

Designing an ADB device to respond to a Talk Register 0 command only
if it has new data to send can significantly optimize the performance
of the Apple Desktop Bus. It reduces the effort required by the ADB
Manager because it only has to call the device handler associated with a
device when the device has actual data to send. It also avoids the
endless polling cycles by the ADB Manager that can occur when an
ADB device responds to a Talk Register 0 command with no new data.
In an endless polling cycle, the ADB Manager continues to repeatedly
poll the device not sending new data, rather than moving to the next
ADB device that may have new data to send.

For further optimization, the ADB Manager automatically polls only
those ADB devices that have an installed device handler. If an ADB
device does not have a device handler installed, the ADB Manager
skips that device during polling and instead polls an ADB device that
has an installed device handler, even if the other device has not recently
communicated with the ADB Manager. The ADB Manager may poll an
ADB device that does not have an installed device handler, however, in
response to a service request signal. ◆

C H A P T E R 5

ADB Manager

5-20 About the ADB Manager

If a Talk Register 0 command is completing, the ADB device should assert a special

signal, known as a service request signal (or SRQ), to inform the ADB Manager that it

has data to send. As shown in Figure 5-9, an ADB device asserts an SRQ by holding the

bus low during the low portion of the stop bit of any command or data transaction.

Figure 5-9 The ADB service request signal

For information on the timing parameters for ADB signals, see Guide to the Macintosh
Family Hardware, second edition.

To identify which device asserted the SRQ, the ADB Manager polls each address known

to contain an ADB device, beginning with the active ADB device. That is, if the first

device polled by the ADB Manager does not respond to the Talk Register 0 command,

it polls the next device. When the ADB Manager polls the device that asserted the SRQ,

that device responds with new data. If another device asserts an SRQ, the ADB Manager

continues polling until it finds that device. If no SRQ is asserted, this indicates that all

pending data has been fetched and that the ADB Manager can return to polling the

active device. For example, Figure 5-10 shows three ADB devices, with the ADB

Manager polling the active ADB device. One of the three ADB devices, a graphics tablet,

sends an SRQ to the ADB Manager. In this particular example, the ADB Manager

responds by polling the active ADB device (in this case, the keyboard) and then polling

the remaining ADB devices. After receiving a Talk Register 0 command from the ADB

Manager, the graphics tablet can send its new data.

C H A P T E R 5

ADB Manager

About the ADB Manager 5-21

Figure 5-10 An ADB device asserts the service request signal

C H A P T E R 5

ADB Manager

5-22 Using the ADB Manager

Using the ADB Manager

You can use the ADB Manager to communicate with and get information about devices

attached to the Apple Desktop Bus. In general, applications interact with the ADB

indirectly, by calling the Event Manager to retrieve information about user actions on

the available input devices (keyboard, mouse, graphics tablet, and so forth). As a result,

most applications do not need to know how to communicate directly with ADB devices,

or even whether the ADB is present on the computer.

Some applications—such as diagnostic programs or other utilities—might want to report

information about the ADB. Other software might even need to send commands directly

to an ADB device (perhaps to query or modify device settings). This section shows how

to

■ determine whether the ADB Manager is present on the current computer

■ get information about the devices attached to the ADB

■ send commands to an ADB device in order to determine or modify device settings

For information on writing and installing ADB device handlers, see “Writing an ADB

Device Handler” on page 5-29.

Checking for the ADB Manager

The Apple Desktop Bus was introduced on the Macintosh II and Macintosh SE

computers. To test for the availability of the ADB Manager on your system, use the

NGetTrapAddress function to see if the _CountADBs trap macro is available. See

the chapter “Trap Manager” in Inside Macintosh: Operating System Utilities for information

about the NGetTrapAddress function.

Getting Information About ADB Devices
You can use the ADB Manager to get several kinds of information about the ADB and

about individual ADB devices on the bus. You can call CountADBs to determine how

many devices are currently available on the Apple Desktop Bus. The CountADBs

function simply counts the number of entries in the ADB device table.

You can call the GetIndADB function to get information about a device specified by its

index in the ADB device table. The GetIndADB function returns as its function result the

current ADB address of the device with the specified index and also returns additional

information in a parameter block pointed to by one of its parameters. If you already

know the address of an ADB device, you can call GetADBInfo to get that same

information about the device.

Both GetIndADB and GetADBInfo return information about a particular device in an

ADB data block, defined by the ADBDataBlock data type.

C H A P T E R 5

ADB Manager

Using the ADB Manager 5-23

TYPE ADBDataBlock =

PACKED RECORD

devType: SignedByte; {device handler ID}

origADBAddr: SignedByte; {default ADB device address}

dbServiceRtPtr: Ptr; {pointer to device handler}

dbDataAreaAddr: Ptr; {pointer to data area}

END;

Note

The installation code for a device handler can set information
(specifically the address of its device handler and optional data area) in
its device’s entry in the device table using the SetADBInfo function. ◆

You can examine the devType and origADBAddr fields of the ADBData block to

determine what kind of ADB device is located at a particular ADB address. (Remember

that once the ADB Manager has set the initial values for an ADB device in the ADB

device table, it updates the device table entry for the device to reflect changes only to

the address of the device handle routine and data area pointer. Thus, GetIndADB and

GetADBInfo return the device’s original device handler ID and original (default) ADB

device address.) For example, the Apple Extended keyboard has a device handler ID of

$02 and a default address of $2. Listing 5-1 shows one way to determine whether an

ADB device is an Apple Extended keyboard.

Listing 5-1 Determining whether an ADB device is an Apple Extended keyboard

FUNCTION IsExtendedKeyboard (myAddress: ADBAddress): Boolean;

VAR

myInfo: ADBDataBlock;

myCommand: Integer;

myErr: OSErr;

CONST

kExtKeyboardAddr = 2;

kExtKeyboardOrigHandlerID = 2;

BEGIN

myErr := GetADBInfo(myInfo, myAddress);

IsExtendedKeyboard := (myInfo.origADBAddr = kExtKeyboardAddr)

AND (myInfo.devType = kExtKeyboardOrigHandlerID);

END;

The IsExtendedKeyboard function defined in Listing 5-1 is used later in this chapter,

in Listing 5-5 on page 5-28.

C H A P T E R 5

ADB Manager

5-24 Using the ADB Manager

Communicating With ADB Devices
You can use the ADB Manager to communicate directly with ADB devices by sending

ADB commands to those devices. In general, however, you don’t need to do this,

because the ADB Manager automatically polls for input from the connected ADB devices

and passes any data received from a device to the device’s device handler. Most

applications should never interact directly with ADB devices, and even ADB device

handlers need to do so only occasionally (for instance, to read or set device parameters

stored in the device registers).

If you do need to send ADB commands directly to a device, you can do so using the

ADBOp function. The ADBOp function transmits over the bus a command byte, whose

structure is shown in Figure 5-2 on page 5-8 and Figure 5-3 on page 5-8. The command

(Talk, Listen, Flush, and SendReset) and any register information are encoded into an

integer that is passed to ADBOp. You also pass ADBOp three pointers:

■ A pointer to the optional data area used by the completion routine.

■ A pointer to a completion routine. This routine is executed once the command byte
has been sent to the ADB device.

■ A pointer to a Pascal string (maximum 8 bytes data preceded by one length byte).
The first byte specifies the length of the string and the remaining bytes (if any)
contain data to be sent to the device or provide storage for the data to be received
from the device.

The ADBOp function is always executed asynchronously. If the bus is busy, the ADB

command passed to ADBOp is held in a command queue until the bus is free. If your

application requires synchronous behavior, you’ll need to use a completion routine

to determine when the ADB command itself has completed. Figure 5-11 shows the

relationships between the ADBOp routine, the device to which it is directly

communicating, the ADB Manager, and an ADB completion routine.

C H A P T E R 5

ADB Manager

Using the ADB Manager 5-25

Figure 5-11 The ADBOp routine and an ADB completion routine

Listing 5-2 shows a way to send ADB commands synchronously.

Listing 5-2 Sending an ADB command synchronously

PROCEDURE MySetFlag;

{move a nonzero value into the word pointed to by register A2}

INLINE $34BC, $FFFF; {MOVE.W #$FFFF, (A2)}

PROCEDURE MyCompletionRoutine;

BEGIN

MySetFlag; {set a flag to indicate done}

END;

FUNCTION MySendADBCommand (myBufferPtr: Ptr; myCommand: Integer): OSErr;

{send a command to an ADB device synchronously}

VAR

myDone: Integer; {completion flag}

myErr: OSErr;

BEGIN

myDone := 0;

myErr := ADBOp(@myDone, @MyCompletionRoutine, myBufferPtr, myCommand);

IF myErr = noErr THEN

REPEAT

UNTIL myDone <> 0;

C H A P T E R 5

ADB Manager

5-26 Using the ADB Manager

ELSE

; {ADB buffer overflowed -- retry command here}

MySendADBCommand := myErr;

END;

The MySendADBCommand function sets the completion flag myDone to zero and then

calls ADBOp, passing the address of that completion flag and the address of a completion

routine along with the two parameters passed to MySendADBCommand. The completion

routine simply calls an inline assembly routine that moves a nonzero value into the word

pointed to by register A2. (When the completion routine is called, register A2 points to

the optional data area, in this case, to the myDone variable.) The MySendADBCommand

function waits until the value of the myDone variable changes, and then returns.

Rather than provide a completion routine to verify that a Talk command has completed,

you can initialize the first byte of the data buffer to 0 before sending the command. The

first byte of the data buffer contains the length of the buffer (in the same manner that

the first byte of a Pascal string contains the length of the string). The data buffer can

include from 0 to 8 bytes of information. After sending the command with ADBOp, you

can then test the first byte of the data buffer to determine whether the command has

completed. Once the first byte of information contains a nonzero value, then the

command has completed, and the first byte of the buffer indicates the number of bytes

returned by the ADB device.

Listing 5-3, Listing 5-4, and Listing 5-5 illustrate how to use the MySendADBCommand

function (defined in Listing 5-2) to blink the LED lights on the Apple Extended

keyboard. The Apple Extended keyboard maintains the current setting of the LED lights

in the lower 3 bits of device register 2. You can read the current light setting by issuing a

Talk command to the keyboard, as shown in Listing 5-3.

Listing 5-3 Reading the current state of the LED lights

VAR

gRegisterData: PACKED ARRAY[0..8] of Byte; {buffer for register data}

CONST

kListenMask = 8; {masks for ADB commands}

kTalkMask = 12;

kLEDRegister = 2; {register containing LED settings}

kLEDValueMask = 7; {mask for bits containing current LED setting}

FUNCTION MyGetLEDValue (myAddress: ADBAddress; VAR myLEDValue: Integer)

: OSErr;

VAR

myCommand: Integer;

myErr: OSErr;

C H A P T E R 5

ADB Manager

Using the ADB Manager 5-27

BEGIN

{initialize length of buffer; on return, the ADB device sets }

gRegisterData[0] := Byte(0); { this byte to the number of bytes returned}

{get existing register contents with a Talk command}

myCommand := (myAddress * 16) + kTalkMask + kLEDRegister;

myErr := MySendADBCommand(@gRegisterData, myCommand);

IF myErr = noErr THEN {make sure completed successfuly}

{gRegisterData now contains the existing data in device register 2; }

{ the lower 3 bits of byte 2 contain the LED value}

myLEDValue := Integer(BAND(gRegisterData[2], kLEDValueMask))

ELSE

myLEDValue := 0;

MyGetLEDValue := myErr;

END;

The MyGetLEDValue function constructs a Talk Register 2 command by adding the

address value to command and register masks defined by the application. Then it calls

the MySendADBCommand function to communicate with the device at the specified

address. If MySendADBCommand completes successfully, then the gRegisterData

variable contains (in array elements 1 and 2) the two-byte value in device register 2. Only

the lower 3 bits of that value are used for the LED settings. If one of those bits is set, the

corresponding light is off. Note that if MyGetLedValue returns an error, this generally

indicates that the ADBOp buffer overflowed.

The MySetLEDValue function defined in Listing 5-4 sets the LED lights to a specific

pattern.

Listing 5-4 Setting the current state of the LED lights

FUNCTION MySetLEDValue (myAddress: ADBAddress; myValue: Integer): OSErr;

VAR

myCommand: Integer;

myByte: Byte; {existing byte 2 of device register 2}

myErr: OSErr;

BEGIN

gRegisterData[0] := Byte(2); {set length of buffer}

{get existing register contents with a Talk command}

myCommand := (myAddress * 16) + kTalkMask + kLEDRegister;

myErr := MySendADBCommand(@gRegisterData, myCommand);

MySetLEDValue := myErr;

IF myErr <> noErr THEN {make sure completed successfuly}

EXIT(MySetLEDValue);

{gRegisterData now contains the existing data in device register 2; }

{ reset the lower 3 bits of byte 2 to the desired value}

C H A P T E R 5

ADB Manager

5-28 Using the ADB Manager

myByte := gRegisterData[2];

myByte := BAND(myByte, 255 - 7); {mask off lower three bits}

myByte := BOR(myByte, Byte(myValue)); {install desired value}

gRegisterData[2] := myByte;

myCommand := (myAddress * 16) + kListenMask + kLEDRegister;

MySetLEDValue := MySendADBCommand(@gRegisterData, myCommand);

END;

Notice that the MySetLEDValue function first reads the current value in device

register 2. This is necessary to preserve the bits in that register that do not encode the

LED state. Register 2 contains sixteen bits; be sure to change only the three bits that

represent the three LED lights.

Finally, the MyCountWithLEDs procedure shown in Listing 5-5 uses the

MyGetLEDValue and MySetLEDValue routines to “count” in binary.

Listing 5-5 Counting in binary using a keyboard’s LED lights

PROCEDURE MyCountWithLEDs;

VAR

myValue: Integer;

myIndex: Integer;

myAddress: ADBAddress;

myOrigLED: Integer;

myInfo: ADBDataBlock; {needed for GetIndADB; ignored here}

myDelay: LongInt; {needed for Delay; ignored here}

myErr: OSErr;

BEGIN

FOR myIndex := 1 TO CountADBs DO

BEGIN

myAddress := GetIndADB(myInfo, myIndex);

IF IsExtendedKeyboard(myAddress) THEN

BEGIN

{save original state of LED lights}

myErr := MyGetLEDValue(myAddress, myOrigLED);

myValue := 7; {turn all the lights OFF}

WHILE myValue >= 0 DO

BEGIN

myErr := MySetLEDValue(myAddress, myValue);

myValue := myValue - 1;

Delay(30, myDelay);

END;

{restore original state of LED lights}

myErr := MySetLEDValue(myAddress, myOrigLED);

C H A P T E R 5

ADB Manager

Writing an ADB Device Handler 5-29

END; {IF}

END; {FOR}

END;

The MyCountWithLEDs procedure looks for Apple Extended keyboards on the ADB

and counts from 0 to 7, in binary, on the LED lights of any such keyboard it finds.

Note

The techniques shown in this section for reading and writing the LED
state of an Apple Extended keyboard are provided for illustrative
purposes only. Your application or other software should in general not
modify the LED state of the user’s keyboard. ◆

Writing an ADB Device Handler

The previous section, “Using the ADB Manager,” illustrates how you can use the ADB

Manager to communicate with and get information about devices attached to the ADB.

This section describes how to write a device handler for an ADB device. You should

write a device handler for a device only if you are the manufacturer of that device.

A device handler is a low-level routine that communicates with a particular ADB device.

The device handler gathers data from an ADB device through the ADB Manager and

interprets the data; depending on the device, the device handler might then post an

event into the event queue using the PostEvent function.

A single device handler can manage more than one device; for example, the standard

device handler for the Apple Extended keyboard can manage multiple extended

keyboards. Also, in some cases the same handler can be used to manage two or more

device types. For example, a relative-position graphics tablet could emulate a mouse,

using the same default ADB device address and device handler ID as used by the mouse,

and providing the same information in response to Talk commands. In this case, when

both the mouse and tablet are connected to the ADB at the same time, the ADB Manager

calls the mouse handler when either device requires it.

Each ADB device has a default ADB device address and default device handler ID. Some

ADB devices support more than one device handler ID. In this case, the device handler

manages the device based on the current device handler ID; this allows an ADB device

to add or modify its performance or feature set. For more information about ADB

addresses and device handler IDs, see “Default ADB Device Address and Device

Handler Identification” on page 5-11.

In addition to writing a device handler for your device, you need to write the code that

installs the device handler. The next few sections explain how to write a device handler

and code to install the handler.

C H A P T E R 5

ADB Manager

5-30 Writing an ADB Device Handler

IMPORTANT

You need the information in this section only if you are writing a device
handler for a new ADB device. The Macintosh Operating System
includes device handlers for all Apple keyboards and Apple mouse
devices. You do not need to write a device handler to receive input from
these standard Apple devices; instead, your application should get
information about mouse movements and key presses by calling the
Event Manager. See the chapter “Event Manager” in Inside Macintosh:
Macintosh Toolbox Essentials for complete information about how the
Event Manager interacts with applications. ▲

Installing an ADB Device Handler

You install a device handler for an ADB device by placing the address of the device

handler in the device’s entry of the ADB device table. To do this, and to make your ADB

device available to the user as soon as possible, Apple recommends that you provide

users with a system extension that installs your device handler. Thus, your system

extension should contain your device handler as well as the code that installs the device

handler into the appropriate entry of the ADB device table. (See “ADB Device Table” on

page 5-13 for a description of the structure of entries in the ADB device table.)

Your installation code should search the ADB device table for an entry whose default

ADB device address and default device handler ID match the values assigned to your

device. For example, if your ADB device has a default address of $7 and a default

handler ID of 99, your installation code should search the ADB device table for entries

matching these values. If your installation code finds any matching entries, it should

install the address of your device handler into your device’s entry in the ADB device

table. The typical installation code for ADB devices other than a keyboard or mouse does

this: calls the CountADBs function to determine the number of entries in the ADB device

table; repeatedly calls the GetIndADB function to index through each device table entry

and compares the default ADB device address and device handler ID with those of your

device; for any matching entries, calls the SetADBInfo function to install the device

handler for that device into the device’s entry in the ADB device table. Note that before

installing the address of your device handler into the ADB device table, your installation

code must first allocate space in the system heap for your handler and copy your handler

to this area; your installation code should also allocate space in the system heap for its

optional data area.

If you provide a device handler for a mouse or keyboard you must consider whether

your ADB device should use a standard device handler during initial startup (until your

system extension has a chance to run and install the device’s device handler) or whether

your ADB device should use only its own device handler (which means your device will

be unable to respond to the user until its handler is installed).

When the ADB Manager first builds the ADB device table, it associates with each device

the device’s default ADB address, the device’s current ADB address, and the device’s

default device handler ID. In addition, for each device it initializes the field that contains

the address of the device handler for the device and the field that contains a pointer to a

data area used by the device handler. For Apple ADB devices, the ADB Manager installs

C H A P T E R 5

ADB Manager

Writing an ADB Device Handler 5-31

the appropriate device handler provided by Apple. Thus, the device handler for an

Apple keyboard or Apple mouse is available almost immediately after initial startup.

For all other ADB devices, the device’s device handler must be specifically installed by

the device’s installation code. For example, the ADB Manager does not install the

Apple device handler for a keyboard with a default ADB device address of $2 and

a default device handler ID of 99; instead, the device’s system extension must install

the device’s device handler.

If your ADB device is a keyboard or mouse and you want it to function as soon as

possible in the startup process and before system extensions are run, you can design

your ADB device to emulate an Apple keyboard or mouse and use that device’s device

handler until its own device handler is installed. In this case, your ADB device’s default

ADB address and default device handler ID initially matches that of an Apple device.

This causes the ADB Manager to install the address of an Apple device handler for your

device’s entry in the ADB device table. To install the actual device handler for your

device, you can provide a system extension that

■ uses the CountADBs function to count the number of entries in the ADB device table.

■ repeatedly uses the GetIndADB function to examine each entry in the ADB device
table for an entry with a default ADB device address and default device handler ID
that matches that of a standard device.

■ upon finding a matching entry, uses the ADBOp function to send a Talk Register 3
command to the selected ADB device so that it sends its contents across the bus; uses
the ADBOp function to send a Listen Register 3 command to the device to change its
device handler ID from its default device handler ID to its actual device handler ID;
and uses the ADBOp function to send another Talk Register 3 command to the device
and examine the register contents to see whether the device returns the new device
handler ID. If so, your extension has found the index entry for your device and can
use the SetADBInfo function to install the appropriate device handler for your
device. Note that when you request an ADB device to change to another device
handler ID, the ADB Manager does not update the ADB device table entry to reflect
the new device handler ID. You can find out the new handler ID for that device only
by sending it a Talk Register 3 command.

Your installation code should also store a pointer to its reinitialization code in the system

global variable JADBProc and should preserve the existing value of JADBProc, as

illustrated in Listing 5-6 and Listing 5-7.

The next three listings, Listing 5-6, Listing 5-7, and Listing 5-8, show code that installs a

device handler, handles reinitialization by appropriate use of the system global variable

JADBProc, and performs the actual actions of the device handler.

Listing 5-6 shows an example of code that installs an ADB device handler. The code

first defines some constants. It also defines a stack frame which includes storage for

a variable called myADBDB that is used later as a parameter block for both GetIndADB

and SetADBInfo. The installation code then jumps to the code starting at the label

MyInstallHandlers; this code uses CountADBs and then GetIndADB to search all

entries in the ADB device table for a matching default ADB device address and device

handler ID. If it finds such an entry, it uses the code at the label MySetDeviceInfo

to set up information for that device in the device’s entry in the ADB device table.

C H A P T E R 5

ADB Manager

5-32 Writing an ADB Device Handler

Specifically, for each occurrence of a matching entry, the code at the label

MySetDeviceInfo allocates space in the system heap for the data area used by the

device handler for the ADB device at that address. (It does not need to allocate space for

the handler itself at this time. This is because a resource containing the code shown in

Listing 5-6 is marked to be loaded into the system heap; thus the system software loads

the resource into the system heap when it executes this system extension.) The code then

uses the SetADBInfo function to install into the ADB device table the address of the

device’s device handler as well as a pointer to the global data area used by the device

handler.

Finally, the installation code stores in the iNextProc field the current value of the

system global variable JADBProc and then sets JADBProc to contain a pointer to

myJADBProc.

Listing 5-6 Installing an ADB device handler

;For installation to work, the resource containing this resource must be

;marked as sysHeap loaded. This way, you do not have to copy a version of it

;into the system heap prior to installing.

; MPW Build commands:

; ASM 'ADBSample.a'

; Link -t INIT -c WeSt -ra ADBSample=resSysHeap -rt INIT=128 -m MAIN -sg ∂
; ADBSample 'ADBSample.a'.o -o ADBSample

myAddr EQU $xx ;default ADB device address

myADBType EQU $xx ;device handler ID definition

main PROC EXPORT

StackFrame RECORD {A6Link}, DECR ;build a stack frame record

ParamBegin EQU * ;start parameters after this point

ParamSize EQU ParamBegin-* ;size of all the passed parameters

RetAddr DS.L 1 ;place holder for return address

A6Link DS.L 1 ;place holder for A6 link

myADBDB DS ADBDataBlock ;local handle to our ADB data block

LocalSize EQU * ;size of all the local variables

ENDR

WITH StackFrame

WITH ADBDataBlock

LINK A6, #0 ;make a stack frame

BSR MyInstallHandlers ;install handlers for our devices

TST.W D0 ;D0 = number of old devices found

BEQ.S @exit ;if none, exit

C H A P T E R 5

ADB Manager

Writing an ADB Device Handler 5-33

LEA main, A0 ;after installing, we need to

_RecoverHandle, SYS ; recover the handle and then

MOVE.L A0 -(SP) ; detach this resource so it always

_DetachResource ; stays in memory

LEA iNextProc, A2 ;get pointer to old vector storage

LEA JADBProc, A3 ;make pointer to low memory vector

MOVE.L (A3), (A2) ;save contents of vector for chaining

LEA myJADBProc, A2 ;get pointer to our jADBProc

MOVE.L A2, (A3) ;install it in the low memory vector

@exit UNLK A6 ;dispose local variables

RTS

;placeholder for MyADBHandler - see Listing 5-8 on page 5-37

;placeholder for myJADBProc - see Listing 5-7 on page 5-35

;MySetDeviceInfo routine (called by MyInstallHandlers)

; on entry: D0 = ADB address of our device

; does not preserve D4 or A1

MySetDeviceInfo

LINK A6, #LocalSize ;make a stack frame

LEA myADBDB(A6), A1 ;pointer to stack-based param block

LEA MyADBHandler, A3 ;pointer to the handler routine

MOVE.W D0, D4 ;save the actual address

MOVE.L A3, (A1) ;set up the handler address

MOVE.L #10, D0 ;data area for device is 10 bytes

_NewPtr, SYS, CLEAR ;allocate our data area

TST.W D0 ;test for error

BNE.S @SDIExit ;exit if error

MOVE.L A0, 4(A1) ;put pointer to parameter data

; in data area

MOVE.W D4, D0 ;put actual address to set in D0

MOVE.L A1, A0 ;put parameter block pointer in A0

_SetADBInfo ;set up info for this device

@SDIExit

UNLK A6 ;dispose stack frame

RTS ;exit this routine

iNextProc DC.L 0 ;store pointer to next jADBProc

C H A P T E R 5

ADB Manager

5-34 Writing an ADB Device Handler

;MyInstallHandlers routine (called by main)

; on exit: D0 = number of our device types found

; does not preserve D1, D2, D3, D4 or A1

MyInstallHandlers

LINK A6, #LocalSize ;make a stack frame

CLR.L D3 ;clear device counter

_CountADBs ;get number of ADB devices

MOVE.W D0, D2 ;save this number in D2

BEQ.S @return ;exit if none

;put handler ID and

MOVE.W #(myADBType<<8)+myAddr, D1 ; default address into D1

@cntLoop

MOVE.W D2, D0 ;put device index in D0

LEA myADBDB(A6), A0 ;pointer to stack-based param block

_GetINDADB ;get an ADB device table entry

BMI.S @nextRec ;skip if invalid

CMP.W devType(A0), D1 ;is this one of our devices?

BNE.S @nextRec ;skip if no match

BSR.S MySetDeviceInfo ;set handler for this device

ADDQ #1, D3 ;found one of our devices, add to D3

@nextRec SUBQ.W #1, D2 ;try next index

BNE.S @cntLoop ;loop if more

MOVE.L D3, D0 ;return number found in D0

@return UNLK A6

RTS

ENDP

END

Note

In the past, Apple recommended that you install an ADB device handler
by placing the ADB device handler in an 'ADBS' resource in the System
file. In this case, the 'ADBS' resource ID corresponds to the ADB
device’s default address. At system startup, the ADB Manager searches
the System file for 'ADBS' resources for only those ADB devices that
appear on the bus. The ADB Manager then loads these resources into
memory and executes them. The ADB Manager also reads register 3 for
each ADB device and places the device’s default ADB device address
and device handler ID into the ADB device table. This method, however,
does not offer the same flexibility and scope as when you install a
handler with an extension. For example, because 'ADBS' resource IDs
are indexed only by their default addresses, you cannot install ADB
resources for two different devices at the same address using 'ADBS'
resources. Apple therefore recommends that you install all ADB device
handlers using a system extension. ◆

C H A P T E R 5

ADB Manager

Writing an ADB Device Handler 5-35

Your installation code should set up the value of JADBProc (by chaining) to point to

a routine that you provide which appropriately handles the case when the ADB is

reinitialized. When the ADB is reinitialized, the ADB Manager calls the routine pointed

to by the system global variable JADBProc; it calls this routine twice: once before

reinitializing the ADB, and once after reinitializing the ADB. When this routine is called,

D0 contains the value 0 for preprocessing and 1 for postprocessing. Your routine must

restore the value of D0 and branch to the original value of JADBProc on exit.

For preprocessing, your reinstallation routine should deallocate any storage. It must also

take action for postprocessing. Because the ADB (and ADB device table) is reinitialized

during postprocessing, the ADB Manager might need to perform address resolution. As

a result, you cannot assume that your ADB device still resides at its default address after

postprocessing occurs. Therefore, for postprocessing your reinstallation routine should

search the ADB bus for a matching device (just as in its installation code) and install

its entry into the ADB device table. Finally, the code jumps to the routine stored in

iNextProc, and thus chains to the next routine that needs to perform postprocessing.

Listing 5-7 shows an example of this entire process.

Listing 5-7 Installing a routine pointer into JADBProc

;main goes here, see Listing 5-6 on page 5-32

;handler code goes here, see Listing 5-8 on page 5-37

;NOTE: This routine must be installed as part of the handler.

myJADBProc

LINK A6, #LocalSize ;make a stack frame

MOVEM.L D0-D2/A1, -(SP) ;save registers for next procedure

TST.B D0 ; D0 = 0 for pre-processing,

; D0 = 1 for post-processing

BEQ.S @preProc ;if 0, pre-process data areas

@postProc

BSR.S MyInstallHandlers ;install handlers (Listing 5-6)

BRA.S @JADBExit

@prePost

LEA myADBDB(A6), A1 ;pointer to stack-based param block

LEA MyADBHandler, A2 ;address of handler for comparison

_CountADBs ;get the number of ADB devices

MOVE.W D0, D2 ;save this value in D2

BEQ.S @JADBExit ;exit if none

;put handler ID and

MOVE.W #(myADBType<<8)+myAddr, D1 ; default address into D1

@preLoop

MOVE.W D2, D0 ;current index

MOVE.L A1, A0 ;address of data block

_GetIndADB ;get ADB device table entry

C H A P T E R 5

ADB Manager

5-36 Writing an ADB Device Handler

BMI.S @nextRec ;skip if invalid

CMP.W devType(A0), D1 ;is this one of our devices?

BNE.S @nextRec ;skip if no match

CMPA.L dbServiceRtPtr(A0), A2 ;compare with our handler ID

BNE.S @nextRec ;if no match, don't delete pointer

MOVE.L dbDataAreaAddr(A0), A0 ;get the pointer to dispose

_DisposePtr ;if matches, it's ours, so dispose

@nextRec

SUBQ.W #1, D2 ;get next index

BNE.S @preLoop ;loop if more

@JADBExit

MOVEM.L (SP)+, D0-D2/A1 ;restore registers

UNLK A6 ;dispose stack frame

LEA iNextProc, A0 ;get pointer to next procedure

MOVE.L (A0), A0

JMP (A0) ;jump to next procedure

Creating an ADB Device Handler
A device handler communicates with a particular ADB device by gathering data about

the device it manages from the ADB Manager, and then interpreting that data. For

example, the device handler for a particular device might then post an event into the

event queue using PostEvent.

Whenever an ADB device sends data (by responding to a Talk Register 0 command), the

ADB Manager calls the associated device handler. The ADB Manager passes these

parameters to the device handler:

■ in register A0, a pointer to the ADB data sent by the ADB device

■ in register A1, a pointer to the device handler routine

■ in register A2, a pointer to the data area (if any) associated with the device handler

■ in register D0, the ADB command that resulted in the handler being called

Note

ADB device handlers are always called at interrupt time; they must
follow all rules for interrupt-level processing as described in Inside
Macintosh: Processes. ◆

Listing 5-8 gives an example of a simple device handler that handles data from an ADB

device. (Listing 5-6 on page 5-32 shows code that installs the address of this handler into

the ADB device table.) This device handler simply saves the data sent by the ADB device

into the device handler’s global data area. Note that you must include with your device

handler code that handles reinitialization of the ADB (see Listing 5-7 on page 5-35 for

details of reinitialization).

C H A P T E R 5

ADB Manager

ADB Manager Reference 5-37

Listing 5-8 A sample device handler

MyADBHandler

ANDI.B #$0F, D0 ;check command

CMPI.B #$0C, D0 ;was it a talk R0 command?

BNE.S @exit ; no, exit (something is wrong)

MOVE.B (A0)+, D0 ;get the count

CMPI.B #2, D0 ;this device only sends 2 bytes

BNE.S @exit ;bad count, exit

MOVE. B (A0)+, HndlrData(A2) ;grab the 1st byte, save in global area

MOVE.B (A0)+, MoreData(A2) ;grab the 2nd byte, save in global area

@exit RTS

;code from Listing 5-7 goes here

ADB Manager Reference

This section describes the data structures and routines provided by the ADB Manager.

See “Using the ADB Manager,” beginning on page 5-22, and “Writing an ADB Device

Handler” on page 5-29, for detailed instructions on using these routines.

Data Structures

This section describes the ADB data block, ADB information block, and ADB

 operation block.

ADB Data Block

You can get information about an ADB device by calling the functions GetIndADB and

GetADBInfo. These functions return information from the ADB device table in an ADB

data block, defined by the ADBDataBlock data type.

TYPE ADBDataBlock =

PACKED RECORD

devType: SignedByte; {device handler ID}

origADBAddr: SignedByte; {original ADB address}

dbServiceRtPtr: Ptr; {pointer to device handler}

dbDataAreaAddr: Ptr; {pointer to data area}

END;

ADBDBlkPtr = ^ADBDataBlock;

Field descriptions

devType The device handler ID of the ADB device.

C H A P T E R 5

ADB Manager

5-38 ADB Manager Reference

origADBAddr The device’s default ADB address.

dbServiceRtPtr
A pointer to the device’s device handler.

dbDataAreaAddr
A pointer to the device handler’s optional data area.

ADB Information Block

You can set a device’s device handler routine and data area by calling the SetADBInfo

function. You pass SetADBInfo an ADB information block, defined by the

ADBSetInfoBlock data type.

TYPE ADBSetInfoBlock =

RECORD

siServiceRtPtr: Ptr; {pointer to device handler}

siDataAreaAddr: Ptr; {pointer to data area}

END;

ADBSInfoPtr = ^ADBSetInfoBlock;

Field descriptions

siServiceRtPtr
A pointer to the device handler.

siDataAreaAddr
A pointer to the device handler’s optional data area.

Remember that once the ADB Manager has set the initial values for an ADB device in the

ADB device table, it updates the device table entry for the device to reflect changes only

to the address of the device handler routine and data area pointer.

ADB Operation Block

You use the ADB operation block to pass information to the ADBOp function if you call

the function from assembly language. The ADB operation block is defined by the

ADBOpBlock data type.

TYPE ADBOpBlock =

RECORD

dataBuffPtr: Ptr; {address of data buffer}

opServiceRtPtr: Ptr; {pointer to device handler}

opDataAreaPtr: Ptr; {pointer to optional data

 area}

END;

ADBOpBPtr = ^ADBOpBlock;

C H A P T E R 5

ADB Manager

ADB Manager Reference 5-39

Field descriptions

dataBuffPtr A pointer to a variable-length data buffer. The first byte of the
buffer must contain the buffer’s length.

opServiceRtPtr
A pointer to a completion routine.

opDataAreaPtr
A pointer to an optional data area.

ADB Manager Routines

The ADB Manager provides routines that you can use to initialize the ADB,

communicate with ADB devices, and get or set ADB device information. In general,

you need to use these routines only if you need to access devices on the ADB directly

or communicate with a special device. You’ll also need to use some of these routines

to install an ADB device handler.

Initializing the ADB Manager

The ADB Manager provides the ADBReInit procedure to initialize the Apple Desktop

Bus. As explained in the following paragraphs, however, you probably won’t ever need

to call ADBReInit.

ADBReInit

The Macintosh Operating System uses the ADBReInit procedure to reinitialize the

Apple Desktop Bus.

PROCEDURE ADBReInit;

DESCRIPTION

The ADBReInit procedure reinitializes the Apple Desktop Bus to its original condition

at system startup time. It clears the ADB device table and places a SendReset command

on the bus to reset all devices to their original addresses. The ADB Manager resolves any

address conflicts and rebuilds the device table.

IMPORTANT

In general, your application shouldn’t call ADBReInit. If you need to
assign a different device handler to a device, or activate a “virtual”
device associated with some device that is already connected to the bus,
you can use the SetADBInfo routine. ▲

The ADBReInit procedure also calls the routine pointed to by the system global variable

JADBProc at the beginning and end of its execution. You can insert your own

C H A P T E R 5

ADB Manager

5-40 ADB Manager Reference

preprocessing and postprocessing routine by changing the value of JADBProc. When

this routine is called, D0 contains the value 0 for preprocessing and 1 for postprocessing.

Your routine must restore the value of D0 and branch to the original value of JADBProc

on exit. Because the ADB is reinitialized during postprocessing, the ADB Manager might

need to perform address resolution. As a result, you cannot assume that your ADB

device still resides at its default address after postprocessing occurs.

SPECIAL CONSIDERATIONS

Calling ADBReInit on computers running system software versions earlier than 6.0.4

can cause incorrect keyboard layouts to be loaded.

The ADBReInit procedure does not deallocate memory that has been allocated by the

device handler installation code.

If you provide a device handler that is installed by a system extension, you must reinstall

the entry for your ADB device in the ADB device table. See “Installing an ADB Device

Handler,” beginning on page 5-30 for more information.

Communicating Through the ADB

You can use the ADBOp function to communicate with devices on the ADB. In general,

however, you shouldn’t need to call ADBOp. Applications should get information about

the user’s input on ADB devices by calling the appropriate Event Manager routines.

In addition, the ADB Manager automatically polls device register 0 (the register that

contains the data to be transmitted from the device to the ADB device handler) as part of

its normal bus polling and service request handling. As a result, device handlers should

need to call ADBOp only occasionally for special purposes, such as setting device modes

or obtaining device status.

ADBOp

You can use the ADBOp function to send a command to an ADB device.

FUNCTION ADBOp (data: Ptr; compRout: ProcPtr; buffer: Ptr;

 commandNum: Integer): OSErr;

data A pointer to an optional data area.

compRout A pointer to a completion routine.

buffer A pointer to a variable-length data buffer. The first byte of the buffer must
contain the buffer’s length.

commandNum
A command number. The command number is a 1-byte value that
encodes the command to be performed, the register the command refers
to, and the desired action the target device should perform.

C H A P T E R 5

ADB Manager

ADB Manager Reference 5-41

DESCRIPTION

The ADBOp function transmits over the bus the command byte whose value is given

by the commandNum parameter. See Figure 5-2 on page 5-8 for the structure of this

command byte. For a Listen command, the ADB Manager also transmits the data

pointed to by the buffer parameter. Upon completion of a Talk command, the

area pointed to by the buffer parameter contains the data returned by the ADB device.

The ADBOp function executes only when the ADB would otherwise be idle; if the bus is

busy, the command byte is held in a command queue. If the command queue is full, the

ADBOp function returns an error and the command is not placed in the queue.

The length of the data buffer pointed to by the buffer parameter must be contained in

its first byte (in the same manner that the first byte of a Pascal string contains the length

of the string). The data buffer can include from 0 to 8 bytes of information. For a Listen

command, the data buffer should contain any data to be sent to the device. For a

Talk command, the contents of the data buffer are valid only on completion of the

command. To verify that the Talk command is completed, you should provide a

completion routine when you send the command to an ADB device or simply test the

value of the first byte of the data buffer (which contains the length of the buffer).

The optional data area to which the data parameter points is intended for storage used

by the completion routine pointed to by the compRout parameter. When you use ADBOp

to send a command, you can optionally supply a completion routine as a parameter. See

“ADB Command Completion Routines,” beginning on page 5-47 for details on

completion routines.

SPECIAL CONSIDERATIONS

The ADBOp function is always executed asynchronously. The result code returned by

ADBOp indicates only whether the ADB command was successfully placed into the

ADB command queue, not whether the command itself was successful. A method for

interacting with the ADB bus synchronously is illustrated in “Communicating With ADB

Devices,” beginning on page 5-24.

ASSEMBLY-LANGUAGE INFORMATION

The ADB operation block contains some of the information required by the ADBOp

function. You’ll need to set up an ADB operation block only if you call ADBOp from

assembly-language. (In Pascal, the ADB operation block is defined by the ADBOpBlock

data type.)

C H A P T E R 5

ADB Manager

5-42 ADB Manager Reference

The registers on entry and exit for ADBOp are

The parameter block whose address is passed in register A0 has this structure

Parameter block:

RESULT CODES

SEE ALSO

See Listing 5-2 on page 5-25 for an example of using the ADBOp function.

Getting ADB Device Information

You can use the ADB Manager functions in this section to determine how many ADB

devices are present and to get information about a specific ADB device, specified either

by its ADB device address or by its index in the ADB device table.

CountADBs

You can use the CountADBs function to determine how many ADB devices are

connected to the bus.

FUNCTION CountADBs: Integer;

DESCRIPTION

The CountADBs function returns a value representing the number of devices

connected to the bus; it determines this information by counting the number of entries

in the ADB device table.

Registers on entry

A0 Address of a parameter block of type ADBOpBlock

D0 A command number

Registers on exit

D0 Result code

→ dataBuffPtr Ptr A pointer to a variable-length data buffer.
The first byte of the buffer must contain the
buffer’s length.

→ opServiceRtPtr Ptr A pointer to a completion routine.
→ opDataAreaPtr Ptr A pointer to an optional data area.

noErr 0 No error
errADBOp –1 Command queue is full. Retry command.

C H A P T E R 5

ADB Manager

ADB Manager Reference 5-43

GetIndADB

You can use the GetIndADB function to get information about an ADB device, specified

by its index in the ADB device table.

FUNCTION GetIndADB (VAR info: ADBDataBlock;

 devTableIndex: Integer): ADBAddress;

info An ADB data block. On exit, the fields of this parameter block are filled
with information about the specified ADB device.

devTableIndex
An index into the ADB device table.

Parameter block

DESCRIPTION

The GetIndADB function returns information from the ADB device table entry whose

index number is specified by the devTableIndex parameter. The information is

returned in an ADB data block, passed in the info parameter.

The GetIndADB function also returns the current ADB address of the specified device as

its function result. If, however, GetIndADB is unable to find the specified entry in the

ADB device table, it returns a negative value as its function result. In that case, the fields

of the info data block are undefined.

SPECIAL CONSIDERATIONS

Once the ADB Manager has set the initial values for an ADB device in the ADB device

table, it updates the device table entry for the device to reflect changes only to the

address of the device handler routine and data area pointer.

GetADBInfo

You can use the GetADBInfo function to get information about an ADB device,

specified by its ADB address.

FUNCTION GetADBInfo (VAR info: ADBDataBlock;

adbAddr: ADBAddress): OSErr;

← devType SignedByte The device handler ID.
← origADBAddr SignedByte The device’s default ADB address.
← dbServiceRtPtr Ptr The address of the device’s device

handler routine.
← dbDataAreaAddr Ptr The address of the device handler’s

data storage area.

C H A P T E R 5

ADB Manager

5-44 ADB Manager Reference

info An ADB data block. On exit, the fields of this parameter block are filled
with information about the specified ADB device.

adbAddr The ADB address of a device.

Parameter block

DESCRIPTION

The GetADBInfo function returns, through the info parameter, information from the

ADB device table entry of the device whose ADB address is specified by the adbAddr

parameter.

SPECIAL CONSIDERATIONS

Once the ADB Manager has set the initial values for an ADB device in the ADB device

table, it updates the device table entry for the device to reflect changes only to the

address of the device handler routine and data area pointer.

RESULT CODES

Setting ADB Device Information

You can call the ADB Manager function SetADBInfo to set or reset some of the

information in the ADB device table about an ADB device.

SetADBInfo

You can use the SetADBInfo function to set the address of the device handler routine

and data area address for a specified ADB device.

FUNCTION SetADBInfo (VAR info: ADBSetInfoBlock;

adbAddr: ADBAddress): OSErr;

info An ADB information block. On entry, the fields of this parameter block
should contain the desired address of the device handler routine and
data area.

adbAddr The ADB address of a device.

← devType SignedByte The device handler ID.
← origADBAddr SignedByte The device’s default ADB address.
← dbServiceRtPtr Ptr The address of the device’s device

handler.
← dbDataAreaAddr Ptr The address of the device handler’s

data storage area.

noErr 0 No error

C H A P T E R 5

ADB Manager

ADB Manager Reference 5-45

Parameter block

DESCRIPTION

The SetADBInfo function sets the device handler address and the data area address

in the ADB device table entry whose address is specified by the adbAddr parameter.

IMPORTANT

You should send a Flush command to the device after calling it with
SetADBInfo to avoid sending old data to the new data area address. ▲

RESULT CODES

SEE ALSO

See “ADB Information Block,” beginning on page 5-38, for the structure of the

ADB information block.

Application-Defined Routines

This section describes device handlers and ADB completion routines. A device handler

is a low-level routine that communicates with a particular ADB device. An ADB

completion routine is a routine that you can provide as a parameter to the

ADBOp function.

ADB Device Handlers

The ADB Manager automatically polls for input from connected ADB devices and passes

any data received from a device to the device’s device handler. ADB device handlers are

responsible for processing all input from ADB devices (except for commands sent to an

ADB device using ADBOp or commands sent by the ADB Manager during address

resolution).

→ siServiceRtPtr Ptr The address of the device handler for this device.
→ siDataAreaAddr Ptr The address of the handler’s data area for the

device at the specified address.

noErr 0 No error

C H A P T E R 5

ADB Manager

5-46 ADB Manager Reference

MyDeviceHandler

Whenever an ADB device sends data (for example, in response to a Talk Register 0

command), the ADB Manager calls the device handler associated with that ADB device.

You can provide a device handler to handle data from your ADB device.

PROCEDURE MyDeviceHandler; {parameters passed in registers}

DESCRIPTION

When the ADB Manager calls a device handler, it passes parameters to the device

handler in registers A0, A1, A2, and D0, as described next.

SPECIAL CONSIDERATIONS

ADB device handlers are always called at interrupt time; they must follow all rules for

interrupt-level processing as described in Inside Macintosh: Processes.

ASSEMBLY-LANGUAGE INFORMATION

On entry to your device handler, the ADB Manager passes parameters in the following

registers:

A device handler should handle the data pointed to by register A0 in a manner

appropriate to the device. For example, the mouse device handler interprets the data it

receives in register A0 and posts an event to the event queue.

A device handler can use the area pointed to by register A2 to store global data as

needed. (If a device handler needs a global data area, its installation code should allocate

the needed memory at the same time it installs the device handler’s address into the

ADB device table.)

SEE ALSO

See “Writing an ADB Device Handler,” beginning on page 5-29, for information on

installing and creating an ADB device handler.

Register Value

A0 A pointer to the data sent by the device. This area contains data stored as a
Pascal string (maximum 8 bytes data preceded by one length byte).

A1 A pointer to the device handler routine.

A2 A pointer to the data area (if any) associated with the device handler.

D0 The ADB command number (byte) that resulted in the device handler
being called.

C H A P T E R 5

ADB Manager

ADB Manager Reference 5-47

ADB Command Completion Routines

The ADBOp function is always executed asynchronously; if the bus is busy, the ADB

command passed to ADBOp is held in a command queue until the bus is free. The result

code returned by ADBOp indicates only whether the ADB command was successfully

placed into the ADB command queue, not whether the command itself was successful.

Thus, when you use the ADBOp function to send a command to an ADB device, and your

application requires synchronous behavior, you’ll need to provide a completion routine

to determine when the command has completed.

MyCompletionRoutine

When you use the ADBOp function to send a command to an ADB device, the ADB

Manager calls your completion routine when the ADB device has completed the

command.

PROCEDURE MyCompletionRoutine; {parameters passed in registers}

DESCRIPTION

The ADB Manager passes parameters to a completion routine in registers A0, A1, A2,

and D0, as described next.

ASSEMBLY-LANGUAGE INFORMATION

On entry to your completion routine, the ADB Manager sets the following registers:

SEE ALSO

See Listing 5-2 on page 5-25 for an example of a completion routine.

Register Value

A0 A pointer to the data area specified by the buffer parameter to the ADBOp
function. This area contains data stored as a Pascal string (maximum 8 bytes
of data preceded by one length byte). For example, data returned by an
ADB device in response to a Talk command issued by a call to the ADBOp
function can be accessed through this pointer.

A1 A pointer to the completion routine.

A2 A pointer to the data area that was specified by the data parameter to
the ADBOp function. Your completion routine can use this area to store
information; for example, to set a flag indicating that the command
has completed.

D0 The ADB command number (byte) that resulted in the completion routine
being called.

C H A P T E R 5

ADB Manager

5-48 Summary of the ADB Manager

Summary of the ADB Manager

Pascal Summary

Data Types

TYPE ADBDataBlock =

PACKED RECORD

devType: SignedByte; {device handler ID}

origADBAddr: SignedByte; {default ADB address}

dbServiceRtPtr: Ptr; {pointer to device handler}

dbDataAreaAddr: Ptr; {pointer to data area}

END;

ADBDBlkPtr = ^ADBDataBlock;

TYPE ADBSetInfoBlock =

RECORD

siServiceRtPtr: Ptr; {pointer to device handler}

siDataAreaAddr: Ptr; {pointer to data area}

END;

ADBSInfoPtr = ^ADBSetInfoBlock;

TYPE ADBOpBlock =

RECORD

dataBuffPtr: Ptr; {address of data buffer}

opServiceRtPtr: Ptr; {pointer to device handler}

opDataAreaPtr: Ptr; {pointer to optional data area}

END;

ADBOpBPtr = ^ADBOpBlock;

ADBAddress = SignedByte;

ADB Manager Routines

Initializing the ADB Manager

PROCEDURE ADBReInit;

C H A P T E R 5

ADB Manager

Summary of the ADB Manager 5-49

Communicating Through the ADB

FUNCTION ADBOp (data: Ptr; compRout: ProcPtr; buffer: Ptr;
commandNum: Integer): OSErr;

Getting ADB Device Information

FUNCTION CountADBs: Integer;

FUNCTION GetIndADB (VAR info: ADBDataBlock;
devTableIndex: Integer): ADBAddress;

FUNCTION GetADBInfo (VAR info: ADBDataBlock;
adbAddr: ADBAddress): OSErr;

Setting ADB Device Information

FUNCTION SetADBInfo (VAR info: ADBSetInfoBlock;
adbAddr: ADBAddress): OSErr;

Application-Defined Routines

PROCEDURE MyDeviceHandler;

PROCEDURE MyCompletionRoutine;

C Summary

Data Types

typedef char ADBAddress;

struct ADBDataBlock {

char devType; /*device type*/

char origADBAddr; /*original ADB address*/

Ptr dbServiceRtPtr; /*pointer to device handler*/

Ptr dbDataAreaAdd; /*pointer to data area*/

};

typedef struct ADBDataBlock ADBDataBlock;

typedef ADBDataBlock *ADBDBlkPtr;

struct ADBSetInfoBlock {

Ptr siServiceRtPtr; /*pointer to device handler*/

Ptr siDataAreaAddr; /*pointer to data area*/

};

typedef struct ADBSetInfoBlock ADBSetInfoBlock;

C H A P T E R 5

ADB Manager

5-50 Summary of the ADB Manager

typedef ADBSetInfoBlock *ADBSInfoPtr;

struct ADBOpBlock {

Ptr dataBuffPtr; /*address of data buffer*/

Ptr opServiceRtPtr; /*pointer to device handler*/

Ptr opDataAreaPtr; /*pointer to optional data area*/

};

typedef struct ADBOpBlock ADBOpBlock;

typedef ADBOpBlock *ADBOpBPtr;

ADB Manager Functions

Initializing the ADB Manager

pascal void ADBReInit (void);

Communicating Through the ADB

pascal OSErr ADBOp (Ptr data, ProcPtr compRout, Ptr buffer,
short commandNum);

Getting ADB Device Information

pascal short CountADBs (void);

pascal ADBAddress GetIndADB
(ADBDataBlock *info, short devTableIndex);

pascal OSErr GetADBInfo (ADBDataBlock *info, ADBAddress adbAddr);

Setting ADB Device Information

pascal OSErr SetADBInfo (ADBSetInfoBlock *info, ADBAddress adbAddr);

Application-Defined Functions

pascal void MyDeviceHandler (void);

pascal void MyCompletionRoutine (void);

C H A P T E R 5

ADB Manager

Summary of the ADB Manager 5-51

Assembly-Language Summary

Data Structures

ADB Data Block

ADB Information Block

ADB Operation Block

Trap Macros

Trap Macro Names

Global Variables

Result Codes

0 devType byte device type
1 origADBAddr byte original ADB address
2 dbServiceRtPtr long pointer to completion routine
6 dbDataAreaAddr long pointer to data area

0 siServiceRtPtr long pointer to completion routine
4 siDataAreaAddr long pointer to data area

0 dataBuffPtr long address of data buffer
4 opServiceRtPtr long pointer to completion routine
8 opDataAreaPtr long pointer optional data area

Pascal name Trap macro name

ADBReInit _ADBReInit

ADBOp _ADBOp

CountADBs _CountADBs

GetIndADB _GetIndADB

GetADBInfo _GetADBInfo

SetADBInfo _SetADBInfo

JADBProc long Pointer to ADBReInit preprocessing/postprocessing routine.
KbdLast byte ADB address of the keyboard last used.
KbdType byte Keyboard type of the keyboard last used.

noErr 0 No error
errADBop -1 Unsuccessful completion

Contents 6-1

C H A P T E R 6

Contents

Power Manager

About the Power Manager 6-4

The Power-Saver State 6-6

The Idle State 6-7

The Sleep State 6-8

The Sleep Queue 6-9

Sleep Requests 6-10

Sleep Demands 6-10

Wakeup Demands 6-11

Sleep-Request Revocations 6-12

Power Manager Dispatch 6-12

Using the Power Manager 6-13

Determining Whether the Power Manager Is Present 6-14

Determining Whether the Power Manager Dispatch Routines are
Present 6-14

Enabling or Disabling the Idle State 6-15

Setting, Disabling, and Reading the Wakeup Timer 6-16

Installing a Sleep Procedure 6-18

Using Application Global Variables in Sleep Procedures 6-19

Writing a Sleep Procedure 6-20

Switching Serial Power On and Off 6-25

Monitoring the Battery and Battery Charger 6-26

Power Manager Reference 6-26

Data Structures 6-26

Sleep Queue Record 6-26

Hard Disk Queue Structure 6-27

Wakeup Time Structure 6-27

Battery Information Structure 6-27

Battery Time Structure 6-28

Power Manager Routines 6-28

Controlling the Idle State 6-28

C H A P T E R 6

6-2 Contents

Controlling and Reading the Wakeup Timer 6-31

Controlling the Sleep Queue 6-33

Controlling Serial Power 6-34

Reading the Status of the Internal Modem 6-36

Reading the Status of the Battery and the Battery Charger 6-38

Power Manager Dispatch Routines 6-40

Determining the Power Manager Features Available 6-40

Controlling the Sleep and Wakeup Timers 6-42

Controlling the Dimming Timer 6-46

Controlling the Hard Disk 6-48

Getting Information About the Internal Batteries 6-54

Controlling the Internal Modem 6-58

Controlling the Processor 6-60

Getting and Setting the SCSI ID 6-63

Application-Defined Routines 6-65

Sleep Procedures 6-65

Hard Disk Spindown Function 6-66

Summary of the Power Manager 6-67

Pascal Summary 6-67

Constants 6-67

Data Types 6-69

Power Manager Routines 6-70

Power Manager Dispatch Routines 6-70

Application-Defined Routines 6-72

C Summary 6-72

Constants and Data Types 6-72

Power Manager Functions 6-75

Power Manager Dispatch Functions 6-76

Application-Defined Functions 6-77

Assembly-Language Summary 6-77

Data Structures 6-77

Trap Macros 6-78

Result Codes 6-80

C H A P T E R 6

6-3

Power Manager

This chapter describes the Power Manager, the part of the Macintosh Operating System

that controls power to the internal hardware devices of battery-powered Macintosh

computers (such as the Macintosh Portable, the Macintosh PowerBook computers, and

the Macintosh Duo computers)

The Power Manager automatically shuts off power to internal devices to conserve power

whenever the computer has not been used for a predetermined amount of time. In

addition, the Power Manager allows your application or other software to

■ install a procedure that is executed when power to internal devices is about to be shut
off or when power has just been restored

■ set a timer to wake up the computer at some time in the future

■ set or disable the wakeup timer and read its current setting

■ enable, disable, or delay the CPU idle feature

■ read the current CPU clock speed

■ control power to the internal modem and serial ports

■ read the status of the internal modem

■ read the state of the battery charge and the status of the battery charger

Most applications do not need to know whether they are executing on a battery-powered

Macintosh computer because the transition between power states is largely invisible. As

a result, most applications do not need to use Power Manager routines. You need the

information in this chapter only if you are writing a program—such as a device driver—

that must control power to some subsystem of a battery-powered Macintosh computer

or that might be affected by the idle or sleep state. See “About the Power Manager,”

beginning on page 6-4, for a complete description of these power conservation states.

The Power Manager is available only in system software version 6.0.4 and later versions.

You should use the Gestalt function to determine whether the Power Manager is

available before calling it. See “Determining Whether the Power Manager Is Present,” on

page 6-14, for more information.

To use this chapter, you might need to be familiar with techniques for accessing

information in your application’s A5 world. The chapter “Introduction to Memory

Management” in Inside Macintosh: Memory describes the A5 world and the routines you

can use to manipulate the A5 register. This chapter provides complete code samples that

illustrate how to access your application’s A5 world in a sleep procedure. If you wish to

display a dialog box from a sleep procedure, you also need to know about the Dialog

Manager. See the chapter “Dialog Manager” in Inside Macintosh: Macintosh Toolbox
Essentials.

This chapter begins with a preliminary description of the power conservation states

controlled by the Power Manager and of the relationship between the power

management hardware and software in portable Macintosh computers. It then discusses

the power conservation states and the sleep queue in greater detail. The section “Using

the Power Manager,” beginning on page 6-13, describes how to use Power Manager

routines to control the power conservation states and how to write and install sleep

procedures.

C H A P T E R 6

Power Manager

6-4 About the Power Manager

The reference section is divided into three sections. The first section describes the data

structures used by Power Manager routines. The second section, “Power Manager

Routines,” beginning on page 6-28, describes low-level Power Manager routines that

you can use to control a variety of Power Manager functions. The third section, “Power

Manager Dispatch Routines,” beginning on page 6-40, describes high-level Power Manager

routines that isolate you from the need to read or write directly to the Power Manager’s

private data structures and to parameter RAM. The Power Manager dispatch routines

provide access to most of the Power Manager’s internal parameters. Where a Power

Manager dispatch routine duplicates the function of another Power Manager routine,

the dispatch routine provides the preferred interface.

Whereas the Pascal programming language interface is used to describe the Power

Manager routines in “Power Manager Routines,” the C language interface is used for

the newer routines described in “Power Manager Dispatch Routines.” The section

“Summary of the Power Manager,” beginning on page 6-67, includes both Pascal and

C interfaces for both sets of routines.

About the Power Manager

Battery-operated Macintosh computers (also known as portable Macintosh computers)

draw power from a built-in battery that can be charged from a voltage converter

plugged into an electric socket. In order to prolong the battery charge and thereby

increase the amount of time the computer can be operated from the battery, portable

Macintosh computers contain software and hardware components that can put the

computer into various power conservation states, known as the power-saver, idle, and

sleep states.

The software that controls power to the internal devices of portable Macintosh

computers is the Power Manager. The Power Manager provides a software interface

to the available power controlling hardware. On the Macintosh Portable computer,

the power-management hardware is the 50753 microprocessor (known as the Power

Manager integrated circuit or Power Manager IC). On other portable Macintosh

computers, other hardware may be used.

The Power Manager also provides some services unique to portable Macintosh

computers—such as reading the current clock speed—that are not directly related to

power control. The power management circuits and the microcode in the on-chip ROM

of the Power Manager IC are described in the Guide to the Macintosh Family Hardware,
second edition. The Power Manager provides routines that your program can use to

enable and disable the idle state, to control power to some of the subsystems of the

computer, and to ensure that your program is not adversely affected when the Power

Manager puts the computer into the sleep state.

The power-saver state is a low power-consumption state of several portable Macintosh

computers in which the processor slows from its normal clock speed to some slower

clock speed. On the PowerBook 170 computer, for example, the CPU clock speed can be

reduced from 25 MHz to 16 MHz in order to conserve power.

C H A P T E R 6

Power Manager

About the Power Manager 6-5

In the idle state, the Power Manager slows the computer even further, from its current

clock speed to a 1 MHz clock speed. The Power Manager puts a portable Macintosh

computer in the idle state when the system has been inactive for 15 seconds. When the

computer has been inactive for an additional period of time (the user can set the length

of this period), the Power Manager and the various device drivers shut off power or

remove clocks from the computer’s various subsystems, including the CPU, RAM, ROM,

and I/O ports. This condition is known as the sleep state.

No data is lost from RAM when a portable Macintosh computer is in the sleep state.

Most applications can be interrupted by the idle and sleep states without any adverse

effects. When the user resumes use of the computer (by pressing a key, for example),

most of the applications that were running before the computer entered the sleep state

are still loaded in memory and resume running as if nothing had happened. If your

application or device driver cannot tolerate the sleep state, however, you can add an

entry to an operating-system queue called the sleep queue. The Power Manager calls

every sleep queue routine before the computer goes into the sleep state.

The user can also use the Battery desk accessory or a Finder menu item to cause a

portable Macintosh computer to go into the sleep state immediately. If the user chooses

Sleep from the Battery desk accessory (or from the Special menu in the Finder), the

Power Manager checks to see if any network communications will be interrupted by

going into the sleep state. If network communications will be affected, a built-in sleep

procedure displays a dialog box (shown in Figure 6-1) giving the user the option of

canceling the Sleep command.

Figure 6-1 A network driver’s sleep dialog box

Note
Some portable Macintosh computers (for example, the Macintosh
Portable) do not have a power switch. On these computers, if the
user chooses Shut Down from Special menu in the Finder, the Power
Manager puts the computer into the sleep state regardless of whether
any network communication routines are running at the time. ◆

The power management circuits in portable Macintosh computers include a

battery-voltage monitor, a voltage regulator and battery-charging circuit, and (on certain

portable computers) the Power Manager IC. The Power Manager IC controls the clocks

and power lines to the various internal components and external ports of the computer.

C H A P T E R 6

Power Manager

6-6 About the Power Manager

The microcode in the Power Manager IC implements many of the computer’s power

management features, such as power and clock control and the wakeup timer. A user or

an application can set the wakeup timer to return the computer from the sleep state to

the operating state at a specific time.

Note

The wakeup timer is not available on all portable Macintosh
computers. ◆

The Power Manager firmware in the ROM of the computer provides an interface that

allows your application to control some of the functions of the power control hardware.

The power management hardware charges the battery, provides the voltages needed

by the system, and automatically shuts down all power and clocks to the system if the

battery voltage falls below a certain threshold. The automatic shutdown function helps

to prevent possible damage to the battery resulting from low voltage.

At any given time, a portable Macintosh computer is in one of five power-consumption

states:

■ normal state

■ power-saver state

■ idle state

■ sleep state

■ shutdown state

When the computer is in its normal state, the CPU is running at its full clock speed and

no measures are being taken to conserve power. The computer behaves exactly like any

Macintosh computer that is not operated from a battery. Similarly, the shutdown state

on a portable Macintosh computer is exactly like the shutdown state on any nonportable

Macintosh computer, except that there is a very small drain on the battery to maintain

the settings of the computer’s parameter RAM.

The following sections provide more information about the three power conservation

states (power-saver, idle, and sleep) managed by the Power Manager.

IMPORTANT

The exact implementation details—and indeed the very existence of one
or more of the three power conservation states—is subject to variation
across the entire line of portable Macintosh computers. In general, your
application or other software should not be affected by any such
variations. ▲

The Power-Saver State
The power-saver state, available on some portable Macintosh computers, is a power

conservation state in which the processor slows from its normal clock speed to some

slower clock speed. On the PowerBook 180 computer, for example, the user can use

the PowerBook control panel to reduce the CPU clock speed from 33 MHz to 16 MHz.

C H A P T E R 6

Power Manager

About the Power Manager 6-7

There is currently no way for your application to put a portable Macintosh computer

into the power-saver state or to return it to the normal (full-speed) state. Moreover, the

power-saver state is not available on all portable Macintosh computers. If the operation

of your application or other software component depends on the CPU clock speed, you

can use the Power Manager’s GetCPUSpeed function to determine the current speed. In

general, of course, it’s best to design your application so that it is unaffected by any

changes in the clock speed of the CPU.

The Idle State
When a portable Macintosh computer has been inactive for some amount of time, the

Power Manager causes the CPU to insert wait states into each RAM or ROM access. On

the Macintosh Portable, for example, after 15 seconds of inactivity the Power Manager

inserts 64 wait states, effectively changing the clock speed from 16 MHz to 1 MHz. This

condition is referred to as the idle state or the rest state.

Note

The inactivity timeout interval, clock speed, and hardware
implementation of the idle state are subject to variation across the entire
line of portable Macintosh computers. ◆

For the purposes of determining whether to enter the idle state, inactivity is defined as

the absence of any of the following:

■ any execution of the PBRead or PBWrite function by the File Manager or Device
Manager

■ a call to the Event Manager’s PostEvent or OSEventAvail function

■ any access of the Apple Sound Chip (ASC) or other sound-producing hardware

■ completion of an Apple Desktop Bus (ADB) transaction

■ a call to the QuickDraw SetCursor procedure that changes the cursor

■ the cursor displayed as the watch cursor

The Power Manager enters the idle state in one of two ways, depending on whether the

computer supports a mode of idling called power cycling. If power cycling is available

(for example, in the PowerBook 140 and later models), the CPU is turned off after two

seconds of inactivity. After a short interval (on the order of one-half to three-fourths of a

second), power is restored to the CPU. The Operating System then checks to see whether

any relevant activity has occurred. If it has, the power cycling is stopped and the

computer returns to the normal operating state. If, however, no activity has occurred,

power cycling resumes with a slightly longer interval (up to several seconds). The CPU

remains off for the duration of the cycling or until an interrupt occurs.

If power cycling is not available, the Power Manager uses an alternate method of

entering the idle state. The Power Manager maintains an activity timer that measures

the amount of time that has elapsed since the last relevant system activity. The activity

timer is originally set to 15 seconds. When the timer counts down to 0, the Power

Manager puts the computer into the idle state. Whenever the Power Manager detects

C H A P T E R 6

Power Manager

6-8 About the Power Manager

one of the relevant forms of activity, it resets the activity timer to 15 seconds and, if the

computer is in the idle state, returns the computer to the operating state.

Neither the user nor your application can change the activity timer to use a period other

than 15 seconds. However, the user can disable the activity timer through the Portable or

PowerBook control panel, and your application can reset, enable, and disable the activity

timer by using the IdleUpdate, EnableIdle, and DisableIdle routines. Your

application can also use the GetCPUSpeed function to determine whether the computer

is currently in the idle state. See “Enabling or Disabling the Idle State,” beginning on

page 6-15, for a further discussion of these routines.

The Sleep State
The Operating System sends a sleep command to the power management hardware

when the user requests it (through the Battery desk accessory or the Finder), when the

battery voltage falls below a preset level, or when the system has remained inactive for

an amount of time that the user sets through the Portable or PowerBook control panel.

The Operating System uses the power management hardware to shut down power to the

CPU, the ROM, and some of the control logic. Sufficient power is maintained to the RAM

so that no data is lost. Before the Operating System sends the sleep command to the

power management hardware, it performs the following tasks:

■ It pushes the contents of all of the CPU’s internal registers onto the stack.

■ It calls all sleep procedures listed in the sleep queue to inform them that the system
is about to be put into the sleep state. These procedures include the device drivers
for the serial ports and floppy disk drives. Each device driver must call the power
management hardware to stop power or clocks to the peripheral device controlled by
that driver. If the device contains any internal registers, the device driver must save
their contents before turning off power to the device. The sleep queue is described in
the following section, “The Sleep Queue.”

■ It pushes onto the stack the Reset vector, the contents of the versatile interface adapter
(VIA) chip, and the contents of the Apple Sound Chip (ASC) control registers.

■ It saves the stack pointer in memory.

While a portable Macintosh computer is in the sleep state, the clock to the power

management hardware (for example, the Power Manager IC) is off so that the hardware

does no processing. On each rising edge of the 60 Hz clock signal (from one of the

computer’s logic chips), a hardware circuit restores the clock signal to the power

management hardware, which updates the time in the real-time clock and checks the

status of the system to determine whether to return the computer to its operating state.

The power management hardware checks for the existence of the following conditions:

■ A key on the keyboard has been pressed.

■ The wakeup timer is enabled and the time to which the wakeup timer is set equals the
time in the real-time clock.

■ An internal modem is installed, the user has activated the ring-detect feature, and the
modem has detected a ring (that is, someone has called the modem).

C H A P T E R 6

Power Manager

About the Power Manager 6-9

Note that use of the mouse or trackball cannot be detected by the power management

hardware.

If the power management hardware does not detect any of these conditions, it

deactivates its own clock until the next rising edge of the 60 Hz clock signal. If the power

management hardware does detect one of these conditions, it restores power to the CPU,

ROM, and any other hardware that was running when the computer entered the sleep

state. Then the Power Manager’s wakeup procedure reverses the procedure that put the

computer into the sleep state, including calling each routine listed in the sleep queue to

allow it to restore power to any subsystems it controls.

The Sleep Queue
The Power Manager maintains an operating-system queue called the sleep queue. The

sleep queue contains pointers to all of the routines—called sleep procedures—that the

Power Manager must call before it puts the computer into the sleep state or returns it

to the operating state. Each device driver, for example, can place in the sleep queue a

pointer to a routine that controls power to the subsystem that the driver controls. When

the Power Manager is ready to put the computer into the sleep state, it calls each of the

sleep procedures listed in the sleep queue. Each procedure performs whatever tasks are

necessary to prepare for the sleep state, including calling Power Manager routines, and

then returns control to the Power Manager. Similarly, the Power Manager calls each

sleep procedure when it is returning the computer to the operating state.

If you are writing a device driver or if you want your program to be informed before the

computer enters the sleep state, you can place an entry for your sleep procedure in the

sleep queue. If you do place an entry in the sleep queue, remember to remove it before

your device driver or application terminates. You use the SleepQInstall and

SleepQRemove procedures to install and remove sleep queue entries, as described

in “Installing a Sleep Procedure,” beginning on page 6-18.

Your sleep procedure can be called at any of four different times, namely

■ when the Power Manager wants to know whether it may put the computer into the
sleep state (a sleep request)

■ when the Power Manager is about to put the computer into the sleep state (a sleep
demand)

■ when the Power Manager has just returned the computer to the normal operating
state (a wakeup demand)

■ when the Power Manager has decided not to put the computer into the sleep state
but has already issued a sleep request (a sleep-request revocation)

Your sleep procedure will need to respond differently, depending on the reason it is

being called. The following four sections describe these cases.

C H A P T E R 6

Power Manager

6-10 About the Power Manager

Sleep Requests
The Power Manager sends your sleep procedure a sleep request when it would like to

put the computer into the sleep state. Your sleep procedure then has the option of

denying the sleep request. If any procedure in the sleep queue denies the sleep request,

the Power Manager sends a sleep-request revocation to each routine that it has already

called with a sleep request, and the computer does not enter the sleep state. If, on the

other hand, every sleep procedure in the sleep queue accepts the sleep request, then the

Power Manager sends a sleep demand to each sleep procedure in the sleep queue. After

every sleep procedure has processed the sleep demand, the Power Manager puts the

computer into the sleep state.

Before sending a sleep request to any of the sleep procedures in the sleep queue, the

Power Manager calls a built-in sleep procedure that checks the status of certain network

services, as summarized in Table 6-1. Only if all of the network services permit sleep

does the Power Manager continue by sending sleep requests to the routines in the sleep

queue. The network services in Table 6-1 are described in Inside Macintosh: Networking.

The Power Manager issues a sleep request when a sleep timeout occurs (that is, when

the period of inactivity set by the user in the Portable or PowerBook control panel has

expired).

Sleep Demands
The Power Manager sends your sleep procedure a sleep demand when it is about to put

the portable Macintosh computer into the sleep state. When a procedure in the sleep

Table 6-1 Response of network services to sleep requests and sleep demands

Network service in use
Response to sleep
request

Response to
conditional sleep
demand

Response to
unconditional sleep
demand

.MPP low-level
protocol (DDP, NBP,
RTMP, AEP)

Close driver if
computer is on battery;
else deny request

Close driver if
user gives okay;
else deny request

Close driver

.XPP extended
protocol (ASP, AFP);
no server volume
mounted

Close driver if
computer is on battery;
else deny request

Close driver if
user gives okay;
else deny request

Close driver

.XPP; server volume
mounted

Deny request Close server sessions
and close driver if
user gives okay;
else deny request

Close server sessions
and close driver

An application is
currently using
AppleTalk

Deny request Close server sessions
and close driver if
user gives okay;
else deny request

Close server sessions
and close driver

C H A P T E R 6

Power Manager

About the Power Manager 6-11

queue receives a sleep demand, it must prepare for the sleep state as quickly as possible

and return control to the Power Manager.

From the point of view of the Power Manager, there are two types of sleep demands—

conditional and unconditional. The Power Manager might cancel a conditional sleep

demand if certain network services are in use; an unconditional sleep demand cannot be

canceled. When your sleep procedure receives a sleep demand, however, your procedure

has no way to determine whether it originated as a conditional sleep demand or an

unconditional sleep demand. Your device driver or application must prepare for the

sleep state and return control promptly to the Power Manager when it receives a sleep

demand.

The Power Manager processes a conditional sleep demand when the user chooses Sleep

from the Battery desk accessory or from the Special menu in the Finder. When the Power

Manager processes a conditional sleep demand, it first sends a sleep request to the

network driver’s sleep procedure (see Table 6-1). Whenever one of the network services

is in use, the sleep procedure displays a dialog box requesting the user’s permission to

put the computer into the sleep state. The wording of the message in the dialog box

depends on the nature of the network service in use. For example, if an .XPP driver

protocol is in use, has opened a server, and has mounted a volume, then the message

warns the user that the volume will be closed when the computer is put into the sleep

state.

If the user denies permission to close the driver, the Power Manager does not send sleep

demands to the routines in the sleep queue. If the user does give permission to close the

driver, the Power Manager sends a sleep demand to the network driver’s sleep

procedure and then to every other sleep procedure in the sleep queue.

The Power Manager issues an unconditional sleep demand when the battery voltage

falls below a preset level or when the user chooses Shut Down from the Special menu

in the Finder. In this case, the Power Manager sends a sleep demand to the network

driver’s sleep procedure, which closes all network drivers. Then the Power Manager

sends a sleep demand to every other sleep procedure in the sleep queue. As always for

a sleep demand, each sleep procedure must prepare for the sleep state and return control

to the Power Manager as quickly as possible. In this case, the Power Manager does not

display any warnings or dialog boxes; neither the network services, the user, nor any

application can deny the sleep demand.

Wakeup Demands
After restoring full power to the CPU, RAM, and ROM, the Power Manager’s wakeup

procedure calls each sleep procedure in the sleep queue with a wakeup demand. A

wakeup demand informs your sleep procedure that it must reverse whatever steps it

followed when it prepared for the sleep state. For example, a database application might

reestablish communications with a remote database.

C H A P T E R 6

Power Manager

6-12 About the Power Manager

Sleep-Request Revocations
If any sleep procedure in the sleep queue denies a sleep request, the Power Manager

sends a sleep-request revocation to every sleep procedure that it has already called with

a sleep request. Your sleep procedure must reverse whatever steps it followed when it

prepared to receive a sleep demand. A communications application that prevents users

from opening new sessions while it is waiting to receive a sleep demand, for example,

might once again allow users to open new sessions.

Power Manager Dispatch

Software that reads and writes directly to the Power Manager’s private data structures

and parameter RAM must be updated any time Apple Computer, Inc. makes a change to

the internal operation of the Power Manager. The Power Manager for some versions of

the Macintosh Operating System includes routines—referred to as the Power Manager
dispatch routines—that eliminate the need for applications to deal directly with the

Power Manager’s data structures. These routines provide access to most of the Power

Manager’s internal parameters. The interface is extensible, and may grow over time to

accommodate new kinds of functions.

You can use the routines described in “Power Manager Dispatch Routines,” beginning

on page 6-40, to isolate your application from future changes to the internal operation

of the Power Manager software.

IMPORTANT

Apple Computer, Inc. reserves the right to change the internal operation
of the Power Manager software. Applications should not depend on the
Power Manager’s internal data structures or parameter RAM. ▲

You should not depend on the Power Manager’s internal data structures staying the

same in future versions of system software. In particular, do not assume that

■ timeout values such as the hard disk spindown time reside at the same locations in
parameter RAM

■ the power cycling process works the same way or uses the same parameters

■ direct commands to the Power Manager microcontroller are supported in all models

Note

Whereas the Pascal programming language interface is used to
describe the Power Manager routines in “Power Manager Routines,”
beginning on page 6-28, the C language interface is used for the newer
routines described in “Power Manager Dispatch Routines,” beginning
on page 6-40. The section “Summary of the Power Manager,”
beginning on page 6-67, includes both Pascal and C interfaces for both
sets of routines. ◆

C H A P T E R 6

Power Manager

Using the Power Manager 6-13

Using the Power Manager

You can use the Power Manager to install a sleep procedure that is executed when power

to internal devices is about to be shut off or after power has just been restored. Most

applications or other software components that are sensitive to the power-consumption

state of the computer can use sleep procedures to perform any necessary processing at

those times. See “Writing a Sleep Procedure,” beginning on page 6-20, and “Installing a

Sleep Procedure,” beginning on page 6-18, for complete details on how to write and

install sleep procedures.

The Power Manager provides routines that you can use to monitor the state of the

battery charge and the status of the battery charger. See “Monitoring the Battery and

Battery Charger,” beginning on page 6-26, for details. In all likelihood, only utility

programs will need to use these routines.

If you are writing an application that is sensitive to the clock speed of the computer, you

can use the Power Manager to disable the CPU idle state when necessary.

IMPORTANT

Do not disable the idle state except when executing a routine that must
run at full speed. Disabling the idle state shortens the amount of time
the user can operate the computer from a battery. ▲

If you want to ensure that a portable Macintosh computer is in the operating state at

a particular time in the future, you can use the SetWUTime function to set the wakeup

timer. You can use the wakeup timer in conjunction with the Time Manager, for example,

when you want to use the computer to perform tasks that must be done at a specific

time, like printing a large file in the middle of the night.

If you are writing a device driver for a portable Macintosh computer, you might need

to use the Power Manager to control power to the subsystem that your driver controls.

See “Switching Serial Power On and Off,” on page 6-25, for a discussion of power control

for the serial communications subsystem. For power control for other devices, consult

Apple Developer Technical Support. The Power Manager cannot control power to

external peripheral devices such as hard disks and CD-ROM drives because such devices

have their own power supplies.

IMPORTANT

Because the Power Manager saves the contents of all of the CPU
registers, including the stack pointer, before putting the computer into
the sleep state, and because the contents of RAM are preserved while
the computer is in the sleep state, most applications are not adversely
affected by the sleep state. Because a portable Macintosh computer does
not enter the idle state when almost any sort of activity is going on (or
even when the watch cursor is being displayed), few programs are
adversely affected by the idle state. Therefore, it is likely that your
application will not have to make calls to the Power Manager. ▲

C H A P T E R 6

Power Manager

6-14 Using the Power Manager

Determining Whether the Power Manager Is Present
You can use the Gestalt function with the gestaltPowerMgrAttr selector to

determine whether the Power Manager is available on a particular computer and

whether certain other devices in the computer can be put into the idle or sleep state.

The Gestalt function returns in the response parameter a 32-bit value that may have

some or all of the following bits set:

CONST

gestaltPMgrExists = 0; {Power Manager is present}

gestaltPMgrCPUIdle = 1; {CPU can idle}

gestaltPMgrSCC = 2; {can stop SCC clock}

gestaltPMgrSound = 3; {can shut off sound circuits}

gestaltPMgrDispatchExists = 4; {dispatch routines are present}

If the gestaltPMgrExists bit is set, the Power Manager is present. If the

gestaltPMgrCPUIdle bit is set, the CPU is capable of going into a state of low power

consumption. If the gestaltPMgrSCC bit is set, it is possible to stop the SCC clock, thus

effectively turning off the serial ports. If the gestaltPMgrSound bit is set, it is possible

to turn off power to the sound circuits. If the gestaltPMgrDispatchExists bit is set,

the Power Manager dispatch routines are available; see the next section for more

information.

Note

For complete details on using the Gestalt function, see the chapter
“Gestalt Manager” in Inside Macintosh: Operating System Utilities. ◆

Determining Whether the Power Manager Dispatch Routines are
Present
You can use the Gestalt function with the gestaltPowerMgrAttr selector to

determine whether the Power Manager dispatch routines are available on a particular

computer. If the gestaltPMgrDispatchExists bit is set in the response parameter,

the Power Manager dispatch routines are available.

Because more routines may be added in the future, the PMSelectorCount function

(described on page 6-41) returns the number of dispatch routines that are implemented.

The sample code in Listing 6-1 shows how you can use the Gestalt function to

determine whether the Power Manager dispatch routines are present, and then use the

PMSelectorCount function to find out which routines are supported. In this case, the

sample code tests for the existence of the hard disk spindown routine (selector $07).

C H A P T E R 6

Power Manager

Using the Power Manager 6-15

Listing 6-1 Determining which Power Manager dispatch routines exist

long pmgrAttributes;

Boolean routinesExist;

routinesExist = false;

if (! Gestalt(gestaltPowerMgrAttr, &pmgrAttributes))

if (pmgrAttributes & (1<<gestaltPMgrDispatchExists))

if (PMSelectorCount() >= 7) /* do the first 8 routines exist? */

routinesExist = true;

▲ W A R N I N G

If you call a routine that does not exist, the call to the public Power
Manager trap (if the trap exists) will return an error code, which your
program could misinterpret as data. ▲

Enabling or Disabling the Idle State
You can reset the activity timer to 15 seconds, disable or enable the idle state, and read

the current CPU clock speed by using Power Manager routines.

IMPORTANT

Keep in mind that it is almost always better to design your code so
that it is not affected by the idle state. If you do so, the computer can
conserve power whenever possible. Note also that disabling the idle
state does not disable the sleep state. To prevent your program from
being adversely affected by the sleep state, you need to place a sleep
procedure in the sleep queue, as described in “Installing a Sleep
Procedure,” beginning on page 6-18. ▲

To reset the activity timer to count down another 15 seconds before the Power Manager

puts the computer into the idle state, use the IdleUpdate function. The IdleUpdate

function takes no parameters and returns the value in the Ticks global variable at the

time the function was called.

If you want to disable the idle state—that is, prevent the computer from entering the idle

state—for more than 15 seconds, use the DisableIdle procedure. If your application

cannot tolerate the idle state at all, you can call the DisableIdle procedure when your

application starts up and then call the EnableIdle procedure when your application

terminates.

The EnableIdle procedure cancels the last call to the DisableIdle procedure. Note

that canceling the last call to the DisableIdle procedure is not always the same thing

as enabling the idle state. For example, if the user has used the Portable control panel to

disable the idle state, then a call to the EnableIdle procedure does not enable the idle

state. Similarly, if your routine called the DisableIdle procedure more than once or if

another routine has called the DisableIdle procedure, then a call to the EnableIdle

procedure cancels only the last call to the DisableIdle procedure; it does not enable

the idle state.

C H A P T E R 6

Power Manager

6-16 Using the Power Manager

The Power Manager does not actually reenable the idle state until every call to the

DisableIdle procedure has been matched by a call to the EnableIdle procedure,

and then only if the user has not disabled the idle state through the Portable (or

PowerBook) control panel. For this reason, you must be very careful to match each call

to the DisableIdle procedure with a single call to the EnableIdle procedure. Be

careful to avoid making extra calls to the EnableIdle procedure so that you do not

inadvertently reenable the idle state while another application needs it to remain

disabled.

Calls to the EnableIdle procedure are not cumulative; that is, after you make several

calls to the EnableIdle procedure, a single call to the DisableIdle procedure still

disables the idle state. Disabling the idle state always takes precedence over enabling the

idle state. A call to the DisableIdle procedure disables the idle state no matter how

many times the EnableIdle procedure has been called and whether or not the user has

enabled the idle state through the Portable or PowerBook control panel.

The following examples should help to clarify the use of EnableIdle and

DisableIdle:

■ If an application calls the EnableIdle routine but the user disables or has disabled
the idle state, the idle state is disabled.

■ If an application calls the DisableIdle routine and the user enables or has enabled
the idle state, the idle state is disabled.

■ If an application calls the DisableIdle routine twice in a row and then calls the
EnableIdle routine once, the idle state is disabled.

■ If an application calls the EnableIdle routine twice in a row and then calls the
DisableIdle routine once, the idle state is disabled.

■ If the idle state is initially enabled and if an application calls the DisableIdle
routine twice in a row and then calls the EnableIdle routine twice, the Power
Manager first disables and then reenables the idle state.

To determine whether a portable Macintosh computer is currently in the idle state, read

the current clock speed with the GetCPUSpeed function. If the value returned by the

GetCPUSpeed function is 1, the computer is in the idle state.

Setting, Disabling, and Reading the Wakeup Timer
When a portable Macintosh computer is in the sleep state, the power management

hardware updates the real-time clock and compares it to the wakeup timer once each

second. When the real-time clock and the wakeup timer have the same setting, the

power management circuits return the computer to the operating state. The Power

Manager provides functions that you can use to set the wakeup timer, disable the

wakeup timer, and read the wakeup timer’s current setting.

C H A P T E R 6

Power Manager

Using the Power Manager 6-17

IMPORTANT

In some portable Macintosh computers, the power management
hardware does not receive this periodic “tickle.” As a result, the
wakeup timer cannot be used on those machines. To determine whether
a particular portable Macintosh computer supports the use of the
wakeup timer, call the GetWUTime function. An error is returned if
the timer is not available. ▲

Use the SetWUTime function to set the wakeup timer. You pass one parameter to the

SetWUTime function, an unsigned long word specifying the number of seconds since

midnight, January 1, 1904. Setting the wakeup timer automatically enables it. Listing 6-2

illustrates how to call the SetWUTime function.

Listing 6-2 Setting the wakeup timer

FUNCTION WakeMeUp (when: LongInt): OSErr;

VAR

myTime: LongInt;

BEGIN

GetDateTime(myTime); {get the current time}

myTime := myTime + when; {add desired delay}

WakeMeUp := SetWUTime(LongInt(@myTime));

END;

The when parameter passed to the WakeMeUp function defined in Listing 6-2 specifies

how long from the current time the wakeup timer should go off. The WakeMeUp function

determines the current time by calling GetDateTime and then passes the appropriate

value to SetWUTime. Note that the parameter passed to SetWUTime is the address of the

desired wakeup time, not the wakeup time itself.

To disable the wakeup timer, you can set the wakeup timer to any time earlier than the

current setting of the real-time clock (that is, to some time in the past), or you can use the

DisableWUTime function. To reenable the wakeup timer, you must use the SetWUTime

function to set the timer to a new time in the future.

To get the current setting of the wakeup timer, use the GetWUTime function. This

function returns two parameters: the time to which the wakeup timer is set (in seconds

since midnight, January 1, 1904) and a flag indicating whether the wakeup timer is

enabled.

If the computer is already in the operating state when the real-time clock reaches the

setting in the wakeup timer, nothing happens.

Note

The power management circuits do not return the computer to the
operating state while battery voltage is low, even if the wakeup timer
and real-time clock settings coincide. ◆

C H A P T E R 6

Power Manager

6-18 Using the Power Manager

Installing a Sleep Procedure
If you want your program to be notified before the Power Manager puts a portable

Macintosh computer into the sleep state or returns it to the operating state, you can put

an entry in the sleep queue. If you do place an entry in the sleep queue, remember to

remove it before your device driver or application terminates.

The sleep queue is a standard operating-system queue, as described in Inside Macintosh:
Operating System Utilities. The SleepQRec data type defines a sleep queue record

as follows:

TYPE SleepQRec = {sleep queue record}

RECORD

sleepQLink: SleepQRecPtr; {next queue element}

sleepQType: Integer; {queue type = 16}

sleepQProc: ProcPtr; {pointer to sleep procedure}

sleepQFlags: Integer; {reserved}

END;

To add an entry to the sleep queue, fill in the sleepQType and sleepQProc fields

of a sleep queue record. The sleepQLink and sleepQFlags fields are maintained

privately by the Power Manager; your application should not modify these fields, except

to initialize them before it calls the SleepQInstall procedure. SleepQInstall takes

one parameter, a pointer to your sleep queue record. Listing 6-3 shows how to add an

entry to the sleep queue.

Listing 6-3 Adding an entry to the sleep queue

VAR

gSleepRec: SleepQRec; {a sleep queue record}

PROCEDURE MyInstallSleepProcedure;

BEGIN

{Set up the record before installing it into the sleep queue.}

WITH gSleepRec DO

BEGIN

sleepQLink := NIL; {initialize reserved field}

sleepQType := slpQType; {set sleep queue type}

sleepQProc := @MySleepProc; {set address of sleep proc}

sleepQFlags := 0; {initialize reserved field}

END;

SleepQInstall(@gSleepRec); {install the record}

END;

To remove your routine from the sleep queue, use the SleepQRemove procedure. This

procedure also takes as its one parameter a pointer to your sleep queue record.

C H A P T E R 6

Power Manager

Using the Power Manager 6-19

Using Application Global Variables in Sleep Procedures
When a sleep procedure installed by an application is called, the A5 world of that

application might not be valid. That is to say, the A5 register might not point to the

boundary between the application’s global variables and its application parameters.

When this happens, any attempt by the sleep procedure to read the application’s global

variables or to access any other information in the application’s A5 world is likely to

return erroneous information.

As a result, if you use an application to install a sleep procedure and your sleep

procedure accesses any information in your application’s A5 world, you’ll need to

make sure that, at the time you access that information, the A5 register points to your

application’s global variables. Your sleep procedure must also restore the A5 register to

its previous value before exiting. This saving and restoring of the A5 register is necessary

whenever your sleep procedure uses any information in your application’s A5 world,

such as your application global variables or any of your application’s QuickDraw global

variables.

Note

The techniques described in this section are relevant only to sleep
procedures installed by applications. Sleep procedures installed from
other kinds of code (for example, from system extensions) do not need
to worry about saving and restoring the A5 register. ◆

It’s easy enough to use the SetA5 function to read the value of the A5 register when

your sleep procedure begins executing and to restore the register immediately before

your procedure exits. (See Listing 6-6 on page 6-21.) It’s a bit harder to pass your

application’s A5 value to the sleep procedure. A standard way to do this in a high-level

language like Pascal is to define a new data structure that contains both a sleep queue

record and room for the A5 value. For example, you can define a structure of type

SleepInfoRec, as follows:

TYPE SleepInfoRec = {sleep information record}

RECORD

mySleepQRec: SleepQRec; {a sleep queue record}

mySlpRefCon: LongInt; {address of app’s A5 world}

END;

SleepInfoRecPtr = ^SleepInfoRec;

Then, you simply need to call the SetCurrentA5 function at a time that your

application is the current application and pass the result of that function to your sleep

procedure (via the mySlpRefCon field of the sleep information record). Listing 6-4

shows how to do this.

C H A P T E R 6

Power Manager

6-20 Using the Power Manager

Listing 6-4 Installing a sleep procedure that uses application global variables

VAR

gSleepInfoRec: SleepInfoRec; {a sleep information record}

PROCEDURE MyInstallSleepProc;

BEGIN

{Set up the record before installing it into the sleep queue.}

WITH gSleepInfoRec.mySleepQRec DO

BEGIN

sleepQLink := NIL; {initialize reserved field}

sleepQType := slpQType; {set sleep queue type}

sleepQProc := @MySleepProc; {set address of sleep proc}

sleepQFlags := 0; {initialize reserved field}

END;

{Install app’s A5 value into expanded sleep record.}

gSleepInfoRec.mySlpRefCon := SetCurrentA5;

SleepQInstall(@gSleepInfoRec)); {install the record}

END;

The Power Manager puts the address you pass to SleepQInstall into register A0

when your sleep procedure is called. Thus, the sleep procedure simply needs to retrieve

the SleepInfoRec record and extract the appropriate value of the application’s A5

world. See the next section, “Writing a Sleep Procedure,” for a sample sleep procedure

that does this.

Note

For more information about your application’s A5 world and routines
you can use to manipulate the A5 register, see the chapter “Introduction
to Memory Management” in Inside Macintosh: Memory. ◆

Writing a Sleep Procedure
After you’ve added an entry to the sleep queue, the Power Manager calls your sleep

procedure when the Power Manager issues a sleep request, a sleep demand, a wakeup

demand, or a sleep-request revocation. Whenever the Power Manager calls your routine,

the A0 register contains a pointer to your sleep queue record and the D0 register contains

C H A P T E R 6

Power Manager

Using the Power Manager 6-21

a sleep procedure selector code indicating the reason your routine is being called. One

of four selector codes will be in the D0 register:

CONST

sleepRequest = 1; {sleep request}

sleepDemand = 2; {sleep demand}

sleepWakeUp = 3; {wakeup demand}

sleepRevoke = 4; {sleep-request revocation}

When your routine receives a sleep request, it must either allow or deny the request and

place its response in the D0 register. To allow the sleep request, clear the D0 register to 0

before returning control to the Power Manager. To deny the sleep request, return a

nonzero value in the D0 register. (Note that you cannot deny a sleep demand.)

Listing 6-5 defines two assembly-language glue routines that you can use to accept

or deny the request from a high-level language.

Listing 6-5 Accepting and denying a sleep request

PROCEDURE MyAllowSleepRequest;

INLINE

$7000; {MOVEQ #0, D0}

PROCEDURE MyDenySleepRequest;

INLINE

$7001; {MOVEQ #1, D0}

If your routine or any other routine in the sleep queue denies the sleep request, the

Power Manager sends a sleep-request revocation to each routine that it has already

called with a sleep request. If none of the routines denies the sleep request, the Power

Manager sends a sleep demand to each routine in the sleep queue. Because your routine

will be called a second time in any case, it is not necessary to prepare for sleep in

response to a sleep request; your routine need only allow or deny the sleep request

by returning a result in the D0 register. Listing 6-6 shows a sample sleep procedure.

Listing 6-6 A sleep procedure

PROCEDURE MySleepProc;

VAR

mySleepInfoPtr: SleepInfoRecPtr;

mySleepCommand: LongInt;

myOldA5: LongInt; {A5 upon entry to procedure}

myCurA5: LongInt;

C H A P T E R 6

Power Manager

6-22 Using the Power Manager

BEGIN

mySleepInfoPtr := MyGetSleepInfoPtr; {get the address of the sleep record}

mySleepCommand := MyGetSleepCommand; {get the task we are to perform}

{Set A5 register to app’s A5 value, and save the original A5 value.}

myOldA5 := SetA5(mySleepInfoPtr^.mySlpRefCon);

CASE mySleepCommand OF {do the right thing}

sleepRequest:

MySleepRequest;

sleepDemand:

MySleepDemand;

sleepWakeUp:

MyWakeupDemand;

sleepRevoke:

MySleepRevoke;

OTHERWISE

;

END; {CASE}

myOldA5 := SetA5(myOldA5); {restore original A5}

END;

The MySleepProc sleep procedure defined in Listing 6-6 retrieves the address of the

sleep queue record contained in register A0 and the selector code contained in register

D0. Then it calls the appropriate application-defined routine to handle the selector code.

MySleepProc uses two assembly-language glue routines, defined in Listing 6-7, to get

those values from the appropriate registers.

Listing 6-7 Retrieving the sleep queue record and the selector code

{Retrieve the address of our sleep info record from A0.}

FUNCTION MyGetSleepInfoPtr: SleepInfoRecPtr;

INLINE

$2E88; {MOVE.L A0, (A7)}

{Retrieve the command code for the sleep procedure from D0.}

FUNCTION MyGetSleepCommand: LongInt;

INLINE

$2E80; {MOVE.L D0, (A7)}

When your sleep procedure receives a sleep demand, it must prepare for the sleep state

and return control to the Power Manager as quickly as possible. Because sleep demands

are never sent by an interrupt handler, your sleep procedure can perform whatever tasks

C H A P T E R 6

Power Manager

Using the Power Manager 6-23

are necessary to prepare for sleep, including making calls to the Memory Manager.

You can, for example, display an alert box to inform the user of potential problems,

or you can even display a dialog box that requires the user to specify the action to be

performed. However, if several applications display alert or dialog boxes, the user might

become confused or alarmed. More important, if the user is not present to answer the

alert box or dialog box, control is never returned to the Power Manager and the

computer does not go to sleep. Listing 6-8 defines a procedure that displays a dialog box

whenever a sleep demand is received.

Listing 6-8 Displaying a dialog box in response to a sleep demand

PROCEDURE MySleepDemand;

VAR

myItem: Integer; {item number for ModalDialog}

myRect: Rect; {rectangle for NewDialog}

myOrigPort: GrafPtr; {original graphics port}

BEGIN

myItem := 0;

gOrigTime := TickCount; {initialize timer}

IF gDialog = NIL THEN {create a dialog window}

BEGIN

SetRect(myRect, 50, 50, 400, 150);

gDialog := NewDialog(NIL, myRect, '', FALSE, dBoxProc,

WindowPtr(-1), FALSE, 0, gItemHandle);

END;

IF gDialog <> NIL THEN

BEGIN

GetPort(myOrigPort); {remember current port}

ShowWindow(gDialog); {make dialog visible}

SelectWindow(gDialog);

SetPort(gDialog);

REPEAT

ModalDialog(@MyTimeOutFilter, myItem);

UNTIL myItem = 1;

HideWindow(gDialog);

SetPort(myOrigPort); {restore original port}

END;

END;

To display a dialog box, you need to build the dialog box from within the sleep

procedure itself to ensure that the newly created dialog box appears frontmost on the

C H A P T E R 6

Power Manager

6-24 Using the Power Manager

screen. You can facilitate this process by passing a handle to the dialog item list to your

sleep procedure. In Listing 6-8, the global variable gItemHandle is assumed to contain

a handle to the dialog item list. You can execute the following line of code early in your

application’s execution to set gItemHandle to the correct value:

gItemHandle := Get1Resource('DITL', kAlertDITL);

▲ W A R N I N G

If your sleep procedure displays an alert box or modal dialog box, the
computer does not enter the sleep state until the user responds. If the
computer remains in the operating state until the battery voltage drops
below a preset value, the power management hardware automatically
shuts off all power to the system, without preserving the state of open
applications or data that has not been saved to disk. To prevent this from
happening, you should automatically remove your dialog box after
several minutes have elapsed. ▲

An easy way to implement this time-out feature is to pass the ModalDialog procedure

the address of a modal dialog filter function that intercepts null events until the desired

amount of time has elapsed. Listing 6-9 illustrates such a filter function.

Listing 6-9 A modal dialog filter function that times out

FUNCTION MyTimeOutFilter (myDialog: DialogPtr;

 VAR myEvent: EventRecord;

 VAR myItem: Integer): Boolean;

CONST

kTimeOutMax = 18000; {remove dialog box after 5 minutes}

BEGIN

MyTimeOutFilter := FALSE;

CASE myEvent.what OF

nullEvent:

BEGIN

IF (TickCount - gOrigTime) >= kTimeOutMax THEN

BEGIN

myItem := 1;

MyTimeOutFilter := TRUE;

END;

END;

{handle other relevant events here}

OTHERWISE

;

END; {CASE}

END;

C H A P T E R 6

Power Manager

Using the Power Manager 6-25

The global variable gOrigTime is initialized in the MySleepDemand procedure; the

modal dialog filter function defined in Listing 6-9 simply waits until the appropriate

number of ticks (sixtieths of a second) have elapsed before simulating a click on the

OK button (assumed to be dialog item number 1).

When your routine receives a wakeup demand, it must prepare for the operating state

and return control to the Power Manager as quickly as possible.

When your routine receives a sleep-request revocation, it must reverse any changes

it made in response to the sleep request that preceded it and return control to the

Power Manager.

Switching Serial Power On and Off
The serial I/O subsystem of a portable Macintosh computer includes the following

components:

■ the Serial Communications Controller (SCC) chip

■ the serial driver chips

■ the –5 volt supply

■ the internal modem (if installed)

Because serial drivers always use these components in certain combinations, the

Power Manager provides five serial power procedures that perform the following tasks:

■ The AOn procedure switches on power to serial port A and switches on power to the
internal modem if it is installed.

■ The AOnIgnoreModem procedure switches on power to serial port A (the modem
port) but does not switch on power to the internal modem.

■ The BOn procedure switches on power to serial port B.

■ The AOff procedure switches off power to serial port A and to the internal modem if
it is in use.

■ The BOff procedure switches off power to serial port B.

If no internal modem is installed, then calling any of the power-on routines switches on

power to the SCC, the serial driver chips, and the –5 volt supply.

To switch power on for port B whether or not there is an internal modem installed, use

the BOn procedure. This procedure switches on power to the SCC, the serial driver chips,

and the –5 volt supply.

If the internal modem is installed, then you can use the AOn procedure to switch on the

modem. In this case, this procedure switches on power to the SCC, the –5 volt supply,

and the modem; the internal modem does not use the serial driver chips.

If the internal modem is installed but you do not want to use it (whether or not

the user has used the Portable control panel to disconnect the modem), then use the

AOnIgnoreModem procedure to switch on power to the SCC, the serial driver chips,

and the –5 volt supply.

C H A P T E R 6

Power Manager

6-26 Power Manager Reference

Note
You can use the Power Manager’s ModemStatus function to determine
whether an internal modem is turned on or off. For details, see the
description of ModemStatus beginning on page 6-36. ◆

Monitoring the Battery and Battery Charger
You can use the Power Manager to monitor the status of the battery and battery charger.

To do so, use the BatteryStatus function to determine the current voltage in the

battery.

For most accurate results, you might want to average the voltage over some extended

period of time (anywhere from 30 seconds to several minutes). The power load within

a portable Macintosh computer varies dynamically, and the current draw of the various

subsystems affects the voltage read at any one moment.

Power Manager Reference

This section describes the data structures and routines provided by the Power Manager.

See “Using the Power Manager,” beginning on page 6-13, for detailed instructions on

using these routines.

Data Structures

This section describes the data structures used by the Power Manager. The sleep queue

record is shown in Pascal. The other data structures, which are used by the functions

described in “Power Manager Dispatch Routines,” beginning on page 6-40, are shown in C.

Sleep Queue Record

The SleepQInstall and SleepQRemove procedures take as a parameter the address

of a sleep queue record, which is defined by the SleepQRec data type.

TYPE SleepQRec =

RECORD

sleepQLink: SleepQRecPtr; {next queue element}

sleepQType: Integer; {queue type = 16}

sleepQProc: ProcPtr; {pointer to sleep procedure}

sleepQFlags: Integer; {reserved}

END;

SleepQRecPtr = ^SleepQRec;

C H A P T E R 6

Power Manager

Power Manager Reference 6-27

Field descriptions

sleepQLink A pointer to the next element in the queue. This pointer is
maintained internally by the Power Manager; your application
should not modify this field.

sleepQType The type of the queue, which must be the constant slpQType (16).

sleepQProc A pointer to your sleep procedure. See “Sleep Procedures,” on
page 6-65, for details on this routine.

sleepQFlags Reserved for use by Apple Computer, Inc.

Hard Disk Queue Structure

The HardDiskQInstall and HardDiskQRemove functions take as a parameter the

address of a hard disk queue structure, which is defined by the HDQueueElement

data type.

struct HDQueueElement {

Ptr hdQLink; /* pointer to next queue element */

short hdQType; /* queue type (must be HDPwrQType) */

short hdFlags; /* reserved */

HDSpindownProc hdProc; /* pointer to routine to call */

long hdUser; /* user-defined private storage */

} HDQueueElement;

Wakeup Time Structure

The wakeup time structure used by the GetWakeupTimer and SetWakeupTimer

functions is defined by the WakeupTime data type.

typedef struct WakeupTime {

 unsigned long wakeTime; /* wakeup time as number of seconds since

 midnight, January 1, 1904 */

 char wakeEnabled; /* 1 = enable timer, 0=disable timer */

} WakeupTime;

Battery Information Structure

The GetScaledBatteryInfo function returns information about the battery in a data

structure of type BatteryInfo.

typedef struct BatteryInfo {

unsigned char flags; /* misc flags (see below) */

unsigned char warningLevel; /* scaled warning level (0-255) */

C H A P T E R 6

Power Manager

6-28 Power Manager Reference

char reserved; /* reserved for internal use */

unsigned char batteryLevel; /* scaled battery level (0-255) */

} BatteryInfo;

 The values of the bits in the flags field are as follows:

Battery Time Structure

The GetBatteryTimes function returns information about the time remaining on the

computer’s battery or batteries in a data structure of type BatteryTimeRec.

typedef struct BatteryTimeRec {

unsigned long expectedBatteryTime; /* estimated time remaining */

unsigned long minimumBatteryTime; /* minimum time remaining */

unsigned long maximumBatteryTime; /* maximum time remaining */

unsigned long timeUntilCharged; /* time until full charge */

} BatteryTimeRec;

Power Manager Routines

This section describes the routines provided by the Power Manager. You can use these

routines to

■ enable, disable, and read the idle state

■ control and read the wakeup timer

■ add and remove elements from the sleep queue

■ control power to the serial ports

■ read the status of the internal modem

■ read the status of the battery and battery charger

Controlling the Idle State

The Power Manager provides routines that you can use to modify and control the idle

state. See “The Idle State,” on page 6-7, for a complete description of a computer’s

idle state and activity timer.

Bit name Bit number Description

batteryInstalled 7 A battery is installed.

batteryCharging 6 The battery is charging.

chargerConnected 5 The charger is connected.

C H A P T E R 6

Power Manager

Power Manager Reference 6-29

IdleUpdate

You can use the IdleUpdate function to reset the Power Manager’s activity timer.

FUNCTION IdleUpdate: LongInt;

DESCRIPTION

The IdleUpdate function resets the activity timer. It takes no parameters and returns

the value in the Ticks global variable at the time the function was called.

EnableIdle

You can use the EnableIdle procedure to enable the idle state.

PROCEDURE EnableIdle;

DESCRIPTION

The EnableIdle procedure cancels the effect of a call to the DisableIdle procedure.

A call to the EnableIdle procedure enables the idle state only if the user has not used

the Portable or PowerBook control panel to disable the idle state and if every call to the

DisableIdle procedure has been balanced by a call to the EnableIdle procedure.

ASSEMBLY-LANGUAGE INFORMATION

The MPW development system provides an assembly-language macro to execute the

EnableIdle routine. That macro calls the _IdleState trap. To call the _IdleState

trap directly, you must first put a longword routine selector in the D0 register. For

EnableIdle, the routine selector is 0.

SEE ALSO

See “Enabling or Disabling the Idle State,” beginning on page 6-15, for more discussion

of EnableIdle.

DisableIdle

You can use the DisableIdle procedure to disable the idle state.

PROCEDURE DisableIdle;

C H A P T E R 6

Power Manager

6-30 Power Manager Reference

DESCRIPTION

The DisableIdle procedure disables the idle state, even if the user has used the

Portable or PowerBook control panel to enable the idle state. Every call to the

DisableIdle procedure must be balanced by a call to the EnableIdle procedure

before the idle state is reenabled.

ASSEMBLY-LANGUAGE INFORMATION

The MPW development system provides an assembly-language macro to execute the

DisableIdle routine. That macro calls the _IdleState trap. To call the _IdleState

trap directly, you must first put a longword routine selector in the D0 register. For

DisableIdle, the routine selector can be any value that is greater than 0.

SEE ALSO

See “Enabling or Disabling the Idle State,” beginning on page 6-15, for more discussion

of DisableIdle.

GetCPUSpeed

You can use the GetCPUSpeed function to read the current CPU clock speed.

FUNCTION GetCPUSpeed: LongInt;

DESCRIPTION

The GetCPUSpeed function returns the current effective clock speed (in megahertz) of

the CPU.

ASSEMBLY-LANGUAGE INFORMATION

The MPW development system provides an assembly-language macro to execute the

GetCPUSpeed routine. That macro calls the _IdleState trap. To call the _IdleState

trap directly, you must first put a longword routine selector in the D0 register. For

GetCPUSpeed, the routine selector can be any value that is less than 0. The CPU speed is

returned as a single byte in register D0.

C H A P T E R 6

Power Manager

Power Manager Reference 6-31

Controlling and Reading the Wakeup Timer

The Power Manager provides functions to set the wakeup timer, disable the wakeup

timer, and read the current setting of the wakeup timer.

IMPORTANT

Some portable Macintosh computers do not support the wakeup timer.
There is currently no direct way to determine whether a particular
portable computer supports the wakeup timer. You can, however,
inspect the result code from the GetWUTime function to see whether the
call executed successfully. ▲

SetWUTime

You can use the SetWUTime function to set the wakeup timer.

FUNCTION SetWUTime (WUTime: LongInt): OSErr;

WUTime The time at which the wakeup timer is to wake up, specified as a number
of seconds since midnight, January 1, 1904.

DESCRIPTION

The SetWUTime function sets and enables the wakeup timer. When a portable

Macintosh computer is in the sleep state, the power management hardware updates the

real-time clock and compares it to the wakeup timer once each second. When the

real-time clock and the wakeup timer have the same setting, the power management

hardware returns the computer to the operating state.

The WUTime parameter specifies the time at which the power management hardware

will return the computer to the operating state. You specify the time as the number of

seconds since midnight, January 1, 1904.

If the computer is not in the sleep state when the wakeup timer and the real-time clock

settings coincide, nothing happens. If you set the wakeup timer to a time earlier than the

current setting of the real-time clock, you effectively disable the wakeup timer.

RESULT CODES

SEE ALSO

See “Setting, Disabling, and Reading the Wakeup Timer,” beginning on page 6-16, for an

example of calling SetWUTime.

You can use the SetWakeupTimer function (page 6-45) to explicitly enable and disable

the wakeup timer.

noErr 0 No error

C H A P T E R 6

Power Manager

6-32 Power Manager Reference

DisableWUTime

You can use the DisableWUTime function to disable the wakeup timer.

FUNCTION DisableWUTime: OSErr;

DESCRIPTION

The DisableWUTime function disables the wakeup timer. You must set a new wakeup

time to reenable the wakeup timer.

RESULT CODES

GetWUTime

You can use the GetWUTime function to read the current setting of the wakeup timer.

FUNCTION GetWUTime (VAR WUTime: LongInt; VAR WUFlag: Byte): OSErr;

WUTime On exit, the current setting of the wakeup timer, specified as the number
of seconds since midnight, January 1, 1904.

WUFlag On exit, a bit field encoding the state of the wakeup timer.

DESCRIPTION

The GetWUTime function returns the current setting of the wakeup timer and indicates

whether the wakeup timer is enabled. The value returned in the WUTime parameter is

the current setting of the wakeup timer, specified as the number of seconds since

midnight, January 1, 1904. If the low-order bit (bit 0) of the WUFlag parameter is set to 1,

the wakeup timer is enabled. The other bits in the WUFlag parameter are reserved.

SPECIAL CONSIDERATIONS

The GetWUTime function returns an error on machines that do not support the wakeup

timer.

RESULT CODES

noErr 0 No error

noErr 0 No error
pmBusyErr –13001 Wakeup timer is not available on this machine

C H A P T E R 6

Power Manager

Power Manager Reference 6-33

Controlling the Sleep Queue

The Power Manager allows you to install a sleep procedure that is executed whenever

the machine is about to go into the sleep state or just after the machine returns from the

sleep state.

SleepQInstall

You can use the SleepQInstall procedure to add an entry to the sleep queue.

PROCEDURE SleepQInstall (qRecPtr: SleepQRecPtr);

qRecPtr A pointer to a sleep queue record.

DESCRIPTION

The SleepQInstall procedure adds the specified sleep queue record to the sleep

queue. The qRecPtr parameter is a pointer to a sleep queue record.

SPECIAL CONSIDERATIONS

You should make sure to remove any elements you installed in the sleep queue before

your application or other software exits.

SEE ALSO

See “Sleep Queue Record,” on page 6-26, for the structure of a sleep queue record. See

“Sleep Procedures,” beginning on page 6-65, for information about sleep procedures.

SleepQRemove

You can use the SleepQRemove procedure to remove an entry from the sleep queue.

PROCEDURE SleepQRemove (qRecPtr: SleepQRecPtr);

qRecPtr A pointer to a sleep queue record, which is described on page 6-26.

DESCRIPTION

The SleepQRemove procedure removes the specified sleep queue record from the sleep

queue. The qRecPtr parameter is a pointer to the sleep queue record that you provided

when you added your routine to the sleep queue.

C H A P T E R 6

Power Manager

6-34 Power Manager Reference

Controlling Serial Power

The Power Manager provides five procedures that you can use to control power to the

serial ports and internal modem.

Assembly-Language Note

Although MPW provides assembly-language macros to execute these
routines, each of these macros calls the _SerialPower trap macro. To
call the _SerialPower trap macro directly, you must first put a routine
selector in the D0 register, setting the bits of the selector as follows:

AOn

You can use the AOn procedure to turn on the power to serial port A.

PROCEDURE AOn;

DESCRIPTION

The AOn procedure switches on power to the SCC and the –5 volt supply. If the internal

modem is installed and is connected to port A, the AOn procedure also switches on

power to the modem. If either of these conditions is not met, the AOn procedure switches

on power to the serial driver chips.

ASSEMBLY-LANGUAGE INFORMATION

The MPW development system provides an assembly-language macro to execute the

AOn routine. That macro calls the _SerialPower trap. To call the _SerialPower trap

directly, you must first put a longword routine selector in the D0 register. For AOn, the

routine selector is $4.

AOnIgnoreModem

You can use the AOnIgnoreModem procedure to turn on the power to serial port A but

not to the internal modem.

PROCEDURE AOnIgnoreModem;

Bit Use

0 Set to 0 to use internal modem; set to 1 to ignore modem.

2 Set to 0 for port B; set to 1 for port A.

7 Set to 0 to switch on power; set to 1 to switch off power. ◆

C H A P T E R 6

Power Manager

Power Manager Reference 6-35

DESCRIPTION

The AOnIgnoreModem procedure switches on power to the SCC, the –5 volt supply, and

the serial driver chips. This procedure does not switch on power to the internal modem,

even if the user has used the Portable or PowerBook control panel to select the modem.

ASSEMBLY-LANGUAGE INFORMATION

The MPW development system provides an assembly-language macro to execute the

AOnIgnoreModem routine. That macro calls the _SerialPower trap. To call the

_SerialPower trap directly, you must first put a longword routine selector in

the D0 register. For AOnIgnoreModem, the routine selector is $5.

BOn

You can use the BOn procedure to turn on the power to serial port B.

PROCEDURE BOn;

DESCRIPTION

The BOn procedure switches on power to the SCC, the –5 volt supply, and the serial

driver chips.

ASSEMBLY-LANGUAGE INFORMATION

The MPW development system provides an assembly-language macro to execute the

BOn routine. That macro calls the _SerialPower trap. To call the _SerialPower trap

directly, you must first put a longword routine selector in the D0 register. For BOn, the

routine selector is $0.

AOff

You can use the AOff procedure to turn off the power to serial port A and to the internal

modem.

PROCEDURE AOff;

DESCRIPTION

The AOff procedure always switches off power to the SCC and the –5 volt supply if

serial port B is not in use. If the internal modem is installed, connected to port A, and

switched on, this procedure switches off power to the modem. If any of these conditions

C H A P T E R 6

Power Manager

6-36 Power Manager Reference

are not met, it switches off power to the serial driver chips, unless they are being used

by port B.

ASSEMBLY-LANGUAGE INFORMATION

The MPW development system provides an assembly-language macro to execute the

AOff routine. That macro calls the _SerialPower trap. To call the _SerialPower trap

directly, you must first put a longword routine selector in the D0 register. For AOff, the

routine selector is $84.

BOff

You can use the BOff procedure to turn off the power to serial port B and to the internal

modem.

PROCEDURE BOff;

DESCRIPTION

The BOff procedure switches off power to the SCC and the –5 volt supply if serial port

A is not in use. If the internal modem is installed, connected to port B, and switched on,

this procedure switches off power to the modem. Otherwise, the BOff procedure

switches off power to the serial driver chips, unless they are being used by port A.

ASSEMBLY-LANGUAGE INFORMATION

The MPW development system provides an assembly-language macro to execute the

BOff routine. That macro calls the _SerialPower trap. To call the _SerialPower trap

directly, you must first put a longword routine selector in the D0 register. For BOff, the

routine selector is $80.

Reading the Status of the Internal Modem

The Power Manager provides a function that allows you to determine the status of the

internal modem.

ModemStatus

You can use the ModemStatus function to get information about the state of the internal

modem.

FUNCTION ModemStatus (VAR Status: Byte): OSErr;

C H A P T E R 6

Power Manager

Power Manager Reference 6-37

Status On exit, a byte value whose bits encode information about the current
state of the internal modem. See the description below for the meaning
of each bit.

DESCRIPTION

The ModemStatus function returns information about the internal modem in a

portable Macintosh computer. Bits 0 and 2 through 5 of the Status parameter encode

information about the state of the internal modem. (Currently, bits 6 and 7 are reserved;

in addition, bit 1 is reserved and is always set.) The Power Manager recognizes the

following constants for specifying bits in the Status parameter.

CONST

modemOnBit = 0; {1 if modem is on}

ringWakeUpBit = 2; {1 if ring wakeup is enabled}

modemInstalledBit = 3; {1 if internal modem is installed}

ringDetectBit = 4; {1 if incoming call is detected}

modemOnHookBit = 5; {1 if modem is off hook}

Constant descriptions

modemOnBit The modem’s power is on or off. If this bit is set, the modem is
switched on. You can use the serial power control functions to
control power to the modem. See “Switching Serial Power On and
Off,” beginning on page 6-25, for information about these functions.

ringWakeUpBit The state of the ring-wakeup feature. If this bit is set, the
ring-wakeup feature is enabled.

modemInstalledBit
The modem is or is not installed. If this bit is set, an internal modem
is installed.

ringDetectBit The ring-detect state. If this bit is set, the modem has detected an
incoming call.

modemOnHookBit The modem is on or off hook. If this bit is set, the modem is off
hook. The modem indicates that it is off hook whenever it is busy
sending or receiving data or processing commands. The modem
cannot receive an incoming call when it is off hook.

The Power Manager also defines these bit masks:

CONST

modemOnMask = $1; {modem on}

ringWakeUpMask = $4; {ring wakeup enabled}

modemInstalledMask = $8; {internal modem installed}

ringDetectMask = $10; {incoming call detected}

modemOnHookMask = $20; {modem off hook}

The user can use the Portable or PowerBook control panel to enable or disable the

ring-wakeup feature. When the ring-wakeup feature is enabled and the computer is in

C H A P T E R 6

Power Manager

6-38 Power Manager Reference

the sleep state, the Power Manager returns the computer to the operating state when the

modem receives an incoming call.

RESULT CODES

Reading the Status of the Battery and the Battery Charger

The Power Manager monitors the voltage level of the internal battery and warns the user

when the voltage drops below a threshold value stored in parameter RAM. If the voltage

continues to drop and falls below another, lower value stored in parameter RAM, the

Power Manager puts the computer into the sleep state. The Power Manager provides a

function that allows you to read the state of charge of the battery and the status of the

battery charger.

BatteryStatus

You can use the BatteryStatus function to get information about the state of the

internal battery.

FUNCTION BatteryStatus (VAR Status: Byte; VAR Power: Byte): OSErr;

Status On exit, a byte value whose bits encode information about the current
state of the battery charger. See the description below for the meaning
of each bit.

Power On exit, a byte whose value indicates the current level of the battery
voltage. See the description below for a method of calculating the voltage
from this value.

DESCRIPTION

The BatteryStatus function returns the status of the battery charger (in the Status

parameter) and the voltage level of the battery (in the Power parameter).

Bits 0 through 5 of the Status parameter encode information about the state of the

battery charger. (Currently, bits 6 and 7 are reserved.) The Power Manager recognizes

the following constants for specifying bits in the Status parameter.

CONST

chargerConnBit = 0; {1 if charger is connected}

hiChargeBit = 1; {1 if charging at hicharge rate}

chargeOverFlowBit = 2; {1 if hicharge counter has overflowed}

noErr 0 No error

C H A P T E R 6

Power Manager

Power Manager Reference 6-39

batteryDeadBit = 3; {always 0}

batteryLowBit = 4; {1 if battery is low}

connChangedBit = 5; {1 if charger connection has changed}

Constant descriptions

chargerConnBit The charger is or is not connected. If this bit is set, the battery
charger is connected to the computer.

hiChargeBit The charge rate. If this bit is set, the battery is charging at the
hicharge rate.

chargeOverFlowBit
The hicharge counter overflow. If this bit is set, the hicharge counter
has overflowed. When the hicharge counter has overflowed, it
indicates that the charging circuit is having trouble charging the
battery.

batteryDeadBit
The dead battery indicator. This bit is always 0, because the Power
Manager automatically shuts the system down when the battery
voltage drops below a preset level.

batteryLowBit The battery warning. If this bit is set, the battery voltage has
dropped below the value set in parameter RAM. The power
management hardware sends an interrupt to the CPU once every
second when battery voltage is low.

connChangedBit
The charger connection has or has not changed state. If this bit is
set, the charger has been recently connected or disconnected.

The Power Manager also defines these bit masks:

CONST

chargerConnMask = $1; {charger is connected}

hiChargeMask = $2; {charging at hicharge rate}

chargeOverFlowMask = $4; {hicharge counter has overflowed}

batteryDeadMask = $8; {battery is dead}

batteryLowMask = $10; {battery is low}

connChangedMask = $20; {connection has changed}

Due to the nature of lead-acid batteries, the battery power remaining is difficult to

measure accurately. Temperature, load, and other factors can alter the measured voltage

by 30 percent or more. The Power Manager takes as many of these factors into account

as possible, but the voltage measurement can still be in error by up to 10 percent. The

measurement is most accurate when the computer has been in the sleep state for at least

30 minutes.

When the battery charger is connected to a portable Macintosh computer with a low

battery, the battery is charged at the hicharge rate (1.5 amps) until battery voltage

reaches its full charge (7.2 volts on most portable Macintosh computers). The Power

Manager has a counter (the hicharge counter) that measures the time required to raise

the battery voltage to this level.

C H A P T E R 6

Power Manager

6-40 Power Manager Reference

After the full charge level is reached, the power management circuits maintain the

hicharge connection until the hicharge counter counts down to 0. This ensures that the

battery is fully charged. At the end of that time, the power management circuits supply

the battery with just enough current to replace the voltage lost through self-discharge.

RESULT CODES

SEE ALSO

For more functions for determining the status of the battery and battery charger, see

“Getting Information About the Internal Batteries,” beginning on page 6-54.

Power Manager Dispatch Routines

This section describes the Power Manager dispatch routines. You can use these

routines to

■ determine what Power Manager features are available

■ set and read the sleep and wakeup timers and disable or disable the sleep timer

■ set, read, enable, and disable the timer that dims the screen

■ control the hard disk

■ get information about the battery

■ get and set the state of the internal modem

■ control the processing speed of the processor and processor cycling

■ get and set the SCSI ID the computer uses in SCSI disk mode

Note

The functions in this section are described using the C language
interface. The section “Summary of the Power Manager,” beginning on
page 6-67, includes both Pascal and C interfaces. ◆

Assembly-language note:

All the functions in this section share a single trap,
_PowerMgrDispatch ($A09E). The trap is register based: parameters
are passed in register D0 and sometimes also in A0. A routine selector
value passed in the low word of register D0 determines which routine
is executed. ◆

Determining the Power Manager Features Available

The functions in this section return the number of Power Manager dispatch functions

available and return information about the Power Manager features available.

noErr 0 No error

C H A P T E R 6

Power Manager

Power Manager Reference 6-41

PMSelectorCount

You can use the PMSelectorCount function to determine which Power Manager

dispatch functions are implemented.

short PMSelectorCount();

DESCRIPTION

The PMSelectorCount function returns the number of routine selectors present. Any

function whose selector value is greater than the returned value is not implemented.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for PMSelectorCount

is 0 ($00) in the low word of register D0. The number of selectors is returned in the low

word of register D0.

PMFeatures

You can use the PMFeatures function to find out which features of the Power Manager

are implemented.

unsigned long PMFeatures();

DESCRIPTION

The PMFeatures function returns a 32-bit field describing hardware and software

features associated with the Power Manager on a particular machine. If a bit value is 1,

that feature is supported or available; if the bit value is 0, that feature is not available.

Unused bits are reserved by Apple for future expansion.

Bit name Bit number Description

hasWakeupTimer 0 The wakeup timer is supported.

hasSharedModemPort 1 The hardware forces exclusive access to
either SCC port A or the internal modem.
(If this bit is not set, port A and the internal
modem can be used simultaneously by
means of the Communications Toolbox.)

hasProcessorCycling 2 Processor cycling is supported; that is,
when the computer is idle, the processor
power will be cycled to reduce power use.

mustProcessorCycle 3 The processor cycling feature must be left
on (turn it off at your own risk).

C H A P T E R 6

Power Manager

6-42 Power Manager Reference

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for PMFeatures is 1

($01) in the low word of register D0. The 32-bit field of supported features is returned

in register D0.

Controlling the Sleep and Wakeup Timers

The functions in this section read and set the sleep and wakeup timers and enable or

disable the automatic sleep feature.

GetSleepTimeout

You can use the GetSleepTimeout function to find out how long the computer will

wait before going to sleep.

unsigned char GetSleepTimeout();

DESCRIPTION

The GetSleepTimeout function returns the amount of time that the computer will wait

after the last user activity before going to sleep. The value of GetSleepTimeout is

expressed as the number of 15-second intervals that the computer will wait before going

to sleep.

hasReducedSpeed 4 Processor can be started up at a reduced
speed in order to extend battery life.

dynamicSpeedChange 5 Processor speed can be switched
dynamically between its full and reduced
speed at any time, rather than only at
startup time.

hasSCSIDiskMode 6 The SCSI disk mode is supported.

canGetBatteryTime 7 The computer can provide an estimate of
the battery time remaining.

canWakeupOnRing 8 The computer supports waking up from
the sleep state when an internal modem is
installed and the modem detects a ring.

hasDimmingSupport 9 The computer has dimming support built
into the ROM.

Bit name Bit number Description

C H A P T E R 6

Power Manager

Power Manager Reference 6-43

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for GetSleepTimeout

is 2 ($02) in the low word of register D0. The sleep timeout value is returned in the low

word of register D0.

SetSleepTimeout

You can use the SetSleepTimeout function to set how long the computer will wait

before going to sleep.

void SetSleepTimeout(unsigned char timeout);

timeout The amount of time that the computer will wait after the last user activity
before going to sleep expressed as a number of 15-second intervals.

DESCRIPTION

The SetSleepTimeout function sets the amount of time the computer will wait after

the last user activity before going to sleep. The value of SetSleepTimeout is expressed

as the number of 15-second intervals making up the desired time. If a value of 0 is

passed in, the function sets the timeout value to the default value (currently equivalent

to 8 minutes).

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for SetSleepTimeout

is 3 ($03) in the low word of register D0. The sleep timeout value to set is passed in the

high word of register D0.

AutoSleepControl

You can use the AutoSleepControl function to turn the automatic sleep feature on

and off.

void AutoSleepControl(Boolean enableSleep);

enableSleep
A Boolean that specifies whether to enable the automatic sleep feature.
Set this parameter to true to enable automatic sleep.

C H A P T E R 6

Power Manager

6-44 Power Manager Reference

DESCRIPTION

The AutoSleepControl function enables or disables the automatic sleep feature

that causes the computer to go into sleep mode after a preset period of time. When

enableSleep is set to true, the automatic sleep feature is enabled (this is the normal

state). When enableSleep is set to false, the computer will not go into the sleep

mode unless it is forced to either by some user action—for example, by the user’s

selecting Sleep from the Special menu of the Finder—or in a low battery situation.

SPECIAL CONSIDERATIONS

Calling AutoSleepControl with enableSleep set to false multiple times

increments the auto sleep disable level so that it requires the same number of calls to

AutoSleepControl with enableSleep set to true to reenable the auto sleep feature.

If more than one piece of software makes this call, auto sleep may not be reenabled when

you think it should be.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for AutoSleepControl

is 13 ($0D) in the low word of register D0. The Boolean value is passed in the high word

of register D0.

IsAutoSlpControlDisabled

You can use the IsAutoSlpControlDisabled function to find out whether automatic

sleep control is enabled.

Boolean IsAutoSlpControlDisabled();

DESCRIPTION

The IsAutoSlpControlDisabled function returns a Boolean true if automatic sleep

control is disabled, or false if automatic sleep control is enabled.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for

IsAutoSlpControlDisabled is 33 ($21) in the low word of register D0. The Boolean

result is passed in the low byte of register D0.

C H A P T E R 6

Power Manager

Power Manager Reference 6-45

GetWakeupTimer

You can use the GetWakeupTimer function to find out when the computer will wake up

from sleep mode.

void GetWakeupTimer(WakeupTime *theTime);

theTime A pointer to a WakeupTime structure, which specifies whether the timer
is enabled or disabled and the time at which the wakeup timer is set to
wake the computer.

DESCRIPTION

The GetWakeupTimer function returns the time when the computer will wake up from

sleep mode.

If the PowerBook model doesn’t support the wakeup timer, GetWakeupTimer returns

a value of 0.

 ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for GetWakeupTimer

is 22 ($16) in the low word of register D0. The pointer to WakeupTime is passed in

register A0.

SEE ALSO

The WakeupTime structure is described in “Wakeup Time Structure,” on page 6-27.

SetWakeupTimer

You can use the SetWakeupTimer function to set the time when the computer will

wake up from sleep mode.

void SetWakeupTimer(WakeupTime *theTime);

theTime A pointer to a WakeupTime structure, which specifies whether to enable
or disable the timer and the time at which the wakeup timer is to wake
the computer.

DESCRIPTION

The SetWakeupTimer function sets the time when the computer will wake up from

sleep mode and enables or disables the timer. On a PowerBook model that doesn’t

support the wakeup timer, SetWakeupTimer does nothing.

C H A P T E R 6

Power Manager

6-46 Power Manager Reference

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for SetWakeupTimer

is 23 ($17) in the low word of register D0. The pointer to WakeupTime is passed in

register A0.

SEE ALSO

The WakeupTime structure is described in “Wakeup Time Structure,” on page 6-27.

Controlling the Dimming Timer

The functions in this section read and set the dimming timer and enable or disable the

automatic screen-dimming feature. The dimmer acts as a screen saver, dimming the

screen after a preset time of user inactivity.

GetDimmingTimeout

You can use the GetDimmingTimeout function to find out how long the computer will

wait before dimming the screen.

unsigned char GetDimmingTimeout();

DESCRIPTION

The GetDimmingTimeout function returns the amount of time that the computer

will wait after the last user activity before dimming the screen. The value of

GetDimmingTimeout is expressed as the number of 15-second intervals that the

computer will wait before dimming the screen.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for

GetDimmingTimeout is 29 ($1D) in the low word of register D0. The dimming timeout

value is returned in the low word of register D0.

SetDimmingTimeout

You can use the SetDimmingTimeout function to set how long the computer will wait

before dimming the screen.

void SetDimmingTimeout(unsigned char timeout);

C H A P T E R 6

Power Manager

Power Manager Reference 6-47

timeout The amount of time that the computer will wait after the last user activity
before dimming the screen expressed as a number of 15-second intervals.
Specify 0 to cause the screen to dim immediately.

DESCRIPTION

The SetDimmingTimeout function sets the amount of time the computer will wait after

the last user activity before dimming the screen. The value of SetDimmingTimeout is

expressed as the number of 15-second intervals making up the desired time.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for SetDimmingTimeout

is 30 ($1E) in the low word of register D0. The dimming timeout value to set is passed in

the high word of register D0.

SEE ALSO

You can use the PMFeatures function (page 6-41) to determine whether the computer

supports automatic dimming.

DimmingControl

You can use the DimmingControl function to turn the automatic dimming feature

on and off.

void DimmingControl(Boolean enableDimming);

enableDimming
A Boolean that specifies whether to enable the automatic dimming
feature. Set this parameter to true to enable automatic dimming.

DESCRIPTION

The DimmingControl function enables or disables the automatic dimming feature that

causes the computer to dim the screen after a preset period of time. When

enableDimming is set to true, the automatic dimming feature is enabled (this is the

normal state). When enableDimming is set to false, the computer will not dim the

screen.

SPECIAL CONSIDERATIONS

Calling DimmingControl with enableDimming set to false multiple times

increments the auto dimming disable level so that it requires the same number of calls to

DimmingControl with enableDimming set to true to reenable the auto dimming

C H A P T E R 6

Power Manager

6-48 Power Manager Reference

feature. If more than one piece of software makes this call, auto dimming may not be

reenabled when you think it should be.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for DimmingControl

is 31 ($1F) in the low word of register D0. The Boolean value is passed in the high word

of register D0.

SEE ALSO

You can use the PMFeatures function (page 6-41) to determine whether the computer

supports automatic dimming.

IsDimmingControlDisabled

You can use the IsDimmingControlDisabled function to find out whether automatic

dimming is enabled.

Boolean IsDimmingControlDisabled();

DESCRIPTION

The IsDimmingControlDisabled function returns a Boolean true if automatic

dimming is disabled, or false if dimming is enabled.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for

IsDimmingControlDisabled is 32 ($20) in the low word of register D0. The Boolean

result is passed in the low byte of register D0.

SEE ALSO

You can use the PMFeatures function (page 6-41) to determine whether the computer

supports automatic dimming.

Controlling the Hard Disk

The functions in this section return information about the hard disk timer and the state

of the hard disk, and allow you to control the spin down of the hard disk. You can also

use functions in this section to install and remove hard disk queue elements. The hard

disk queue notifies your software when power to the internal hard disk is about to be

turned off.

C H A P T E R 6

Power Manager

Power Manager Reference 6-49

GetHardDiskTimeout

You can use the GetHardDiskTimeout function to find out how long the computer will

wait before turning off power to the internal hard disk.

unsigned char GetHardDiskTimeout();

DESCRIPTION

The GetHardDiskTimeout function returns the amount of time the computer will wait

after the last use of a SCSI device before turning off power to the internal hard disk. The

value of GetHardDiskTimeout is expressed as the number of 15-second intervals the

computer will wait before turning off power to the internal hard disk.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for

GetHardDiskTimeout is 4 ($04) in the low word of register D0. The hard disk timeout

value is returned in the low word of register D0.

SetHardDiskTimeout

You can use the SetHardDiskTimeout function to set how long the computer will wait

before turning off power to the internal hard disk.

void SetHardDiskTimeout(unsigned char timeout);

timeout The amount of time that the computer will wait after the last user activity
before turning off the hard disk, expressed as a number of 15-second
intervals.

DESCRIPTION

The SetHardDiskTimeout function sets how long the computer will wait after the last

use of a SCSI device before turning off power to the internal hard disk. The value of

SetHardDiskTimeout is expressed as the number of 15-second intervals the computer

will wait before turning off power to the internal hard disk. If a value of 0 is passed in,

the function sets the timeout value to the default value (currently equivalent to

4 minutes).

C H A P T E R 6

Power Manager

6-50 Power Manager Reference

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for

SetHardDiskTimeout is 5 ($05) in the low word of register D0. The hard disk timeout

value to set is passed in the high word of register D0.

HardDiskPowered

You can use the HardDiskPowered function to find out whether the internal hard disk

is on.

Boolean HardDiskPowered();

DESCRIPTION

The HardDiskPowered function returns a Boolean value indicating whether or not the

internal hard disk is powered up. A value of true means that the hard disk is on, and a

value of false means that the hard disk is off.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for HardDiskPowered

is 6 ($06) in the low word of register D0. The Boolean result is returned in the low word

of register D0.

SpinDownHardDisk

You can use the SpinDownHardDisk function to force the hard disk to spin down.

void SpinDownHardDisk();

DESCRIPTION

The SpinDownHardDisk function immediately forces the hard disk to spin down and

power off if it was previously spinning. Calling SpinDownHardDisk will not spin

down the hard disk if spindown is disabled by calling the SetSpindownDisable

function.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for SpinDownHardDisk

is 7 ($07) in the low word of register D0.

C H A P T E R 6

Power Manager

Power Manager Reference 6-51

IsSpindownDisabled

You can use the IsSpindownDisabled function to find out whether automatic hard

disk spindown is enabled.

Boolean IsSpindownDisabled();

DESCRIPTION

The IsSpindownDisabled function returns a Boolean true if automatic hard disk

spindown is disabled, or false if spindown is enabled.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for

IsSpindownDisabled is 8 ($08) in the low word of register D0. The Boolean result is

passed in the low byte of register D0.

SetSpindownDisable

You can use the SetSpindownDisable function to disable hard disk spindown.

void SetSpindownDisable(Boolean setDisable);

setDisable A Boolean that specifies whether the spindown feature is enabled
(false) or disabled (true).

DESCRIPTION

The SetSpindownDisable function enables or disables hard disk spindown,

depending on the value of setDisable. If the value of setDisable is true, hard disk

spindown is disabled; if the value is false, spindown is enabled.

Disabling hard disk spindown affects the SpinDownHardDisk function, as well as the

normal spindown that occurs after a period of hard disk inactivity.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for

SetSpindownDisable is 9 ($09) in the low word of register D0. The Boolean value to

set is passed in the high word of register D0.

SEE ALSO

The SpinDownHardDisk function is described on page 6-50.

C H A P T E R 6

Power Manager

6-52 Power Manager Reference

HardDiskQInstall

You can use the HardDiskQInstall function to notify your software when power to

the internal hard disk is about to be turned off.

OSErr HardDiskQInstall(HDQueueElement *theElement);

theElement A pointer to an element for the hard disk power down queue.

DESCRIPTION

The HardDiskQInstall function installs an element into the hard disk power down

queue to provide notification to your software when the internal hard disk is about to

be powered off. For example, this feature might be used by the driver for an external

battery-powered hard disk. When power to the internal hard disk is turned off, the

external hard disk could be turned off as well.

When power to the internal hard disk is about to be turned off, the software calls the

routine pointed to by the hdProc field so that it can do any special processing. The

routine is passed a pointer to its queue element so that, for example, the routine can

reference its variables.

Before calling HardDiskQInstall, the calling program must set the hdQType

field to HDPwrQType or the queue element won’t be added to the queue and

HardDiskQInstall will return an error.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for HardDiskQInstall

is 10 ($0A) in the low word of register D0. The pointer to the HDQueue element is passed

in register A0. The result code is returned in the low word of register D0.

RESULT CODES

SEE ALSO

The HDQueueElement structure is defined in “Hard Disk Queue Structure,” on

page 6-27.

The application-defined hard disk spindown function is described in “Hard Disk

Spindown Function,” on page 6-66.

noErr 0 No error

C H A P T E R 6

Power Manager

Power Manager Reference 6-53

HardDiskQRemove

You can use the HardDiskQRemove function to discontinue notification of your

software when power to the internal hard disk is about to be turned off.

OSErr HardDiskQRemove(HDQueueElement *theElement);

theElement A pointer to the element for the hard disk power down queue that you
wish to remove.

DESCRIPTION

The HardDiskQRemove function removes a queue element installed by

HardDiskQInstall. If the hdQType field of the queue element is not set to

HDPwrQType, HardDiskQRemove simply returns an error.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for HardDiskQRemove

is 11 ($0B) in the low word of register D0. The pointer to the HDQueue element is passed

in register A0. The result code is returned in the low word of register D0.

RESULT CODES

SEE ALSO

The HDQueueElement structure is defined in “Hard Disk Queue Structure,” on

page 6-27.

The application-defined hard disk spindown function is described in “Hard Disk

Spindown Function,” on page 6-66.

noErr 0 No error

C H A P T E R 6

Power Manager

6-54 Power Manager Reference

Getting Information About the Internal Batteries

The functions in this section return information about the battery or batteries in the

computer.

GetScaledBatteryInfo

You can use the GetScaledBatteryInfo function to find out the condition of the

battery or batteries.

void GetScaledBatteryInfo(short whichBattery,

BatteryInfo *theInfo);

whichBattery
The battery for which you want information. Set this parameter to 0 to
receive combined information about all the batteries in the computer.

theInfo A pointer to a BatteryInfo data structure, which returns information
about the specified battery.

DESCRIPTION

The GetScaledBatteryInfo function provides a generic means of returning

information about the battery or batteries in the system. Instead of returning a voltage

value, the function returns the battery level as a fraction of the total possible voltage.

Note
Battery technologies such as nickel cadmium (NiCad) and nickel metal
hydride (NiMH) have replaced sealed lead acid batteries in portable
Macintosh computers. There is no single algorithm for determining the
battery voltage that is correct for all portable Macintosh computers. ◆

The value of whichBattery determines whether GetScaledBatteryInfo returns

information about a particular battery or about the total battery level. The value of

GetScaledBatteryInfo should be in the range of 0 to BatteryCount(). If the

value of whichBattery is 0, GetScaledBatteryInfo returns a summation of all

the batteries, that is, the effective battery level of the whole system. If the

value of whichBattery is out of range, or the selected battery is not installed,

GetScaledBatteryInfo will return a result of 0 in all fields. Here is a summary

of the effects of the whichBattery parameter:

Value of whichBattery Information returned

0 Total battery level for all batteries

From 1 to BatteryCount() Battery level for the selected battery

Less than 0 or greater than
BatteryCount()

0 in all fields of theInfo

C H A P T E R 6

Power Manager

Power Manager Reference 6-55

The flags character contains several bits that describe the battery and charger state.

If a bit value is 1, that feature is available or is operating; if the bit value is 0, that feature

is not operating. Unused bits are reserved by Apple for future expansion.

The value of warningLevel is the battery level at which the first low battery warning

message will appear. The function returns a value of 0 in some cases when it’s not

appropriate to return the warning level.

The value of batteryLevel is the current level of the battery. A value of 0 represents

the voltage at which the Power Manager will force the computer into sleep mode; a

value of 255 represents the highest possible voltage.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for

GetScaledBatteryInfo is 12 ($0C) in the low word of register D0. The

BatteryInfo data are returned in the low word of register D0 as follows:

SEE ALSO

The BatteryInfo data type is described in “Battery Information Structure,” on

page 6-27.

Bit name Bit number Description

batteryInstalled 7 A battery is installed.

batteryCharging 6 The battery is charging.

chargerConnected 5 The charger is connected.

Bits Contents

31–24 Flags

23–16 Warning level

15–8 Reserved

7–0 Battery level

C H A P T E R 6

Power Manager

6-56 Power Manager Reference

BatteryCount

You can use the BatteryCount function to find out how many batteries the computer

supports.

short BatteryCount();

DESCRIPTION

The BatteryCount function returns the number of batteries that are supported

internally by the computer. The value of BatteryCount returned may not be the

same as the number of batteries currently installed.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for BatteryCount is 26

($1A) in the low word of register D0. The number of batteries supported is returned in

the low word of register D0.

GetBatteryVoltage

You can use the GetBatteryVoltage function to find out the battery voltage.

Fixed GetBatteryVoltage(short whichBattery);

whichBattery
The battery for which you want a voltage reading.

DESCRIPTION

The GetBatteryVoltage function returns the battery voltage as a fixed-point number.

The value of whichBattery should be in the range 0 to BatteryCount()–1. If the

value of whichBattery is out of range, or the selected battery is not installed,

GetBatteryVoltage will return a result of 0.0 volts.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for

GetBatteryVoltage is 27 ($1B) in the low word of register D0. The battery number is

passed in the high word of register D0. The 32-bit value of the battery voltage is returned

in register D0.

C H A P T E R 6

Power Manager

Power Manager Reference 6-57

GetBatteryTimes

You can use the GetBatteryTimes function to find out about how much battery time

remains.

void GetBatteryTimes (short whichBattery,

BatteryTimeRec *theTimes);

whichBattery
The battery for which you want to know the time remaining. Specify 0 to
get combined information about all the batteries.

theTimes A pointer to a battery time structure, which contains information about
the time remaining for the batteries. The BatteryTimeRec data type
is described on page 6-28.

DESCRIPTION

The GetBatteryTimes function returns information about the time remaining on the

computer’s battery or batteries. The time values are in seconds. The value of

theTimes.expectedBatteryTime is the estimated time remaining based on current

use patterns. The values of theTimes.minimumBatteryTime and

theTimes.maximumBatteryTime are worst-case and best-case estimates, respectively.

The value of theTimes.timeUntilCharged is the time that remains until the battery

or batteries are fully charged.

The value of whichBattery determines whether GetBatteryTimes returns the time

information about a particular battery or the total time for all batteries. The value of

GetScaledBatteryInfo should be in the range of 0 to BatteryCount(). If the value

of whichBattery is 0, GetBatteryTimes returns a total time for all the batteries, that

is, the effective battery time for the whole system. If the value of whichBattery is out

of range, or the selected battery is not installed, GetBatteryTimes will return a result

of 0 in all fields. Here is a summary of the effects of the whichBattery parameter:

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for GetBatteryTimes

is 28 ($1C) in the low word of register D0. The pointer to BatteryTimeRec is passed in

register A0.

Value of whichBattery Information returned

0 Total battery time for all batteries

From 1 to BatteryCount() Battery time for the selected battery

Less than 0 or greater than
BatteryCount()

0 in all fields of theTimes

C H A P T E R 6

Power Manager

6-58 Power Manager Reference

Controlling the Internal Modem

The functions in this section return information about the internal modem and configure

the internal modem’s state information.

GetIntModemInfo

You can use the GetIntModemInfo function to find out information about the internal

modem.

unsigned long GetIntModemInfo();

DESCRIPTION

The GetIntModemInfo function returns a 32-bit field containing information that

describes the features and state of the internal modem. It can be called whether or not a

modem is installed and will return the correct information.

If a bit is set, that feature or state is supported or selected; if the bit is cleared, that feature

is not supported or selected. Undefined bits are reserved by Apple for future expansion.

Bit name
Bit
number Description

hasInternalModem 0 An internal modem is installed.

intModemRingDetect 1 The modem has detected a ring on the
telephone line.

intModemOffHook 2 The internal modem has taken the telephone
line off hook (that is, you can hear the dial
tone or modem carrier).

intModemRingWakeEnb 3 The computer will come out of sleep mode if
the modem detects a ring on the telephone line
and the computer supports this feature (see the
canWakeupOnRing bit in PMFeatures).

extModemSelected 4 The external modem is selected (if this bit is
set, then the modem port will be connected to
port A of the SCC; if the modem port is not
shared by the internal modem and the SCC,
then this bit can be ignored).

C H A P T E R 6

Power Manager

Power Manager Reference 6-59

Bits 15–31 contain the modem type, which can have one of the following values:

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for GetIntModemInfo

is 14 ($0E) in the low word of register D0. The bit field to set is passed in the high word

of register D0.

SetIntModemState

You can use the SetIntModemState function to set some parts of the state of the

internal modem.

void SetIntModemState(short theState);

theState A set of bits you can use to set the modem state. Set bit 15 of this
parameter to 1 to set bits in the modem state. Clear bit 15 to 0 to
clear bits in the modem state. The modem state bits are described
in the preceding function description.

DESCRIPTION

The SetIntModemState function configures some of the internal modem’s state

information. Currently the only items that can be changed are the internal/external

modem selection and the wakeup-on-ring feature.

To change an item of state information, the calling program sets the corresponding bit

in the parameter theState. For example, to select the external modem, set bit 4 of

theState to 1 and set bit 15 to 1. To select the internal modem, set bit 4 to 1 but set bit

15 to 0.

SPECIAL CONSIDERATIONS

In some PowerBook computers, there is a hardware switch to connect either port A of

the SCC or the internal modem to the modem port. The two are physically separated, but

software emulates the serial port interface for those applications that don’t use the

Communications Toolbox. You can check the hasSharedModemPort bit returned by

PMFeatures to determine which way the computer is set up.

Value Meaning

–1 Modem is installed but type not recognized.

0 No modem is installed.

1 Modem is a serial modem.

2 Modem is a PowerBook Duo–style Express Modem.

3 Modem is a PowerBook 160/180–style Express Modem.

C H A P T E R 6

Power Manager

6-60 Power Manager Reference

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for SetIntModemState

is 15 ($0F) in the low word of register D0. The bit field is returned in register D0.

Controlling the Processor

The functions in this section return information about the processor speed and processor

cycling, set the processor speed, and enable or disable processor cycling.

MaximumProcessorSpeed

You can use the MaximumProcessorSpeed function to find out the maximum speed of

the computer’s microprocessor.

short MaximumProcessorSpeed();

DESCRIPTION

The MaximumProcessorSpeed function returns the maximum clock speed of the

computer’s microprocessor, in MHz.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for

MaximumProcessorSpeed is 16 ($10) in the low word of register D0. The processor

speed value is returned in the low word of register D0.

CurrentProcessorSpeed

You can use the CurrentProcessorSpeed function to find out the current clock speed

of the microprocessor.

short CurrentProcessorSpeed();

DESCRIPTION

The CurrentProcessorSpeed function returns the current clock speed of the

computer’s microprocessor, in MHz. The value returned will be different from the

maximum processor speed if the computer has been configured to run with a reduced

processor speed to conserve power.

C H A P T E R 6

Power Manager

Power Manager Reference 6-61

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for

CurrentProcessorSpeed is 17 ($11) in the low word of register D0. The processor

speed value is returned in the low word of register D0.

FullProcessorSpeed

You can use the FullProcessorSpeed function to find out whether the computer will

run at full speed the next time it restarts.

Boolean FullProcessorSpeed();

DESCRIPTION

The FullProcessorSpeed function returns a Boolean value of true if, on the next

restart, the computer will start up at its maximum processor speed; it returns false if

the computer will start up at its reduced processor speed.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for

FullProcessorSpeed is 18 ($12) in the low word of register D0. The Boolean result is

returned in the low byte of register D0.

SetProcessorSpeed

You can use the SetProcessorSpeed function to set the clock speed the

microprocessor will use the next time it is restarted.

Boolean SetProcessorSpeed(Boolean fullSpeed);

fullSpeed A Boolean that sets the processor speed to full speed (true) or reduced
speed (false).

DESCRIPTION

The SetProcessorSpeed function sets the processor speed that the computer will use

the next time it is restarted. If the value of fullSpeed is set to true, the processor will

start up at its full speed (the speed returned by MaximumProcessorSpeed, described

on page 6-60). If the value of fullSpeed is set to false, the processor will start up at

its reduced speed.

C H A P T E R 6

Power Manager

6-62 Power Manager Reference

SPECIAL CONSIDERATIONS

For PowerBook models that support changing the processor speed dynamically,

the current processor speed is also changed. If the speed is actually changed,

SetProcessorSpeed returns true; if the speed is not changed, it returns false.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for

SetProcessorSpeed is 19 ($13) in the low word of register D0. The Boolean value

to set is passed in the high word of register D0. The Boolean result is returned in

register D0.

SEE ALSO

You can use the PMFeatures function (page 6-41) to determine whether the computer

supports changing the processor speed dynamically.

IsProcessorCyclingEnabled

You can use the IsProcessorCyclingEnabled function to find out whether

processor cycling is enabled.

Boolean IsProcessorCyclingEnabled();

DESCRIPTION

The IsProcessorCyclingEnabled function returns a Boolean value of true if

processor cycling is currently enabled, or false if it is disabled.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for

IsProcessorCyclingEnabled is 24 ($18) in the low word of register D0. The Boolean

result is returned in register D0.

EnableProcessorCycling

You can use the EnableProcessorCycling function to turn the processor cycling

feature on and off.

void EnableProcessorCycling(Boolean enable);

enable A Boolean that specifies whether to enable processor cycling.

C H A P T E R 6

Power Manager

Power Manager Reference 6-63

DESCRIPTION

The EnableProcessorCycling function enables processor cycling if a value of true

is passed in, and disables it if false is passed.

▲ W A R N I N G

You should follow the advice of the mustProcessorCycle bit in the
feature flags when turning processor cycling off. Turning processor
cycling off when it’s not recommended can result in hardware failures
due to overheating. ▲

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for

EnableProcessorCycling is 25 ($19) in the low word of register D0. The Boolean

value to set is passed in the high word of register D0.

SEE ALSO

You can use the PMFeatures function (page 6-41) to determine whether the computer

supports processor cycling.

Getting and Setting the SCSI ID

The functions in this section return and set the SCSI ID the computer uses in SCSI

disk mode.

GetSCSIDiskModeAddress

You can use the GetSCSIDiskModeAddress function to find out the SCSI ID the

computer uses in SCSI disk mode.

short GetSCSIDiskModeAddress();

DESCRIPTION

The GetSCSIDiskModeAddress function returns the SCSI ID that the computer uses

when it is started up in SCSI disk mode. The returned value is in the range 1 to 6.

Note
When the computer is in SCSI disk mode, the computer appears as a
hard disk to another computer. ◆

C H A P T E R 6

Power Manager

6-64 Power Manager Reference

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for

GetSCSIDiskModeAddress is 20 ($14) in the low word of register D0. The SCSI ID

is returned in the low word of register D0.

SEE ALSO

You can use the PMFeatures function (page 6-41) to determine whether the computer

supports SCSI disk mode.

SetSCSIDiskModeAddress

You can use the SetSCSIDiskModeAddress function to set the SCSI ID for the

computer to use in SCSI disk mode.

void SetSCSIDiskModeAddress(short scsiAddress);

scsiAddress
The SCSI ID that the computer uses if it is started up in SCSI disk mode.
You must specify a value in the range of 1 to 6.

DESCRIPTION

The SetSCSIDiskModeAddress function sets the SCSI ID that the computer will use if

it is started up in SCSI disk mode.

The value of scsiAddress must be in the range of 1 to 6. If any other value is given, the

software sets the SCSI ID for SCSI disk mode to 2.

ASSEMBLY-LANGUAGE INFORMATION

The trap is _PowerMgrDispatch ($A09E). The selector value for

SetSCSIDiskModeAddress is 21 ($15) in the low word of register D0. The SCSI ID

to set is passed in the high word of register D0.

SEE ALSO

You can use the PMFeatures function (page 6-41) to determine whether the computer

supports SCSI disk mode.

C H A P T E R 6

Power Manager

Power Manager Reference 6-65

Application-Defined Routines

The Power Manager allows you to define a sleep procedure that is called at various

stages of the sleep and wakeup processes. You install a sleep procedure by calling the

SleepQInstall procedure.

Sleep Procedures

You pass the address of a sleep procedure in the sleepQProc field of a sleep queue record.

MySleepProc

A sleep procedure can perform any operations required to prepare your application (or

other software) for the sleep state. Your sleep procedure is also called when the computer

reawakens.

DESCRIPTION

Your sleep procedure is called at various stages in the Power Manager’s sleep and

wakeup processes. It is called in response to a sleep request, a sleep demand, a wakeup

demand, and a sleep-request revocation. You can determine which of these messages the

Power Manager is sending by inspecting the sleep procedure selector code passed in

register D0. This code is one of four values:

enum {

/* sleep procedure selector codes */

sleepRequest = 1, /* sleep request */

sleepDemand = 2, /* sleep demand */

sleepWakeUp = 3, /* wakeup demand */

sleepRevoke = 4 /* sleep-request revocation */

};

When called in response to a sleep request, your procedure must either accept or deny

the request by either clearing register D0 or leaving it alone. When passed any other

selector code, your sleep procedure should take any appropriate actions.

SPECIAL CONSIDERATIONS

A sleep procedure is never executed at interrupt time. As a result, you can, if necessary,

call Memory Manager routines or other routines that allocate memory. You can also

interact with the user by displaying dialog or alert boxes.

If your sleep procedure displays a dialog or alert box, you should make sure to remove

the box after a reasonable amount of time. Failure to do so will prevent the computer

from going to sleep and may permanently damage the screen.

C H A P T E R 6

Power Manager

6-66 Power Manager Reference

ASSEMBLY-LANGUAGE INFORMATION

When your sleep procedure is called, register A0 contains the address of the sleep queue

record associated with that procedure and the D0 register contains a sleep procedure

selector code.

SEE ALSO

See “Writing a Sleep Procedure,” beginning on page 6-20, for instructions on writing

a sleep procedure, and see “Installing a Sleep Procedure,” beginning on page 6-18, for

instructions on installing a sleep procedure.

Hard Disk Spindown Function

You pass the address of a hard disk spindown function in the hdProc field of a hard

disk queue structure.

MyHDSpindownProc

A hard disk spindown function can perform any operations you require to prepare for

the hard disk to spin down.

pascal void MyHDSpindownProc(HDQueueElement *theElement);

theElement A pointer to the element in the hard disk power down queue that was
used to install this function.

DESCRIPTION

The HardDiskQInstall function installs an element into the hard disk power down

queue to provide notification to your software when the internal hard disk is about to

be powered off. For example, this feature might be used by the driver for an external

battery-powered hard disk. When power to the internal hard disk is turned off, the

external hard disk could be turned off as well.

When power to the internal hard disk is about to be turned off, the software calls the

routine pointed to by the hdProc field so that it can do any special processing. The

routine will be passed a pointer to its queue element so that, for example, the routine

can reference its variables.

SEE ALSO

The hard disk power down queue elements are defined in “Hard Disk Queue Structure,”

on page 6-27.

The HardDiskQInstall function is described on page 6-52. The HardDiskQRemove

function is described on page 6-53.

C H A P T E R 6

Power Manager

Summary of the Power Manager 6-67

Summary of the Power Manager

Pascal Summary

Constants

CONST

{Power Manager Gestalt selector}

gestaltPowerMgrAttr = 'powr'; {Power Manager attributes selector}

{bit values in Gestalt response parameter}

gestaltPMgrExists = 0; {Power Manager is present}

gestaltPMgrCPUIdle = 1; {CPU can idle}

gestaltPMgrSCC = 2; {can stop SCC clock}

gestaltPMgrSound = 3; {can shut off sound circuits}

gestaltPMgrDispatchExists = 4; {Power Manager dispatch exists }

slpQType = 16; {sleep queue type}

sleepQType = 16; {sleep queue type}

{bit positions for ModemStatus}

modemOnBit = 0; {1 if modem is on}

ringWakeUpBit = 2; {1 if ring wakeup is enabled}

modemInstalledBit = 3; {1 if internal modem is installed}

ringDetectBit = 4; {1 if incoming call is detected}

modemOnHookBit = 5; {1 if modem is off hook}

{masks for ModemStatus}

modemOnMask = $1; {modem on}

ringWakeUpMask = $4; {ring wakeup enabled}

modemInstalledMask = $8; {internal modem installed}

ringDetectMask = $10; {incoming call detected}

modemOnHookMask = $20; {modem off hook}

{bit positions for BatteryStatus}

chargerConnBit = 0; {1 if charger is connected}

hiChargeBit = 1; {1 if charging at hicharge rate}

chargeOverFlowBit = 2; {1 if hicharge counter has overflowed}

batteryDeadBit = 3; {always 0}

batteryLowBit = 4; {1 if battery is low}

connChangedBit = 5; {1 if charger connection has changed}

C H A P T E R 6

Power Manager

6-68 Summary of the Power Manager

{masks for BatteryStatus}

chargerConnMask = $1; {charger is connected}

hiChargeMask = $2; {charging at hicharge rate}

chargeOverFlowMask = $4; {hicharge counter has overflowed}

batteryDeadMask = $8; {battery is dead}

batteryLowMask = $10; {battery is low}

connChangedMask = $20; {connection has changed}

{sleep procedure selector codes}

sleepRequest = 1; {sleep request}

sleepDemand = 2; {sleep demand}

sleepWakeUp = 3; {wakeup demand}

sleepRevoke = 4; {sleep-request revocation}

{bits in bitfield returned by PMFeatures}

hasWakeupTimer = 0; {1 = wakeup timer is supported}

hasSharedModemPort = 1; {1 = modem port shared by SCC and internal modem}

hasProcessorCycling = 2; {1 = processor cycling is supported}

mustProcessorCycle = 3; {1 = processor cycling should not be turned off}

hasReducedSpeed = 4; {1 = processor can be started up at reduced speed}

dynamicSpeedChange = 5; {1 = processor speed can be switched dynamically}

hasSCSIDiskMode = 6; {1 = SCSI Disk Mode is supported}

canGetBatteryTime = 7; {1 = battery time can be calculated}

canWakeupOnRing = 8; {1 = can wakeup when the modem detects a ring}

hasDimmingSupport = 9; {1 = has dimming support built into the ROM}

{bits in BatteryInfo.flags}

batteryInstalled = 7; {1 = battery is currently connected}

batteryCharging = 6; {1 = battery is being charged}

chargerConnected = 5; {1 = charger is connected to the PowerBook }

{ (this does not mean the charger is plugged in)}

{bits in bitfield returned by GetIntModemInfo}

hasInternalModem = 0; {1 = internal modem installed}

intModemRingDetect = 1; {1 = internal modem has detected a ring}

intModemOffHook = 2; {1 = internal modem is off hook}

intModemRingWakeEnb = 3; {1 = wakeup on ring is enabled}

extModemSelected = 4; {1 = external modem selected}

modemSetBit = 15; {1 = set bit, 0=clear bit}

HDPwrQType ='HD';{hard disk notification queue element type}

C H A P T E R 6

Power Manager

Summary of the Power Manager 6-69

Data Types

TYPE SleepQRec =

RECORD

sleepQLink: SleepQRecPtr; {next queue element}

sleepQType: Integer; {queue type = 16}

sleepQProc: ProcPtr; {pointer to sleep procedure}

sleepQFlags: Integer; {reserved}

END;

SleepQRecPtr = ^SleepQRec;

TYPE HDQueueElement =

RECORD

hdQLink: Ptr; {pointer to next queue element}

hdQType: Integer; {queue element type (must be HDQType)}

hdFlags: Integer; {miscellaneous flags}

hdProc: ProcPtr; {pointer to routine to call}

hdUser: LongInt; {user-defined (variable storage, etc.)}

END;

TYPE WakeupTime =

PACKED RECORD

wakeTime: LongInt; {wakeup time (same format as time)}

wakeEnabled: Byte; {1 = enable, 0=disable wakeup timer}

END;

TYPE BatteryInfo =

PACKED RECORD

flags: Byte; {misc flags (see above)}

warningLevel: Byte; {scaled warning level (0-255)}

reserved: Byte; {reserved for internal use}

batteryLevel: Byte; {scaled battery level (0-255)}

END;

TYPE BatteryTimeRec =

RECORD

expectedBatteryTime: LongInt; {estimated battery time remaining}

minimumBatteryTime: LongInt; {minimum battery time remaining}

maximumBatteryTime: LongInt; {maximum battery time remaining}

timeUntilCharged: LongInt; {time until battery is fully charged}

END;

C H A P T E R 6

Power Manager

6-70 Summary of the Power Manager

Power Manager Routines

Controlling the Idle State

FUNCTION IdleUpdate : LongInt;

PROCEDURE EnableIdle;

PROCEDURE DisableIdle;

FUNCTION GetCPUSpeed : LongInt;

Controlling and Reading the Wakeup Timer

FUNCTION SetWUTime (WUTime: LongInt): OSErr;

FUNCTION DisableWUTime : OSErr;

FUNCTION GetWUTime (VAR WUTime: LongInt; VAR WUFlag: Byte): OSErr;

Controlling the Sleep Queue

PROCEDURE SleepQInstall (qRecPtr: SleepQRecPtr);

PROCEDURE SleepQRemove (qRecPtr: SleepQRecPtr);

Controlling Serial Power

PROCEDURE AOn;

PROCEDURE AOnIgnoreModem;

PROCEDURE BOn;

PROCEDURE AOff;

PROCEDURE BOff;

Reading the Status of the Internal Modem

FUNCTION ModemStatus (VAR Status: Byte): OSErr;

Reading the Status of the Battery and the Battery Charger

FUNCTION BatteryStatus (VAR Status: Byte; VAR Power: Byte): OSErr;

Power Manager Dispatch Routines

Determining the Power Manager Features Available

FUNCTION PMSelectorCount : Integer;

FUNCTION PMFeatures : LongInt;

C H A P T E R 6

Power Manager

Summary of the Power Manager 6-71

Controlling the Sleep and Wakeup Timers

FUNCTION GetSleepTimeout : Byte;

PROCEDURE SetSleepTimeout(timeout : Byte);

PROCEDURE AutoSleepControl(enableSleep : Boolean);

FUNCTION IsAutoSlpControlDisabled() : Boolean;

PROCEDURE GetWakeupTimer(VAR theTime : WakeupTime);

PROCEDURE SetWakeupTimer(theTime : WakeupTime);

Controlling the Dimming Timer

FUNCTION GetDimmingTimeout() : Byte;

PROCEDURE SetDimmingTimeout(timeout : Byte);

PROCEDURE DimmingControl(enableDimming : Boolean);

FUNCTION IsDimmingControlDisabled() : Boolean;

Controlling the Hard Disk

FUNCTION GetHardDiskTimeout : Byte;

PROCEDURE SetHardDiskTimeout(timeout : Byte);

FUNCTION HardDiskPowered : Boolean;

PROCEDURE SpinDownHardDisk;

FUNCTION IsSpindownDisabled : Boolean;

PROCEDURE SetSpindownDisable(setDisable : BOOLEAN);

FUNCTION HardDiskQInstall(VAR theElement : HDQueueElement) : OSErr;

FUNCTION HardDiskQRemove(VAR theElement : HDQueueElement) : OSErr;

Getting Information About the Battery

PROCEDURE GetScaledBatteryInfo(whichBattery : Integer; VAR theInfo :
BatteryInfo);

FUNCTION BatteryCount : Integer;

FUNCTION GetBatteryVoltage(whichBattery : Integer) : Fixed;

PROCEDURE GetBatteryTimes(whichBattery : INTEGER; VAR theTimes :
BatteryTimeRec);

Controlling the Internal Modem

FUNCTION GetIntModemInfo : LongInt;

PROCEDURE SetIntModemState(theState : Integer);

Controlling the Processor

FUNCTION MaximumProcessorSpeed : Integer;

C H A P T E R 6

Power Manager

6-72 Summary of the Power Manager

FUNCTION CurrentProcessorSpeed : Integer;

FUNCTION FullProcessorSpeed : Boolean;

FUNCTION SetProcessorSpeed(fullSpeed : Boolean) : Boolean;

FUNCTION IsProcessorCyclingEnabled : Boolean;

PROCEDURE EnableProcessorCycling(enable : Boolean);

Getting and Setting the SCSI ID

FUNCTION GetSCSIDiskModeAddress : Integer;

PROCEDURE SetSCSIDiskModeAddress(scsiAddress : Integer);

Application-Defined Routines

PROCEDURE MySleepProc;

PROCEDURE MyHDSpindownProc(theElement : HDQueueElement);

C Summary

Constants and Data Types

/* Power Manager Gestalt selector */

#define gestaltPowerMgrAttr 'powr' /* Power Manager attributes selector */

/* bit values in Gestalt response parameter */

enum {

gestaltPMgrExists = 0, /* Power Manager is present */

gestaltPMgrCPUIdle = 1, /* CPU can idle */

gestaltPMgrSCC = 2, /* can stop SCC clock */

gestaltPMgrSound = 3, /* can shut off sound circuits */

gestaltPMgrDispatchExists = 4 /* Power Manager dispatch exists */

};

enum {

slpQType = 16, /* sleep queue type */

sleepQType = 16 /* sleep queue type */

};

enum {

/* bit positions for ModemStatus */

modemOnBit = 0, /* 1 if modem is on */

ringWakeUpBit = 2, /* 1 if ring wakeup is enabled */

C H A P T E R 6

Power Manager

Summary of the Power Manager 6-73

modemInstalledBit = 3, /* 1 if internal modem is installed */

ringDetectBit = 4, /* 1 if incoming call is detected */

modemOnHookBit = 5, /* 1 if modem is off hook */

/* masks for ModemStatus */

modemOnMask = 0x1, /* modem on */

ringWakeUpMask = 0x4, /* ring wakeup enabled */

modemInstalledMask = 0x8, /* internal modem installed */

ringDetectMask = 0x10, /* incoming call detected */

modemOnHookMask = 0x20, /* modem off hook */

/* bit positions for BatteryStatus */

chargerConnBit = 0, /* 1 if charger is connected */

hiChargeBit = 1, /* 1 if charging at hicharge rate */

chargeOverFlowBit = 2, /* 1 if hicharge counter has overflowed */

batteryDeadBit = 3, /* always 0 */

batteryLowBit = 4, /* 1 if battery is low */

connChangedBit = 5, /* 1 if charger connection has changed */

/* masks for BatteryStatus */

chargerConnMask = 0x1, /* charger is connected */

hiChargeMask = 0x2, /* charging at hicharge rate */

chargeOverFlowMask = 0x4, /* hicharge counter has overflowed */

batteryDeadMask = 0x8, /* battery is dead */

batteryLowMask = 0x10, /* battery is low */

connChangedMask = 0x20, /* connection has changed */

/* sleep procedure selector codes */

sleepRequest = 1, /* sleep request */

sleepDemand = 2, /* sleep demand */

sleepWakeUp = 3, /* wakeup demand */

sleepRevoke = 4 /* sleep-request revocation */

};

/* bits in bitfield returned by PMFeatures */

#define hasWakeupTimer 0 /* 1 = wakeup timer is supported */

#define hasSharedModemPort 1 /* 1 = modem port shared by SCC and */

/* internal modem */

#define hasProcessorCycling 2 /* 1 = processor cycling is supported */

#define mustProcessorCycle 3 /* 1 = processor cycling should not be */

/* turned off */

#define hasReducedSpeed 4 /* 1 = processor can be started up at */

/* reduced speed */

#define dynamicSpeedChange 5 /* 1 = processor speed can be */

/* switched dynamically */

C H A P T E R 6

Power Manager

6-74 Summary of the Power Manager

#define hasSCSIDiskMode 6 /* 1 = SCSI Disk Mode is supported */

#define canGetBatteryTime 7 /* 1 = battery time can be calculated */

#define canWakeupOnRing 8 /* 1 = can wakeup when the modem detects */

/* a ring */

#define hasDimmingSupport 9 /* 1 = has dimming support built into the ROM */

/* bits in bitfield returned by GetIntModemInfo and set by SetIntModemState */

#define hasInternalModem 0 /* 1 = internal modem installed */

#define intModemRingDetect 1 /* 1 = internal modem has detected a ring */

#define intModemOffHook 2 /* 1 = internal modem is off hook */

#define intModemRingWakeEnb 3 /* 1 = wakeup on ring is enabled */

#define extModemSelected 4 /* 1 = external modem selected */

#define modemSetBit 15 /* 1 = set bit, 0=clear bit (SetIntModemState) */

/* bits in BatteryInfo.flags */

#define batteryInstalled 7 /* 1 = battery is currently connected */

#define batteryCharging 6 /* 1 = battery is being charged */

#define chargerConnected 5 /* 1 = charger is connected to the PowerBook */

/* (this does not mean the charger is */

/* plugged in) */

struct SleepQRec {

struct SleepQRec *sleepQLink; /* next queue element */

short sleepQType; /* queue type = 16 */

ProcPtr sleepQProc; /* pointer to sleep procedure */

short sleepQFlags; /* reserved */

};

typedef struct SleepQRec SleepQRec;

typedef SleepQRec *SleepQRecPtr;

/* hard disk spindown notification queue element */

typedef struct HDQueueElement HDQueueElement;

typedef pascal void (*HDSpindownProc)(HDQueueElement *theElement);

struct HDQueueElement {

Ptr hdQLink; /* pointer to next queue element */

short hdQType; /* queue element type (must be HDQType) */

short hdFlags; /* miscellaneous flags */

HDSpindownProc hdProc; /* pointer to routine to call */

long hdUser; /* user-defined private storage */

};

#define HDPwrQType 'HD' /* queue element type */

C H A P T E R 6

Power Manager

Summary of the Power Manager 6-75

/* wakeup time record */

typedef struct WakeupTime {

unsigned long wakeTime; /* wakeup time (same format as current time) */

char wakeEnabled; /* 1 = enable wakeup timer, 0=disable */

} WakeupTime;

/* battery time information (in seconds) */

typedef struct BatteryTimeRec {

unsigned long expectedBatteryTime; /* estimated battery time remaining */

unsigned long inimumBatteryTime; /* minimum battery time remaining */

unsigned long maximumBatteryTime; /* maximum battery time remaining */

unsigned long timeUntilCharged; /* time until battery is fully charged */

} BatteryTimeRec;

Power Manager Functions

Controlling the Idle State

pascal long IdleUpdate (void);

pascal void EnableIdle (void);

pascal void DisableIdle (void);

pascal long GetCPUSpeed (void);

Controlling and Reading the Wakeup Timer

pascal OSErr SetWUTime (long WUTime);

pascal OSErr DisableWUTime (void);

pascal OSErr GetWUTime (long *WUTime, Byte *WUFlag);

Controlling the Sleep Queue

pascal void SleepQInstall (SleepQRecPtr qRecPtr);

pascal void SleepQRemove (SleepQRecPtr qRecPtr);

Controlling Serial Power

pascal void AOn (void);

pascal void AOnIgnoreModem (void);

pascal void BOn (void);

pascal void AOff (void);

pascal void BOff (void);

C H A P T E R 6

Power Manager

6-76 Summary of the Power Manager

Reading the Status of the Internal Modem

pascal OSErr ModemStatus (Byte *Status);

Reading the Status of the Battery and the Battery Charger

pascal OSErr BatteryStatus (Byte *Status, Byte *Power);

Power Manager Dispatch Functions

Determining the Power Manager Features Available

short PMSelectorCount (void);

unsigned long PMFeatures (void);

Controlling the Sleep and Wakeup Timers

unsigned char GetSleepTimeout(void);

void SetSleepTimeout (unsigned char timeout);

void AutoSleepControl (Boolean enableSleep);

Boolean IsAutoSlpControlDisabled(void);

void GetWakeupTimer (WakeupTime *theTime);

void SetWakeupTimer (WakeupTime *theTime);

Controlling the Dimming Timer

unsigned char GetDimmingTimeout(void);

void SetDimmingTimeout (unsigned char timeout);

void DimmingControl (Boolean enableDimming);

Boolean IsDimmingControlDisabled(void);

Controlling the Hard Disk

unsigned char GetHardDiskTimeout(void);

void SetHardDiskTimeout (unsigned char timeout);

Boolean HardDiskPowered (void);

void SpinDownHardDisk (void);

Boolean IsSpindownDisabled (void);

void SetSpindownDisable (Boolean setDisable);

OSErr HardDiskQInstall (HDQueueElement *theElement);

OSErr HardDiskQRemove (HDQueueElement *theElement);

C H A P T E R 6

Power Manager

Summary of the Power Manager 6-77

Getting Information About the Battery

void GetScaledBatteryInfo (short whichBattery, BatteryInfo *theInfo);

short BatteryCount (void);

Fixed GetBatteryVoltage (short whichBattery);

void GetBatteryTimes (short whichBattery, BatteryTimeRec *theTimes);

Controlling the Internal Modem

unsigned long GetIntModemInfo(void);

void SetIntModemState (short theState);

Controlling the Processor

short MaximumProcessorSpeed (void);

short CurrentProcessorSpeed (void);

Boolean FullProcessorSpeed (void);

Boolean SetProcessorSpeed (Boolean fullSpeed);

Boolean IsProcessorCyclingEnabled(void);

void EnableProcessorCycling (Boolean enable);

Getting and Setting the SCSI ID

short GetSCSIDiskModeAddress(void);

void SetSCSIDiskModeAddress (short scsiAddress);

Application-Defined Functions

void MySleepProc (void);

void (*HDSpindownProc)(HDQueueElement *theElement);

Assembly-Language Summary

Data Structures

Sleep Queue Data Structure

0 sleepQLink long pointer to next element in the queue
4 sleepQType word queue type (should be 16)
6 sleepQProc long pointer to a sleep procedure

10 sleepQFlags word reserved

C H A P T E R 6

Power Manager

6-78 Summary of the Power Manager

Hard Disk Queue Structure

Wakeup Time Structure

Battery Information Structure

Battery Time Structure

Trap Macros

Trap Macros Requiring Routine Selectors

_IdleState

_SerialPower

0 hdQLink long pointer to next element in the queue
4 hdQType word queue type (should be HDPwrQType)
6 hdFlags word reserved
8 hdProc long pointer to a hard disk power-down procedure

12 hdUser long user defined

0 wakeTime long wakeup time in seconds since 00:00:00, 1/1/1904
4 wakeEnabled byte 1 = enable wakeup timer, 0 = disable timer

0 flags byte flags
1 warningLevel byte scaled warning level (0—255)
2 reserved byte reserved
3 batteryLevel byte scaled battery level (0—255)

0 expectedBatteryTime long estimated battery time remaining in seconds
4 minimumBatteryTime long minimum battery time remaining
8 maximumBatteryTime long maximum battery time remaining

12 timeUntilCharged long time remaining until battery is fully charged

Selector Routine

0 EnableIdle

Any positive number DisableIdle

Any negative number GetCPUSpeed

Selector Routine

$04 AOn

$05 AOnIgnoreModem

$00 BOn

$84 AOff

$80 BOff

C H A P T E R 6

Power Manager

Summary of the Power Manager 6-79

_PowerMgrDispatch

Selector Routine

$00 PMSelectorCount

$01 PMFeatures

$02 GetSleepTimeout

$03 SetSleepTimeout

$04 GetHardDiskTimeout

$05 SetHardDiskTimeout

$06 HardDiskPowered

$07 SpinDownHardDisk

$08 IsSpindownDisabled

$09 SetSpindownDisable

$0A HardDiskQInstall

$0B HardDiskQRemove

$0C GetScaledBatteryInfo

$0D AutoSleepControl

$0E GetIntModemInfo

$0F SetIntModemState

$10 MaximumProcessorSpeed

$11 CurrentProcessorSpeed

$12 FullProcessorSpeed

$13 SetProcessorSpeed

$14 GetSCSIDiskModeAddress

$15 SetSCSIDiskModeAddress

$16 GetWakeupTimer

$17 SetWakeupTimer

$18 IsProcessorCyclingEnabled

$19 EnableProcessorCycling

$1A BatteryCount

$1B GetBatteryVoltage

$1C GetBatteryTimes

$1D GetDimmingTimeout

$1E SetDimmingTimeout

$1F DimmingControl

$20 IsDimmingControlDisabled

$21 IsAutoSlpControlDisabled

C H A P T E R 6

Power Manager

6-80 Summary of the Power Manager

Result Codes
noErr 0 No error
pmBusyErr –13000 Power Manager IC stuck busy
pmReplyTOErr –13001 Timed out waiting to begin reply handshake
pmSendStartErr –13002 Power Manager IC did not start handshake
pmSendEndErr –13003 During send, Power Manager did not finish handshake
pmRecvStartErr –13004 During receive, Power Manager did not start handshake
pmRecvEndErr –13005 During receive, Power Manager did not finish handshake

Contents 7-1

C H A P T E R 7

Contents

Serial Driver

 Introduction to Serial Communication 7-3

Asynchronous and Synchronous Communication 7-4

Duplex Communication 7-4

Flow Control Methods 7-4

Asynchronous Serial Communication Protocol 7-5

The RS-422 Serial Interface 7-6

About the Serial Driver 7-8

Macintosh Serial Architecture 7-8

Serial Communication Errors 7-10

Using the Serial Driver 7-11

Opening the Serial Driver 7-15

Specifying an Alternate Input Buffer 7-15

Setting the Handshaking Options 7-16

Setting the Baud Rate and Data Format 7-16

Reading and Writing to the Serial Ports 7-16

Synchronous I/O Requests 7-17

Asynchronous I/O Requests 7-17

Closing the Serial Driver 7-17

Synchronous Clocking 7-18

Serial Driver Reference 7-18

Serial Driver Routines 7-18

Low-Level Routines 7-27

Summary of the Serial Driver 7-30

Pascal Summary 7-30

Constants 7-30

Data Types 7-31

Routines 7-32

C Summary 7-32

Constants 7-32

Data Types 7-33

C H A P T E R 7

7-2 Contents

Functions 7-34

Assembly-Language Summary 7-34

Data Structures 7-34

Device Manager Interface 7-35

Result Codes 7-35

C H A P T E R 7

Introduction to Serial Communication 7-3

Serial Driver

This chapter describes how you can use the Serial Driver to transfer data to a device

connected to a Macintosh modem or printer port. The Serial Driver supports

asynchronous serial data communication between applications and serial devices

through these ports.

The Serial Driver provides low-level support for communicating with serial devices

that cannot be accessed through the Communications Toolbox or Printing Manager. For

example, a scientific instrument or a printer that does not support QuickDraw. Before

you decide to use the Serial Driver, you should determine whether it is the appropriate

solution for your communication needs.

The Communications Toolbox is the recommended method for integrating modems

and other telecommunications devices into the Macintosh environment. The

Communications Toolbox provides hardware-independent services and a standard

interface that offers compatibility with all Macintosh models. To find out more about

the Communications Toolbox, see Inside the Macintosh Communications Toolbox.

Likewise, the Printing Manager is the recommended interface for printers and similar

output devices. Using the Printing Manager makes your hardware or software product

compatible with every other device or application that supports this standard interface.

Refer to Inside Macintosh: Imaging With QuickDraw for more information.

To use the Serial Driver, you should understand how to open, close, and communicate

with device drivers using the Device Manager. You can find this information in the

chapter “Device Manager” in this book. For information about the Macintosh serial port

hardware, including circuit diagrams and signal descriptions, see Guide to the Macintosh
Family Hardware, second edition.

This chapter begins with a brief summary of key concepts in serial data communication,

then describes how you can use the Serial Driver to

■ configure a Macintosh serial port

■ specify a data transfer buffer

■ send and receive data through a serial port

■ interpret serial communication errors

 Introduction to Serial Communication

Serial Communication, like any data transfer, requires coordination between the sender

and receiver. For example, when to start the transmission and when to end it, when one

particular bit or byte ends and another begins, when the receiver’s capacity has been

exceeded, and so on. A protocol defines the specific methods of coordinating

transmission between a sender and receiver.

The scope of serial data transmission protocols is large and complex, encompassing

everything from electrical connections to data encoding methods. This section

summarizes the most important protocols and standards related to using the

Serial Driver.

C H A P T E R 7

Serial Driver

7-4 Introduction to Serial Communication

Asynchronous and Synchronous Communication
Serial data transfers depend on accurate timing in order to differentiate bits in the

data stream. This timing can be handled in one of two ways: asynchronously or

synchronously. In asynchronous communication, the scope of the timing is a single byte.

In synchronous communication, the timing scope comprises one or more blocks of bytes.

The terms asynchronous and synchronous are slightly misleading, because both kinds of

communication require synchronization between the sender and receiver.

Asynchronous communication is the prevailing standard in the personal computer

industry, both because it is easier to implement and because it has the unique advantage

that bytes can be sent whenever they are ready, as opposed to waiting for blocks of data

to accumulate.

IMPORTANT

Do not confuse asynchronous communication with asynchronous execution.
Asynchronous communication is a protocol for coordinating serial data
transfers. Asynchronous execution refers to the capability of a device driver
to carry out background processing. The Serial Driver supports both
asynchronous communication and asynchronous execution. ▲

The Serial Driver does not support synchronous communication protocols. However, it

does support synchronous clocking supplied by an external device.

Duplex Communication
Another important characteristic of digital communication is the extent to which

simultaneous two-way transfers of data can be achieved.

In a simple connection, the hardware configuration is such that only one-way

communication is possible (for example, from a computer to a printer that cannot send

status signals back to the computer). In a half-duplex connection, two-way transfer

of data is possible, but only in one direction at a time. That is, the two parties to the

connection take turns transmitting and receiving data. In a full-duplex connection, both

parties can send and receive data simultaneously. The Serial Driver supports full-duplex

operation.

Flow Control Methods
Because a sender and receiver can’t always process data at the same rate, some method

of negotiating when to start and stop transmission is required. The Serial Driver

supports two methods of controlling serial data flow. One method relies on the serial

port hardware, the other is implemented in software.

Hardware flow control uses two of the serial port signal lines to control data

transmission. When the Serial Driver is ready to accept data from an external device,

it asserts the Data Terminal Ready (DTR) signal on pin 1 of the serial port, which the

external device receives through its Clear to Send (CTS) input. Likewise, the Macintosh

receives the external device’s DTR signal through the CTS input on pin 2 of the serial

C H A P T E R 7

Serial Driver

Introduction to Serial Communication 7-5

port. When either the Macintosh or the external device is unable to receive data,

it negates its DTR signal and the sender suspends transmission until the signal is

asserted again.

Flow control can also be handled in software by using an agreed-upon set of characters

as start and stop signals. The Serial Driver supports XON/XOFF flow control, which

typically assigns the ASCII DC1 character (also known as control-Q) as the start signal

and the DC3 character (control-S) as the stop signal, although you can choose different

characters.

Asynchronous Serial Communication Protocol
This section provides an overview of the protocol that governs the lowest level of data

transmission—how serialized bits are sent over a single electrical line. This standard

rests on more than a century of evolution in teleprinter technology.

When a sender is connected to a receiver over an electrical connecting line, there is an

initial state in which communication has not yet begun, called the idle or mark state.

Because older electromechanical devices operate more reliably with current continually

passing through them, the mark state employs a positive voltage level. Changing the

state of the line by shifting the voltage to a negative value is called a space. Once this

change has occurred, the receiver interprets a negative voltage level as a 0 bit, and a

positive voltage level as a 1 bit. These transitions are shown in Figure 7-1.

The change from mark to space is known as the start bit, and this triggers the

synchronization necessary for asynchronous serial transmission. The start bit delineates

the beginning of the transmission unit defined as a character frame. The receiver then

samples the voltage level at periodic intervals known as the bit time, to determine

whether a 0-bit or a 1-bit is present on the line.

Figure 7-1 The format of serialized bits

The bit time is expressed in samples per second, known as baud (in honor of

telecommunication pioneer Emile Baudot). This sampling rate must be agreed upon by

C H A P T E R 7

Serial Driver

7-6 Introduction to Serial Communication

sender and receiver prior to start of transmission in order for a successful transfer to

occur. Common values for the sampling rate are 1200 baud and 2400 baud. In the case

where one sampling interval can signal a single bit, a baud rate of 1200 results in a

transfer rate of 1200 bits per second (bps). Note that because modern protocols can

express more than one bit value within the sampling interval, the baud rate and the data

rate (bps) are not always identical.

Prior to transmission, the sender and receiver agree on a serial data format; that is, how

many bits of data constitute a character frame, and what happens after those bits are

sent. The Serial Driver supports frames of 5, 6, 7, or 8 bits in length. Character frames

of 7 or 8 data bits are commonly used for transmitting ASCII characters.

After the data bits in the frame are sent, the sender can optionally transmit a parity bit

for error-checking. There are various parity schemes, which the sender and receiver

must agree upon prior to transmission. In odd parity, a bit is sent so that the entire frame

always contains an odd number of 1 bits. Conversely, in even parity, the parity bit results

in an even number of 1 bits. No parity means that no additional bit is sent. Other

less-used parity schemes include mark parity, in which the extra bit is always 1,

and space parity, in which its value is always 0. Using parity bits for error checking,

regardless of the scheme, is now considered a rudimentary approach to error detection.

Most communication systems employ more reliable techniques for error detection

and correction.

To signify the end of the character frame, the sender places the line back to the mark

state (positive voltage) for a minimum specified time interval. This interval has one of

several possible values: 1 bit time, 2 bit times, or 1-1/2 bit times. This signal is known as

the stop bit, and returns the transmission line back to idle status.

Electrical lines are always subject to environmental perturbations known as noise. This

noise can cause errors in transmission, by altering voltage levels so that a bit is reversed

(flipped), shortened (dropped), or lengthened (added). When this occurs, the ability of

the receiver to distinguish a character frame may be affected, resulting in a framing error.

The break signal is a special signal that falls outside the character frame. The break signal

occurs when the line is switched from mark (positive voltage) to space (negative voltage)

and held there for longer than a character frame. The break signal resembles an ASCII

NUL character (a string of 0-bits), but exists at a lower level than the ASCII encoding

scheme (which governs the encoding of information within the character frame).

The RS-422 Serial Interface
The electrical characteristics of a serial communication connection are specified by

various interfacing standards, one of which is the RS-422 standard used in all Macintosh

computers. This standard is an enhancement of the RS-232 standard, with electrical

characteristics modified to allow higher transmission rates over longer lines. Although

the electrical voltage differences can be critical at times and should therefore not be

ignored, most of the terminology and concepts remain the same across these two

standards. For purposes of this discussion, it is convenient to treat these two standards

as a single entity.

C H A P T E R 7

Serial Driver

Introduction to Serial Communication 7-7

The specifications of the RS-422 and RS-232 interfacing standards are contained in

documents available from the Electronic Industries Associations (EIA). The specifications

cover several aspects of the connection between data terminal equipment and data

communication equipment. These aspects include the electrical signal characteristics,

the mechanical description of the interface circuits, and the functional description

of the circuits.

The principal interface signals specified by the EIA are described in the following list.

The term data terminal equipment (DTE) is used to describe the initiator or controller of

the serial connection, typically the computer. The term data communication equipment
(DCE) describes the device that is connected to the DTE, such as a modem or printer.

The RS-422/RS-232 signals are described below. For specific information about how

these signals are used in Macintosh computers, see Guide to the Macintosh Family
Hardware, second edition.

■ Data Terminal Ready (DTR). The DTR signal indicates that the DTE (that is, your
computer) is ready to communicate. Deasserting this signal causes the DCE to
suspend transmission. The DTR signal is the most important control line for a
modem, because when it is deasserted, most modem functions cease and the modem
disconnects from the telephone line. In Macintosh computers, the DTR signal is
connected to the CTS signal, discussed next.

■ Request to Send (RTS) and Clear to Send (CTS). The RTS signal was originally intended
to switch a half-duplex modem from transmit to receive mode. The computer would
send an RTS signal to the modem and wait for the modem to respond by asserting
CTS. Since most communications between microcomputers are full-duplex nowadays,
RTS/CTS handshaking is not often used in its original form. Rather, in most
full-duplex modems, the CTS signal is permanently asserted, and the RTS signal is
not used. In Macintosh computers, the CTS signal is connected to the DTR signal.

■ Data Set Ready (DSR). The DSR signal is not used by Macintosh computers and is
usually permanently asserted on microcomputer modems. It was intended to signal
the computer that the modem had made a proper connection to the telephone line
and received an answer tone from the modem on the other end. Modern modems
communicate this information by sending messages to the computer.

■ Transmitted Data (TD). The TD signal carries the serial data stream from the DTE to the
DCE. The EIA specifications dictate that the DTR, RTS, CTS, and DSR signals must be
asserted before data can be transmitted, but this requirement is not strictly followed in
the computer industry.

■ Received Data (RD). The RD signal is the counterpart of the TD signal, and carries data
from the DCE to the DTE. Although the EIA specifies that this signal be in the mark
state when no carrier is present, this requirement is rarely adhered to.

■ Data Carrier Detect (DCD). The DCD signal is not used by Macintosh computers. In
systems that use the signal, it is asserted by the DCE when a carrier signal is received.

■ Ring Indicator (RI). The RI signal is not used by Macintosh computers. In systems that
use the signal, it is asserted by the DCE when the telephone line is ringing.

As you can see, implementations of the RS-422/RS-232 interface do not always

correspond to the specifications set forth by the EIA. This is especially true when the

DCE is not a modem.

C H A P T E R 7

Serial Driver

7-8 About the Serial Driver

About the Serial Driver

The Serial Driver is a part of the Macintosh Operating System that provides low-level

support for asynchronous, interrupt-driven serial data transfers through the modem and

printer ports.

The Serial Driver provides routines that allow you to

■ initialize and terminate communication

■ transmit and receive data

■ examine and change communication settings

You access the Serial Driver routines using standard Device Manager functions such as

open, close, read, write, control, and status. The Serial Driver also includes some

convenience routines that you can call from Pascal or C.

The Serial Driver supports the following communication settings

■ 5, 6, 7, or 8 data bits per character

■ odd, even, or no parity

■ 1, 1.5, or 2 stop bits

■ 300 to 57600 baud transmission rates (depending on hardware capability)

■ hardware or software flow control

The Serial Driver default settings are 9600 baud, 8 data bits per character, no parity, and

2 stop bits. Hardware handshaking is the default under System 7, although some earlier

versions of the Serial Driver defaulted to software handshaking.

Additional control and status functions allow you to

■ determine the version number of the Serial Driver

■ change the input buffer from the default buffer to one that you specify

■ obtain information about transmission errors such as overrun, framing, parity, and
break signals.

■ enable the automatic replacement of characters that have parity errors

■ use an external timing signal for synchronous clocking

Macintosh Serial Architecture
The Serial Driver consists of a set of four Macintosh device drivers and assorted

convenience routines that interface to the Device Manager. Within the overall Macintosh

software architecture, the location and boundaries of the Serial Driver are not sharply

defined. This is because its role as mediator between applications and devices is

supplemented by routines belonging to the Device Manager.

Although the hardware architecture of the serial ports varies, the Serial Driver provides

a universal interface for applications. For example, some Macintosh computers use the

C H A P T E R 7

Serial Driver

About the Serial Driver 7-9

Zilog Z8530 Serial Communications Controller (SCC) microchip, while others use

custom devices. By using the Serial Driver rather than relying on a particular hardware

configuration, your application is compatible with all Macintosh computers.

Figure 7-2 shows the Serial Driver and its relation to the Macintosh serial architecture.

Conceptually, there are three functional layers: the application layer, the system software

layer, and the hardware layer. The Serial Driver, the Device Manager, and the four serial

device drivers all exist within the system software layer. Although you normally access

the Serial Driver through Device Manager routines, the Serial Driver interface includes

a set of convenience routines such as SerStatus that provide a high-level interface

to some functions.

Figure 7-2 The role of the Serial Driver

The four device drivers that control the serial ports differ from other Macintosh device

drivers in that they share common internal routines and data structures, as illustrated

by the horizontal interconnecting arrows in Figure 7-2. Each driver is associated with a

communication channel, either Channel A or Channel B, and each channel is associated

with a serial port. Channel A controls the modem port, and Channel B controls the

printer port. Each channel has both an input driver and an output driver associated with

C H A P T E R 7

Serial Driver

7-10 About the Serial Driver

it. The drivers for the modem port are named .AIn and .AOut, and those for the printer

port are named .BIn and .BOut.

Each input driver receives data from a serial port and transfers it to the application. Each

output driver takes data from the application and sends it out its serial port. Although

the input and output drivers for a port are closely related and share some of the same

routines, each driver has its own device control entry data structure. This means that

read and write operations can be processed simultaneously, which allows the Serial

Driver to support full-duplex communication.

Because the input and output drivers are not completely distinct entities, some functions

(for example, the SerReset function) only need to be invoked on the output driver—

the desired operation occurs on the input side as well. Note, however, that you must

always explicitly open and close both the input and output drivers.

Serial Communication Errors
Data received from the serial port passes through a hardware buffer and then into a

software buffer managed by the input driver for the port. Characters are removed from

the input driver’s buffer each time an application calls the driver’s read routine. Each

input driver’s buffer can initially hold up to 64 characters, but you can specify a larger

buffer using the SerSetBuf function. You need to increase the input buffer size if the

buffer fills up faster than your application can read from it, as indicated by overrun

errors and lost data.

Because the serial hardware in some Macintosh computers relies on processor interrupts

during I/O operations, overrun errors are possible if interrupts are disabled while data

is being received at the serial port. To prevent such errors, the Disk Driver and other

system software components are designed to store any data received by the modem port

while they have interrupts disabled, and then pass this data to the port’s input driver.

Because the system software only monitors the modem port, the printer port is not

recommended for two-way communication at data rates above 300 baud.

Note

AppleTalk is not subject to the same limitations because it is not
interrupt-driven and does not use the Serial Driver. ◆

You can use the SerStatus function to detect the most common serial communication

errors:

■ Hardware overrun errors occur when the serial hardware input buffer overflows,
usually because the input driver doesn’t read it often enough.

■ Software overrun errors occur when an input driver’s buffer overflows, usually
because the application doesn’t issue read calls to the driver often enough.

■ Parity errors occur when the serial hardware detects an incorrect parity bit.

■ Framing errors occur when the serial hardware detects an error in the stop bits.

■ Break errors occur when a break signal is received.

C H A P T E R 7

Serial Driver

Using the Serial Driver 7-11

Overrun, parity, and framing errors are usually handled by requesting that the sender

retransmit the affected data. Break errors are typically initiated by the user and handled

as appropriate for the particular application. When an input driver receives a break

signal, it terminates any pending read requests. You can terminate pending write

requests by sending a KillIO request to the output driver.

Using the Serial Driver

The basic steps in using the Serial Driver are

1. Open the output device driver for the serial port, then open the input device driver.
Always open both drivers, even if you only need one.

2. Optionally, allocate a buffer that is larger than the default 64-byte input buffer, and
then use the SerSetBuf function to select the alternate buffer.

3. Set the handshaking mode.

4. Set the baud rate and data format.

5. Read or write the desired data.

6. When you are finished using the Serial Driver, terminate any pending I/O with the
Device Manager KillIO function.

7. Restore the default input buffer.

8. Close the input and output drivers. Always close the input driver first.

The program shown in Listing 7-1 illustrates these steps. The following sections describe

each step in more detail.

Listing 7-1 Using the Serial Driver

PROGRAM UsingTheSerialDriver;

{An example of the basic steps required to set up and use the Serial Driver.}

{ Note that all function calls demonstrated here are synchronous and thus }

{ should not be called at interrupt time. }

USES

Serial;

VAR

gOutputRefNum: Integer; {output driver reference number}

gInputRefNum: Integer; {input driver reference number}

gInputBufHandle: Handle; {handle to my input buffer}

gOSErr: OSErr; {function results}

C H A P T E R 7

Serial Driver

7-12 Using the Serial Driver

PROCEDURE MyOpenSerialDriver;

{Use the Device Manager OpenDriver function to open the drivers.}

BEGIN

gOSErr := OpenDriver('.AOut', gOutputRefNum); {always open output first}

IF gOSErr = noErr THEN

gOSErr := OpenDriver('.AIn', gInputRefNum); {then open the input driver}

END;

PROCEDURE MyChangeInputBuffer;

{Replace the default input buffer with a larger buffer.}

CONST

 kInputBufSize = 1024; {size of my input buffer in bytes}

BEGIN

gInputBufHandle := NewHandle(kInputBufSize); {allocate storage}

HLock(gInputBufHandle); {lock it}

SerSetBuf(gInputRefNum, gInputBufHandle^, kInputBufSize); {set the buffer}

END;

PROCEDURE MySetHandshakeOptions;

{Set flow control method and other options. Note that you only need to set}

{ the output driver; the settings are reflected on the input side.}

VAR

mySerShkRec: SerShk; {serial handshake record}

BEGIN

WITH mySerShkRec DO

BEGIN

fXOn := 0; {turn off XON/XOFF output flow control}

fCTS := 0; {turn off CTS/DTR flow control}

errs := 0; {clear error mask}

evts := 0; {clear event mask}

fInX := 0; {turn off XON/XOFF input flow control}

fDTR := 0; {turn off DTR input flow control}

END;

{Use control call 14 instead of the SerHShake function}

{ because it allows control over DTR handshaking.}

gOSErr := Control(gOutputRefNum, 14, @mySerShkRec); {csCode = 14}

END;

PROCEDURE MyConfigureThePort;

{Set baud rate and data format. Note that you only need to set the}

{ output driver; the settings are reflected on the input side.}

CONST

kConfigParam = baud2400+data8+noParity+stop10; {create bit field}

C H A P T E R 7

Serial Driver

Using the Serial Driver 7-13

BEGIN

gOSErr := SerReset(gOutputRefNum, kConfigParam); {configure the port}

END;

PROCEDURE MySendMessage;

{Use the Device Manager PBWrite function to send data to the output driver.}

VAR

myMessage: Str255; {the data to send}

myMsgLen: LongInt; {number of bytes to send}

myParamBlock: ParamBlockRec; {parameter block for the PBWrite function}

myPBPtr: ParmBlkPtr; {pointer to the parameter block}

BEGIN

myMessage := 'The Eagle has landed.';

myMsgLen := Length(myMessage); {get the size of the message string}

WITH myParamBlock DO {fill in required fields of the parameter block}

BEGIN

ioRefNum := gOutputRefNum; {write to the output driver}

ioBuffer := @myMessage[1]; {pointer to the data}

ioReqCount := myMsgLen; {number of bytes to send}

ioCompletion := NIL; {no completion routine specified}

ioVRefNum := 0; {not used by the Serial Driver}

ioPosMode := 0; {not used by the Serial Driver}

END;

myPBPtr := @myParamBlock

gOSErr := PBWrite(myPBPtr, FALSE); {synchronous Device Manager request}

END;

PROCEDURE MyReceiveMessage;

{Use the Device Manager PBRead function to read data from the input driver.}

VAR

myBuffer: Str255; {a buffer to receive the data}

myReadCount: LongInt; {number of bytes to read}

myParamBlock: ParamBlockRec; {parameter block for the PBRead function}

myPBPtr: ParmBlkPtr; {pointer to the parameter block}

BEGIN

myBuffer := '';

myReadCount := 0;

gOSErr := SerGetBuf(gInputRefNum, myReadCount); {determine how many bytes}

{ are in the input buffer}

IF myReadCount > 0 THEN

BEGIN

WITH myParamBlock DO {fill in required fields of the parameter block}

BEGIN

C H A P T E R 7

Serial Driver

7-14 Using the Serial Driver

ioRefNum := gInputRefNum; {read from the input driver}

ioBuffer := @myBuffer[1]; {pointer to my data buffer}

ioReqCount := myReadCount; {number of bytes to read}

ioCompletion := NIL; {no completion routine specified}

ioVRefNum := 0; {not used by the Serial Driver}

ioPosMode := 0; {not used by the Serial Driver}

END;

myPBPtr := @myParamBlock;

gOSErr := PBRead(myPBPtr, FALSE);{synchronous Device Manager request}

END;

END;

PROCEDURE MyRestoreInputBuffer;

{Restore the default input buffer.}

BEGIN

SerSetBuf(gInputRefNum, gInputBufHandle^, 0); {0 means restore default}

HUnlock(gInputBufHandle); {release my old buffer}

END;

PROCEDURE MyCloseSerialDriver;

{Use the Device Manager KillIO function to terminate all current and pending}

{ operations, then close the drivers. Note that you only need to call KillIO}

{ on the output driver to terminate both input and output operations.}

BEGIN

gOSErr := KillIO(gOutputRefNum); {terminate all pending I/O operations}

IF gOSErr = noErr THEN

gOSErr := CloseDriver(gInputRefNum); {close the input driver first}

IF gOSErr = noErr THEN

gOSErr := CloseDriver(gOutputRefNum); {then close the output driver}

END;

BEGIN {UsingTheSerialDriver}

MyOpenSerialDriver; {open the output and input drivers}

MyChangeInputBuffer; {replace the default input buffer}

MySetHandshakeOptions; {select flow control method}

MyConfigureThePort; {set baud rate and data format}

MySendMessage; {send some bytes to the output driver}

MyReceiveMessage; {read some bytes from the input driver}

MyRestoreInputBuffer; {restore the default input buffer}

MyCloseSerialDriver; {terminate I/O and close the drivers}

END.

C H A P T E R 7

Serial Driver

Using the Serial Driver 7-15

Opening the Serial Driver
Because the Serial Driver uses separate device drivers for the input and output

functions, you need to open both drivers for two-way communication. On Macintosh

computers with two serial ports, you access the modem port through the .AIn

and .AOut drivers, and the printer port through the .BIn and .BOut drivers.

On computers with a single serial port, such as the Macintosh PowerBook Duo models,

the serial port can be used for either modem or printer connections. There is only one

serial channel on these models, which you access through the .AIn and .AOut drivers.

You open the serial port drivers using the Device Manager OpenDriver or PBOpen

functions. You should always open the output driver first because the Serial Driver

initializes its local variables for both the input and output drivers when you open the

output driver. Opening the output driver also installs interrupt handlers and allocates

and locks buffer storage for both input and output.

When the Serial Driver receives an open request it first verifies that the serial port

is available and correctly configured. If the port is unavailable or not configured, the

Serial Driver returns the result code portInUse or portNotCf. Any other errors, such

as attempting to open the .BIn or .BOut driver on a Macintosh with only one serial

port, return the openErr result code.

When a device driver is opened successfully, the Device Manager returns a driver

reference number, which you use to identify the driver in subsequent I/O requests.

Although the reference numbers of the serial input and output drivers have remained

constant for some time, you should not assume these values are fixed. Because future

versions of the Operating System may assign other reference numbers to these drivers,

your application should always use the reference numbers returned by the Device

Manager.

Because of hardware differences between the serial ports in some Macintosh models, you

should use the printer port for output-only connections to devices such as printers, at a

maximum data rate of 9600 baud. The printer port is not recommended for two-way

communication at data rates above 300 baud.

Note

If AppleTalk is active you cannot open the printer port for serial
communication unless AppleTalk is using an alternate connection, such
as EtherTalk or TokenTalk. ◆

Specifying an Alternate Input Buffer
An optional but recommended practice is to increase the size of the input driver’s buffer.

The default buffer size, 64 bytes, is not always sufficient for sustained transfers at data

rates above 300 baud. A larger buffer will help avoid buffer overruns and consequent

loss of data. You can specify a buffer size of up to 32 KB, but 1 to 2 KB is usually

sufficient.

C H A P T E R 7

Serial Driver

7-16 Using the Serial Driver

You use the SerSetBuf function to specify an alternate input buffer, and also to reset

the default buffer. To ensure compatibility and avoid heap fragmentation you must

reset the default buffer before closing the input driver.

Setting the Handshaking Options
The recommended method of setting handshaking options is to send a control request to

the output driver, with a csCode value of 14. This is equivalent to using the SerHShake

function, but allows you to select DTR handshaking. To specify the desired options, you

pass the following data structure to the driver:

TYPE SerShk =

PACKED RECORD

fXOn: Byte; {XON/XOFF output flow control enabled flag}

fCTS: Byte; {CTS hardware handshake enabled flag}

xOn: Char; {XON character}

xOff: Char; (XOFF character}

errs: Byte; {error mask for input errs that cause abort}

evts: Byte; {mask for status changes that cause events}

fInX: Byte; {XON/XOFF input flow control flag}

fDTR: Byte; {DTR input flow control (for csCode=14 only)}

END;

The Data Terminal Ready (DTR) signal is normally asserted when the Serial Driver is

opened and negated when it is closed. You can change this behavior using one of several

control routines described in the section “Low-Level Routines,” beginning on page 7-27.

The fields of the SerShk data structure are described in the section “Serial Driver

Reference,” beginning on page 7-18.

Setting the Baud Rate and Data Format
When you open the Serial Driver it configures the selected port with default settings of

9600 baud, 8 data bits, no parity bit, and 2 stop bits. You can change these settings using

the SerReset function, described on page 7-19.

Reading and Writing to the Serial Ports
Once you have configured the serial port, you can read and write data using the

Device Manager PBRead and PBWrite functions. These functions can be called either

synchronously or asynchronously, as described in the chapter “Device Manager” in

this book.

C H A P T E R 7

Serial Driver

Using the Serial Driver 7-17

Synchronous I/O Requests

When you make a synchronous request to a device driver, the Device Manager places

your request at the end of the driver’s I/O queue and does not return control to your

application until the request completes. To avoid hanging, your application needs to take

steps to ensure that a request will complete properly before calling the Device Manager.

For example, because the PBRead function requires you to specify the number of bytes

to be read, you need to determine how many bytes are in the input driver’s buffer before

you call PBRead. You can use the SerGetBuf function to determine how many

characters are in the input buffer, as shown in Listing 7-1.

If you try to read more bytes than are available in the input buffer, the driver waits until

it receives enough characters to satisfy your request. If the external serial device does not

send the required number of bytes, there is no way for your application regain control of

the processor or terminate the read request.

Similarly, the PBWrite function will not complete until the specified number of bytes

have been transmitted to the external serial device. If the external device is holding off

transfers through hardware or software handshaking, the Device Manager will never

return control to your application. You can use the SerStatus function, described on

page 7-25, to query the status of the output driver and determine if output is suspended

by handshaking.

For more information about how synchronous I/O requests are processed, see the

chapter “Device Manager” in this book.

Asynchronous I/O Requests

Asynchronous execution allows your application to continue to process user input or

perform other tasks while waiting for serial I/O requests to complete. To take full

advantage of asynchronous operation you should supply a completion routine for the

Device Manager to call when an asynchronous request completes. You should also

implement a timer function to notify your application if a request is not satisfied within

a reasonable period.

See the chapter “Device Manager” in this book for information about how asynchronous

I/O requests are processed.

Closing the Serial Driver
Before closing the Serial Driver you must restore the default input buffer using the

SerSetBuf function. After restoring the default buffer, you can terminate any pending

I/O using the Device Manager KillIO function. Finally, you should close the input and

output drivers using the Device Manager CloseDriver or PBClose functions.

C H A P T E R 7

Serial Driver

7-18 Serial Driver Reference

Synchronous Clocking
Although the Serial Driver does not support synchronous communication protocols, it

does allow you to select an external timing signal for synchronous clocking between the

sender and receiver. You connect the external timing signal to the handshake input

(HSKi) signal on pin 2 of the serial port, and select external clocking by sending a control

request to the output driver with a csCode value of 16 and bit 6 set in the csParam

field. See the section “Low-Level Routines,” beginning on page 7-27, for more

information.

Serial Driver Reference

This section describes the programming interface to the Serial Driver. This interface

consists of the Serial Driver routines and the Device Manager functions for accessing

them. The Serial Driver defines two data structures, the serial handshake record and the

serial status record, which are described along with the routines that use these structures

(the SerHShake and SerStatus functions, respectively).

Serial Driver Routines

You can use the Serial Driver routines to

■ reset and configure the serial port device drivers

■ set the size of the serial input buffer

■ set handshaking options

■ set or clear a break signal

■ determine the number of characters in the input buffer

■ get status information for a serial port

This section describes the control and status routines unique to the Serial Driver, as

well the convenience routines for accessing them. Other Serial Driver functions, such as

reading and writing, are accessed through the Device Manager. For information about

the Device Manager functions for opening, closing, and communicating with device

drivers, see the chapter “Device Manager” in this book.

IMPORTANT

The Serial Driver convenience routines described in this section are
always executed synchronously when called using the high-level
interface. To execute these functions asynchronously you must use
the equivalent low-level Device Manager control or status call
(PBControlAsync or PBStatusAsync). The csCode value for
each routine is listed in the assembly-language information section
of the routine description. ▲

C H A P T E R 7

Serial Driver

Serial Driver Reference 7-19

SerReset

You can use the SerReset function to reset the serial port drivers and configure the port

for a specified transmission rate and character frame.

FUNCTION SerReset (refNum: Integer; serConfig: Integer): OSErr;

refNum The driver reference number of the serial output driver.

serConfig A 16-bit value that specifies the configuration information.

DESCRIPTION

The SerReset function resets the output and input device drivers for the serial port,

and also configures the port according to the format of the serConfig parameter

shown in Figure 7-3.

Figure 7-3 The serConfig parameter format

You can use the following constants to set the values of the bit fields in the serConfig

parameter:

CONST

baud300 = 380; {300 baud}

baud600 = 189; {600 baud}

baud1200 = 94; {1200 baud}

baud1800 = 62; {1800 baud}

baud2400 = 46; {2400 baud}

baud3600 = 30; {3600 baud}

baud4800 = 22; {4800 baud}

baud7200 = 14; {9600 baud}

baud9600 = 10; {3600 baud}

baud14400 = 6; {14400 baud}

baud19200 = 4; {19200 baud}

C H A P T E R 7

Serial Driver

7-20 Serial Driver Reference

baud28800 = 2; {28800 baud}

baud38400 = 1; {38400 baud}

baud57600 = 0; {57600 baud}

stop10 = 16384; {1 stop bit}

stop15 = -32768; {1.5 stop bits}

stop20 = -16384; {2 stop bits}

noParity = 0; {no parity}

oddParity = 4096; {odd parity}

evenParity = 12288; {even parity}

data5 = 0; {5 data bits}

data6 = 2048; {6 data bits}

data7 = 1024; {7 data bits}

data8 = 3072; {8 data bits}

For example, the default setting of 9600 baud, eight data bits, two stop bits, and no parity

bit is equivalent to passing the following value in the serConfig parameter:

baud9600 + data8 + stop20 + noParity.

This value has a binary representation of 1100110000001010 and a hexadecimal

representation of $CC0A.

ASSEMBLY-LANGUAGE INFORMATION

The SerReset function is equivalent to a Device Manager control request with a

csCode value of 8. You pass the serConfig parameter in the csParam field

(csParam[0] = serConfig).

RESULT CODES

SerSetBuf

You can use the SerSetBuf function to increase the size of the serial input buffer, or to

restore the driver’s default buffer.

FUNCTION SerSetBuf (refNum: Integer; serBPtr: Ptr;

serBLen: Integer): OSErr

refNum The driver reference number of the serial input driver.

serBPtr A pointer to the new input buffer.

serBLen The size of the new input buffer, or 0 to restore the default buffer.

noErr 0 No error

C H A P T E R 7

Serial Driver

Serial Driver Reference 7-21

DESCRIPTION

The SerSetBuf function replaces the input buffer for the specified input driver. The

serBPtr parameter points to the buffer, and the serBLen parameter specifies the

number of bytes in the buffer. The buffer must be locked while in use. Before closing the

driver you must restore the default buffer by calling SerSetBuf with the serBLen

parameter equal to 0.

ASSEMBLY-LANGUAGE INFORMATION

The SerSetBuf function is equivalent to a Device Manager control request with a

csCode value of 9. You pass the serBPtr and serBLen parameters in the csParam

field (csParam[0] = serBPtr; csParam[4] = serBLen).

RESULT CODE

SerHShake

You can use the SerHShake function to set software handshaking options and other

control information.

FUNCTION SerHShake (refNum: Integer; flags: SerShk): OSErr;

refNum The driver reference number of the serial output driver.

flags A pointer to a serial handshake record.

DESCRIPTION

The SerHShake function enables flow control, sets flow control characters, and specifies

which conditions will cause input requests to be aborted.

Note that the SerHShake function has been superseded by a newer function that allows

control over DTR handshaking. There is no high-level interface to the new function, you

access it using a Device Manager control request with a csCode value of 14. This

function uses the same SerShk data structure, but adds an additional field for DTR

hardware flow control. See the section “Low-Level Routines,” beginning on page 7-27,

for a description of control routine 14.

The serial handshake record is defined by the SerShk data type:

TYPE SerShk =

PACKED RECORD

fXOn: Byte; {XON/XOFF output flow control flag}

fCTS: Byte; {CTS output flow control flag}

xOn: Char; {XON character}

noErr 0 No error

C H A P T E R 7

Serial Driver

7-22 Serial Driver Reference

xOff: Char; {XOFF character}

errs: Byte; {mask for errors that will terminate input}

evts: Byte; {mask for status changes that cause events}

fInX: Byte; {XON/XOFF input flow control flag}

fDTR: Byte; {DTR input flow control flag (csCode 14 only)}

END;

Field descriptions

fXOn Set this byte to a non-zero value to enable XON/XOFF output flow
control.

fCTS Set this byte to a non-zero value to enable CTS output flow control.

xOn If XON/OFF flow control is enabled, this field specifies the
character to use for XON.

xOff If XON/XOFF flow control is enabled, this field specifies the
character to use for XOFF.

errs Indicates which errors will cause input requests to be terminated,
using the bit mask constants shown below.

evts Indicates whether changes in the CTS signal or the break signal will
cause the Serial Driver to post device driver events, using the bit
mask constants shown below.

fInX Set this byte to a non-zero value to enable XON/XOFF input flow
control.

fDTR Set this byte to a non-zero value to enable DTR input flow control.
This field is only used by control function 14; it is ignored by the
SerHShake function.

You can use the following constants as bit mask values for the errs field, to specify

which errors will cause input requests to be aborted. Because these are bit mask values,

you can sum them to specify more than one error condition.

CONST

parityErr = 16; {parity error}

hwOverrunErr = 32; {hardware overrun error}

framingErr = 64; {framing error}

You can use the following constants as bit mask values for the evts field, to specify

which status changes will cause the Serial Driver to post device driver events. Because

these are bit mask values, you can sum them to specify more than one event.

CONST

ctsEvent = 32; {change in CTS signal}

breakEvent = 128; {change in break signal}

C H A P T E R 7

Serial Driver

Serial Driver Reference 7-23

▲ W A R N I N G

Using device driver events is discouraged because interrupts are
disabled during the event posting process, which may cause serial data
to be lost or other events to be missed. Instead, you should use the
SerStatus function to check the value of the ctsHold or breakErr
flags in the serial status record. ▲

ASSEMBLY-LANGUAGE INFORMATION

The SerHShake function is equivalent to a Device Manager control request with a

csCode value of 10. To specify DTR flow control, use a csCode value of 14 and set the

fDTR flag to a non-zero value. You pass the flags parameter in the csParam field

(csParam[0] = flags).

RESULT CODES

SerSetBrk

You can use the SerSetBrk function to assert a break signal.

FUNCTION SerSetBrk (refNum: Integer): OSErr;

refNum The driver reference number of the serial output driver.

DESCRIPTION

The SerSetBrk function forces the output data line into the space state. To form a break

signal, the line must be left in this state longer than a character frame.

ASSEMBLY-LANGUAGE INFORMATION

The SerSetBrk function is equivalent to a Device Manager control request with a

csCode value of 12.

RESULT CODES

noErr 0 No error

noErr 0 No error

C H A P T E R 7

Serial Driver

7-24 Serial Driver Reference

SerClrBrk

You can use the SerClrBrk function to deassert the break signal.

FUNCTION SerClrBrk (refNum: Integer): OSErr;

refNum The driver reference number of the serial output driver.

DESCRIPTION

The SerClrBrk function restores the output driver to normal operation after asserting a

break signal with the SerSetBrk function.

ASSEMBLY-LANGUAGE INFORMATION

The SerClrBrk function is equivalent to a Device Manager control request with a

csCode value of 11.

RESULT CODES

SerGetBuf

You can use the SerGetBuf function to determine the number of characters available in

the driver’s input buffer.

FUNCTION SerGetBuf (refNum: Integer; VAR count: LongInt): OSErr;

refNum The driver reference number of the serial input driver.

count On exit, the number of characters in the input buffer.

DESCRIPTION

The SerGetBuf function returns, in the count parameter, the number of characters

present in the input buffer.

ASSEMBLY-LANGUAGE INFORMATION

The SerGetBuf function is equivalent to a Device Manager status request with a

csCode value of 2. The count value is returned in csParam as a long word

(csParam[0] = count).

RESULT CODES

noErr 0 No error

noErr 0 No error

C H A P T E R 7

Serial Driver

Serial Driver Reference 7-25

SerStatus

You can use the SerStatus function to obtain status information from the Serial Driver.

FUNCTION SerStatus (refNum: Integer; VAR serSta: SerStaRec):OSErr;

refNum The driver reference number of the serial input or output driver.

serSta A pointer to a serial status record.

DESCRIPTION

The SerStatus function returns status information for the specified input or output

driver. This information includes error conditions, flow control status, and whether there

are read or write operations pending. Because the serial status record is shared, the

SerStatus function returns the same information whether you reference the input or

output driver. The serial status record is defined by the SerStaRec data type:

TYPE SerStaRec =

PACKED RECORD

cumErrs: Byte; {cumulative errors}

xOffSent: Byte; {XOFF sent as input flow control}

rdPend: Byte; {read pending flag}

wrPend: Byte; {write pending flag}

ctsHold: Byte; {CTS flow control hold flag}

xOffHold: Byte; {XOFF flow control hold flag}

END;

Field descriptions

cumErrs A bit field that indicates what errors have occurred since the last
time the SerStatus function was called. You can use the bit mask
constants shown below to test for particular errors. Errors detected
include software overrun, break asserted, parity error, hardware
overrun, and framing error.

xOffSent A bit field that indicates if the driver has initiated input flow control
by sending an XOFF character or negating the DTR signal. You can
use the bit mask constants shown below to test for these conditions.

rdPend This field contains a non-zero value if the driver has a read
operation pending.

wrPend This field contains a non-zero value if the driver has a write
operation pending.

ctsHold This field contains a non-zero value if the driver has suspended
output due to the CTS handshake signal.

xOffHold This field contains a non-zero value if the driver has suspended
output due to receiving an XOFF character.

C H A P T E R 7

Serial Driver

7-26 Serial Driver Reference

You can use the following constants as bit mask values for the cumErrs field, to detect

which errors have occurred since the last time the SerStatus function was called.

Because these are bit mask values, you can sum them to specify more than one error

condition. The remaining bit values in the cumErrs field are reserved.

CONST

swOverrunErr = 1; {software overrun error}

breakErr = 8; {break signal asserted}

parityErr = 16; {parity error}

hwOverrunErr = 32; {hardware overrun error}

framingErr = 64; {framing error}

You can use the following constants as bit mask values to test the xOffSent field for the

specified conditions. The remaining bit values in the xOffSent field are reserved.

CONST

dtrNegated = 64; {DTR signal was negated}

xOffWasSent = 128; {XOFF character was sent}

IMPORTANT

Calling SerStatus resets cumErrs and other fields of the serial status
record, so repeated calls to SerStatus may not return identical
results. ▲

ASSEMBLY-LANGUAGE INFORMATION

The SerStatus function is equivalent to a Device Manager status request with a

csCode value of 8; the serial status record is returned in the first 6 bytes of the csParam

field (csParam[0] = SerStaRec).

You can execute the status request immediately, bypassing the I/O queue, by setting

bit 9 of the trap word. You can set this bit by appending the word IMMED as the second

argument to the trap macro. For example:

_Status, IMMED

This technique is recommended when you need to determine the current status of a port

before issuing a subsequent I/O request.

RESULT CODES

noErr 0 No error

C H A P T E R 7

Serial Driver

Serial Driver Reference 7-27

Low-Level Routines

This section describes the low-level Serial Driver routines that you can call using the

Device Manager control and status functions. These calls should be made to the output

device driver—they affect the input driver as well.

Serial Driver Version [status code 9]

csCode = 9 csParam = word

This status routine returns the version number of the Serial Driver in the csParam field.

The version number is an integer value.

Set Baud Rate [control code 13]

csCode = 13 csParam = word

This control routine provides an additional method (besides the SerReset function) of

setting the baud rate. You specify the baud rate value as an integer in the csParam field

(for example, 9600). The Serial Driver attempts to set the serial port to the specified baud

rate, or the closest baud rate supported by the hardware. The actual baud rate selected is

returned in the csParam field.

Set Handshaking Options [control code 14]

csCode = 14 csParam = SerShk record

This control routine is identical to the SerHShake function (control code 10) with the

additional specification of the fDTR flag in the eighth byte of the SerShk record.

You enable DTR input flow control by setting this flag to a non-zero value. See the

description of the SerHShake function on page 7-21 for information about the other

fields of the SerShk record.

Set Miscellaneous Options [control code 16]

csCode = 16 csParam = byte

This control routine sets miscellaneous control options. Bits 0-5 are reserved and should

be set to 0 for compatibility with future options. Bit 6 enables external clocking through

the CTS handshake line (the HSKi signal on pin 2 of the serial port). Set bit 6 to 1 to allow

an external device to drive the serial data clock. Set bit 6 to 0 to restore internal clocking.

Bit 7 controls the state of the DTR signal when the driver is closed. When bit 7 is 0 (the

default) the DTR signal is automatically negated when the driver closes. Set bit 7 to 1 if

you want the DTR signal to be left unchanged when the driver is closed. This can be

used to prevent a modem from hanging up or a printer from going offline when the

driver closes.

Assert DTR [control code 17]

csCode = 17

This control routine asserts the DTR signal.

C H A P T E R 7

Serial Driver

7-28 Serial Driver Reference

Negate DTR [control code 18]

csCode = 18

This control routine negates the DTR signal.

Simple Parity Error Replacement [control code 19]

csCode = 19 csParam = char

This control routine enables simple parity error replacement, in which incoming

characters with parity errors are replaced by the ASCII character specified in csParam

(for example, $FF). If a valid incoming character matches the replacement character, the

most significant bit of the character is cleared. Therefore, if it is possible for your

replacement character to appear in the data stream, you should use control code 20

instead. Set csParam to 0 to disable parity error replacement.

Extended Parity Error Replacement [control code 20]

csCode = 20 csParam[0] = char csParam[1] = char

This control routine enables extended parity error replacement. Incoming characters

with parity errors are replaced by the ASCII character specified in csParam[0]. The

difference between this routine and the simple version (control code 19) is that if a valid

incoming character matches the parity replacement character, it is replaced by the

alternate character specified in csParam[1]. Set csParam[0] to 0 to disable parity

error replacement.

Note

The ASCII NUL character ($00) can be used as the alternate character
but not as the parity replacement. ◆

Set XOFF State [control code 21]

csCode = 21

This control routine unconditionally sets the xOffHold flag, which is equivalent to

receiving an XOFF character. If software handshaking is enabled, data transmission is

halted until an XON character is received, or until you clear the XOFF state using control

code 22.

Clear XOFF State [control code 22]

csCode = 22

This control routine unconditionally clears the xOffHold flag, which is equivalent

to receiving an XON character. If software handshaking is enabled, data transmission

is resumed.

C H A P T E R 7

Serial Driver

Serial Driver Reference 7-29

Send XON Conditional [control code 23]

csCode = 23

This control routine sends an XON character for input flow control if the last input flow

control character sent was XOFF.

Send XON Unconditional [control code 24]

csCode = 24

This control routine unconditionally sends an XON character for input flow control,

regardless of the current state of input flow control.

Send XOFF Conditional [control code 25]

csCode = 25

This control routine sends an XOFF character for input flow control if the last input flow

control character sent was XON.

Send XOFF Unconditional [control code 26]

csCode = 26

This control routine unconditionally sends an XOFF character for input flow control,

regardless of the current state of input flow control.

Serial Hardware Reset [control code 27]

csCode = 27

This control routine resets the serial port hardware for a channel. Because this routine

may leave the serial port in an unknown state, you must call the SerReset function

before you use the port.

C H A P T E R 7

Serial Driver

7-30 Summary of the Serial Driver

Summary of the Serial Driver

Pascal Summary

Constants

CONST

{values for the transmission rate in the SerConfig parameter}

baud300 = 380; {300 baud}

baud600 = 189; {600 baud}

baud1200 = 94; {1200 baud}

baud1800 = 62; {1800 baud}

baud2400 = 46; {2400 baud}

baud3600 = 30; {3600 baud}

baud4800 = 22; {4800 baud}

baud7200 = 14; {7200 baud}

baud9600 = 10; {9600 baud}

baud14400 = 6; {14400 baud}

baud19200 = 4; {19200 baud}

baud28800 = 2; {28800 baud}

baud38400 = 1; {38400 baud}

baud57600 = 0; {57600 baud}

{values for the number of stop bits in the SerConfig parameter}

stop10 = 16384; {1 stop bit}

stop15 = -32768; {1.5 stop bits}

stop20 = -16384; {2 stop bits}

{values for the parity in the SerConfig parameter}

noParity = 0; {no parity}

oddParity = 4096; {odd parity}

evenParity = 12288; {even parity}

{values for the number of data bits in the SerConfig parameter}

data5 = 0; {5 data bits}

data6 = 2048; {6 data bits}

data7 = 1024; {7 data bits}

data8 = 3072; {8 data bits}

C H A P T E R 7

Serial Driver

Summary of the Serial Driver 7-31

{bit mask values to test for indicated errors}

swOverrunErr = 1; {software overrun error}

breakErr = 8; {break occurred}

parityErr = 16; {parity error}

hwOverrunErr = 32; {hardware overrun error}

framingErr = 64; {framing error}

{bit mask values for the evts field in the SerShk record}

ctsEvent = 32; {CTS change}

breakEvent = 128; {break status change}

{bit mask value for the xOffHold field of the SerStaRec record}

dtrNegated = 64; {DTR signal was negated}

xOffWasSent = 128; {XOFF character was sent}

Data Types

TYPE

SerShk =

PACKED RECORD

fXOn: Byte; {XON/XOFF output flow control flag}

fCTS: Byte; {CTS output flow control flag}

xOn: Char; {XON character}

xOff: Char; {XOFF character}

errs: Byte; {mask for errors that will terminate input}

evts: Byte; {mask for status changes that cause events}

fInX: Byte; {XON/XOFF input flow control flag}

fDTR: Byte; {DTR input flow control flag (csCode 14 only)}

END;

SerStaRec =

PACKED RECORD

cumErrs: Byte; {cumulative errors}

xOffSent: Byte; {XOFF sent as input flow control}

rdPend: Byte; {read pending flag}

wrPend: Byte; {write pending flag}

ctsHold: Byte; {CTS flow control hold flag}

xOffHold: Byte; {XOFF flow control hold flag}

END;

C H A P T E R 7

Serial Driver

7-32 Summary of the Serial Driver

Routines

FUNCTION SerReset (refNum: Integer; serConfig: Integer): OSErr;

FUNCTION SerSetBuf (refNum: Integer; serBPtr: Ptr;
serBLen: Integer): OSErr;

FUNCTION SerHShake (refNum: Integer; flags: SerShk): OSErr;

FUNCTION SerSetBrk (refNum: Integer): OSErr;

FUNCTION SerClrBrk (refNum: Integer): OSErr;

FUNCTION SerGetBuf (refNum: Integer; VAR count: LongInt): OSErr;

FUNCTION SerStatus (refNum: Integer; VAR serSta: SerStaRec): OSErr;

C Summary

Constants

enum {

/*values for the transmission rate in the SerConfig parameter*/

baud300 = 380, /*300 baud*/

baud600 = 189, /*600 baud*/

baud1200 = 94, /*1200 baud*/

baud1800 = 62, /*1800 baud*/

baud2400 = 46, /*2400 baud*/

baud3600 = 30, /*3600 baud*/

baud4800 = 22, /*4800 baud*/

baud7200 = 14, /*7200 baud*/

baud9600 = 10, /*9600 baud*/

baud14400 = 6, /*14400 baud*/

baud19200 = 4, /*19200 baud*/

baud28800 = 2, /*28800 baud*/

baud38400 = 1, /*38400 baud*/

baud57600 = 0, /*57600 baud*/

/*values for the number of stop bits in the SerConfig parameter*/

stop10 = 16384, /*1 stop bit*/

stop15 = -32768, /*1.5 stop bits*/

stop20 = -16384, /*2 stop bits*/

/*values for the parity in the SerConfig parameter*/

noParity = 0, /*no parity*/

oddParity = 4096, /*odd parity*/

evenParity = 12288, /*even parity*/

C H A P T E R 7

Serial Driver

Summary of the Serial Driver 7-33

/*values for the number of data bits in the SerConfig parameter*/

data5 = 0, /*5 data bits*/

data6 = 2048, /*6 data bits*/

data7 = 1024, /*7 data bits*/

data8 = 3072, /*8 data bits*/

/*bit mask values to test for indicated errors*/

swOverrunErr = 1, /*software overrun error*/

breakErr = 8, /*break occurred*/

parityErr = 16, /*parity error*/

hwOverrunErr = 32, /*hardware overrun error*/

framingErr = 64, /*framing error*/

/*bit mask values for the evts field in the SerShk record*/

ctsEvent = 32, /*CTS change*/

breakEvent = 128, /*break status change*/

/*bit mask value for the xOffHold field of the SerStaRec record*/

dtrNegated = 64, /*DTR signal was negated*/

xOffWasSent = 128 /*XOFF character was sent*/

};

Data Types

struct SerShk {

char fXOn; /*XON/XOFF output flow control flag*/

char fCTS; /*CTS output flow control flag*/

unsigned char xOn; /*XON character*/

unsigned char xOff; /*XOFF character*/

char errs; /*mask for errors that will terminate input*/

char evts; /*mask for status changes that cause events*/

char fInX; /*XON/XOFF input flow control flag*/

char fDTR; /*DTR input flow control flag (csCode 14 only)*/

};

typedef struct SerShk SerShk;

struct SerStaRec {

char cumErrs; /*cumulative errors*/

char xOffSent; /*XOFF sent as input flow control*/

char rdPend; /*read pending flag*/

char wrPend; /*write pending flag*/

char ctsHold; /*CTS flow control hold flag*/

C H A P T E R 7

Serial Driver

7-34 Summary of the Serial Driver

char xOffHold; /*XOFF flow control hold flag*/

};

typedef struct SerStaRec SerStaRec;

Functions

pascal OSErr SerReset (short refNum, short serConfig);

pascal OSErr SerSetBuf (short refNum, Ptr serBPtr, short serBLen);

pascal OSErr SerHShake (short refNum, const SerShk *flags);

pascal OSErr SerSetBrk (short refNum);

pascal OSErr SerClrBrk (short refNum);

pascal OSErr SerGetBuf (short refNum, long *count);

pascal OSErr SerStatus (short refNum, SerStaRec *serSta);

Assembly-Language Summary

Data Structures

Serial Handshake Record

Serial Status Record

0 fXOn byte XON/XOFF output flow control flag
1 fCTS byte CTS output flow control flag
2 xOn byte XOn character
3 xOff byte XOff character
4 errs byte mask for errors that will terminate input
5 evts byte mask for status changes that cause events
6 fInX byte XON/XOFF input flow control flag
7 fDTR byte DTR input flow control flag (csCode 14 only)

0 cumErrs byte cumulative errors
1 xOffSent byte XOFF sent as input flow control
2 rdPend byte read pending flag
3 wrPend byte write pending flag
4 ctsHold byte CTS flow control hold flag
5 xOffHold byte XOFF flow control hold flag

C H A P T E R 7

Serial Driver

Summary of the Serial Driver 7-35

Device Manager Interface

Status Routines

Control Routines

Result Codes

Code Parameters Function

2 long Return the number of bytes currently in the input data buffer (SerGetBuf).

8 6 bytes Return status information (SerStatus).

9 word Return driver version number.

Code Parameters Function

8 word Set data rate and character frame (SerReset).

9 long, word Specify either a new input buffer or the default buffer (SerSetBuf).

10 8 bytes Set software handshaking and other control information (SerHShake).

11 Deassert the break signal (SerClrBrk).

12 Assert the break signal (SerSetBrk).

13 word Set baud rate.

14 8 bytes Equivalent to control code 10, plus DTR handshaking.

16 byte Set miscellaneous control options.

17 Assert DTR.

18 Negate DTR.

19 byte Simple parity error replacement.

20 2 bytes Extended parity error replacement.

21 Set XOFF state.

22 Clear XOFF state.

23 Send XON for input flow control if XOFF was sent last.

24 Unconditionally send XON for input flow control.

25 Send XOFF for input flow control if XON was sent last.

26 Unconditionally send XOFF for input flow control.

27 Reset serial hardware channel.

noErr 0 No error
openErr –23 Unable to open device driver
portInUse –97 Port is in use
portNotCf –98 Port is not configured

GL-1

active ADB device The last ADB device to
have sent data to the ADB Manager.

activity timer A timer maintained by the Power
Manager that measures the time that has elapsed
since the last relevant system activity.

ADB See Apple Desktop Bus.

ADB command A 1-byte value sent by the
ADB Manager to devices on the ADB. The ADB
command encodes the register the command
refers to and the desired action the target device
should perform.

ADB device Any input device connected to the
ADB that conforms to requirements described in
the Apple Desktop Bus Specification.

ADB device handler ID An 8-bit value that
further identifies a specific ADB device type
(such as the Apple Extended Keyboard) or its
mode of operation (such as whether the keyboard
differentiates between the right and left shift keys).

ADB device register One of four locations,
identified as registers 0 through 3, that an ADB
device uses to store data.

ADB device table A structure, located in the
system heap, that contains information about all
ADB devices attached to the computer.

ADB device table entry The part of the ADB
device table that specifies for an ADB device its
device handler ID, its default ADB address, its
current ADB address, the address of its device
handler, and the address of the area in RAM
used for storage by the handler.

ADB Manager The part of the Macintosh
Operating System that allows you to communicate
with and get information about hardware devices
attached to the Apple Desktop Bus (ADB).

ADB transaction A communication between
the computer and an ADB device, consisting of
a command sent by the computer, followed by a
data packet sent either by the computer or the
device.

address collision When more than one ADB
device responds to commands sent to a particular
address. See also address resolution.

address mapping The assignment of portions
of the address space of the computer to specific
devices.

address resolution When the ADB Manager
reassigns addresses for ADB devices until they
are all unique. See also default ADB device
address.

address space A range of accessible memory.
See also address mapping.

A5 world An area of memory in an application’s
partition that contains the QuickDraw global
variables, the application global variables, the
application parameters, and the jump table—all
of which are accessed through the A5 register.

Apple Desktop Bus (ADB) A low-speed serial
bus that connects input hardware devices to
Macintosh computers and other equipment.

application program interface (API) The set of
routines that applications and device drivers use
to access services provided by system software.

arbitration phase The phase in which an
initiator attempts to gain control of the SCSI bus.

asynchronous communication A method of
data transmission in which the receiving and
sending devices don’t share a common timer
and no timing data is transmitted.

asynchronous device driver A device driver
that can begin processing a request and return
control to the Device Manager before the request
is complete. This type of driver typically uses
hardware interrupts and callback routines to
carry out background processing.

autosense A feature of SCSI Manager 4.3
that automatically sends a REQUEST SENSE
command in response to a CHECK CONDITION
status, and retrieves the sense data.

Glossary

G L O S S A R Y

GL-2

baud A measure of the bit sampling rate of a
serial communication device.

bit-bucketing The practice of throwing away
excess data when a SCSI target tries to supply
more data than the initiator expects. Also includes
sending meaningless data when a target requests
more data than the initiator is prepared to supply.
Both of these situations are abnormal and cause
the SCSI Manager to return an error result code.

blind transfer A Macintosh-specific method of
transferring data between memory and the SCSI
controller hardware, in which the SCSI Manager
assumes that the SCSI controller (and the target
device) can keep up with a specified transfer rate.
Compare polled transfer.

block device A device that reads or writes
blocks of bytes as a group. Disk drives, for
example, can read and write blocks of 512 bytes
or more. See also character device.

board sResource A unique sResource in an
expansion card’s declaration ROM that describes
the card so that the Slot Manager can identify it.
An expansion card can have only one board
sResource. The board sResource entries include
the card’s identification number, board flags,
vendor information, initialization code, and so on.

bus A path along which information is
transmitted electronically within a computer.
Buses connect computer devices, such as
processors, expansion cards, and memory.

bus free phase The phase in which no device is
actively using the SCSI bus.

bus interface The electronics connecting the
processor bus to the NuBus expansion interface
in Macintosh computers.

byte lane Any of 4 bytes that make up the
32-bit NuBus data width. NuBus expansion cards
may use any or all of the byte lanes to
communicate with each other or with the
Macintosh computer.

card See expansion card.

character device A device that reads or writes a
stream of characters, or bytes, one at a time. The
keyboard and the serial ports are examples of
character devices. See also block device.

close routine A device driver routine that
deactivates the driver and usually deallocates
memory. All device drivers must implement a
close routine.

collision detection The ability of an ADB
device to detect that another ADB device is
transmitting data at the same time.

command descriptor block (CDB) A data
structure defined by the SCSI specification for
communicating commands from an initiator to
a target.

command phase The phase in which a SCSI
target requests a command from the initiator.

configuration ROM See declaration ROM.

control routine A device driver routine used
to send control information. The function of the
control routine is driver-specific. This routine is
optional and need not be implemented.

data communication equipment (DCE) Any
device connected to the serial port, such as a
modem or printer.

data phase The phase in which data transfer
takes place between a SCSI initiator and target.

data terminal equipment (DTE) The initiator
or controller of a serial data connection, typically
the computer.

declaration ROM A ROM on a NuBus
expansion card that contains information
identifying the card and its functions, and that
may also contain code or other data. Proper
configuration of the declaration ROM firmware
will allow the card to communicate with the
computer through the Slot Manager routines.

default ADB device address A 4-bit bus
address between $0 and $E that uniquely identifies
the general type of ADB device (such as a mouse
or keyboard).

device A physical part of the Macintosh, or a
piece of external equipment, that can exchange
information with applications or with the
Macintosh Operating System. Input devices
transfer information into the Macintosh, while
output devices receive information from the
Macintosh. An I/O device can transfer
information in either direction.

G L O S S A R Y

GL-3

device control entry (DCE) A Device Manager
data structure containing information about a
device driver.

device driver A program that controls devices.

device handler A low-level routine that
communicates with a particular ADB device.

Device Manager The part of the Macintosh
Operating System that controls the exchange
of information between applications and device
drivers.

device package A type of code resource that
responds to Chooser messages. The device
package is responsible for communicating the
user’s choices to a device driver.

driver reference number A number that
identifies each installed device driver. It is the
one’s complement of the driver’s unit number.

expansion card A removable printed circuit
card that plugs into a connector (slot) in the
computer’s expansion interface. Macintosh
computers can use expansion cards designed
for the NuBus expansion interface or for the
processor-direct slot expansion interface.
Expansion cards are also referred to as slot cards
or simply as cards.

firmware Programs or data permanently stored
in ROM.

Flush An ADB command to a device that forces
it to remove any existing user-input data from
the appropriate device register. See also Listen,
SendReset, and Talk.

format block An element in the firmware
structure of a declaration ROM that provides a
standard entry point for other elements in the
structure. The format block allows the Slot
Manager to find the declaration ROM and
validate it.

functional sResource An sResource in an
expansion card’s declaration ROM that describes a
specific function of the card. For example, a video
card may have separate functional sResources for
all of the display modes it supports.

hicharge counter A counter in portable
Macintosh computers that measures the time
required to raise the battery voltage to 7.2 volts.

host bus adapter (HBA) The hardware that
controls a SCSI bus.

idle state A power conservation state of
portable Macintosh computers in which the
processor slows from its normal clock speed to a
1 MHz clock speed. Also called the rest state. See
also power-saver state and sleep state.

initiator device A device capable of initiating
SCSI transactions.

interrupt service routine (ISR) A routine that
processes interrupts generated by the processor,
expansion cards, or external devices.

Listen An ADB command to a device that
instructs it to prepare to receive additional data.
See also Flush, SendReset, and Talk.

logical block An abstract location on a storage
device, defined by software and independent of
the physical characteristics of the device. See also
physical block.

message phase The phase in which SCSI
devices exchange message information.

minor slot space An Apple-specific term that
describes the first megabyte of the 16 MB
standard slot space.

NuBus expansion interface A 32-bit-wide
synchronous, multislot expansion bus used for
interfacing expansion cards to some Macintosh
computers. See also bus interface, NuBus slot.

NuBus slot A connector on the NuBus
expansion interface in a Macintosh computer,
into which an expansion card can be installed.

open routine A device driver routine that
allocates memory and initializes the driver’s data
structures. It may also initialize a hardware
device or perform any other tasks necessary to
make the driver operational. All drivers must
implement an open routine.

partition A series of contiguous logical blocks
on a storage device that have been allocated to a
particular operating system, file system, or
device driver.

physical block A fixed location on a storage
device that is defined by the physical
characteristics of the device. See also logical
block.

G L O S S A R Y

GL-4

polled transfer A Macintosh-specific method of
transferring data between memory and the SCSI
controller hardware, in which the SCSI Manager
senses the state of the internal registers of the
SCSI controller to determine when the controller
is ready to transfer another byte. Compare blind
transfer.

polling When the ADB Manager repeatedly
sends each ADB device a Talk Register 0
command to see if it has new data to return.

portable Macintosh computer Any Macintosh
computer that can be battery powered.

power cycling A method of entering the idle
state in which power to the CPU is cycled on and
off for increasing intervals, until some relevant
system activity is detected.

Power Manager The part of the Macintosh
Operating System that controls power to the
internal hardware devices of battery-powered
Macintosh computers. The Power Manager also
provides some service unique to portable
Macintosh computers—such as reading the
current CPU clock speed—that are not directly
related to power control.

Power Manager IC The 50753 microprocessor
in the Macintosh Portable computer and some
other portable Macintosh computers. The Power
Manager IC (along with other circuits) controls
power to the various subsystems of the
computer. The power control functions may be
handled by different hardware on other portable
Macintosh computers.

power-saver state A power conservation state
of portable Macintosh computers in which the
processor slows from its normal clock speed to
some slower clock speed. On the PowerBook 180
computer, for example, the CPU clock speed can
be reduced from 33 MHz to 16 MHz in order to
conserve power. See also idle state and sleep
state.

prime routine A device driver routine that
implements the input and output functions of the
driver. This routine is optional and need not be
implemented.

processor-direct slot (PDS) An Apple-specific
expansion interface architecture included in some
Macintosh computers. It uses a single connector
that allows an expansion card direct access to all
of the microprocessor signals.

protocol A standard set of rules for coordinating
transmission between a sender and receiver.

reentrant device driver A device driver that is
capable of handling multiple requests
simultaneously.

reselection phase An optional phase in which a
SCSI target device reconnects to the initiator.

rest state See idle state.

scatter/gather list A SCSI Manager 4.3 data type
consisting of one or more elements, each of which
describes the location and size of one data buffer.

SCSI (Small Computer System Interface) An
industry standard parallel data bus that provides
a consistent method of connecting computers and
peripheral devices.

SCSI bus A bus that conforms to the physical
and electrical specifications of the SCSI standard.

SCSI command An instruction from an
initiator to a target to conduct an operation, such
as reading or writing a block of data. See also
command descriptor block, command phase.

SCSI device A device connected to the SCSI
bus, either a peripheral device or a computer.

SCSI ID An integer value from 0 to 7 that
uniquely identifies a device during SCSI
transactions.

SCSI interface module (SIM) A software module
between the transport (XPT) and the host bus
adapter (HBA) in SCSI Manager 4.3. The SIM
processes and executes SCSI requests, and provides
a hardware-independent interface to the HBA.

SCSI Manager The part of the Macintosh
Operating System that controls the exchange of
information between a Macintosh computer and
peripheral devices connected through the Small
Computer System Interface (SCSI).

SCSI message Information exchanged by the
target and initiator at the completion of a SCSI
transaction. See also message phase.

G L O S S A R Y

GL-5

selection phase The phase in which a SCSI
initiator selects the target device for a transaction.

SendReset An ADB command that instructs all
ADB devices to reset themselves to their startup
states. See also Flush, Listen, and Talk.

Serial Driver The part of the Macintosh
Operating System that provides low-level
support for asynchronous, interrupt-driven serial
data transfers through the modem and printer
ports.

service request signal (SRQ) A signal sent by
an ADB device to inform the ADB Manager that
it has data to send.

sleep demand A message from the Power
Manager that informs a sleep procedure that the
Power Manager is about to put the computer into
the sleep state.

sleep procedure A procedure that the Power
Manager calls before it puts a portable Macintosh
computer into the sleep state or returns it to the
operating state. Sleep procedures are maintained
in the sleep queue.

sleep procedure selector code An integer
passed (in register D0) to a sleep procedure that
specifies whether the procedure is being called
with a sleep request, a sleep demand, a wakeup
demand, or a sleep-request revocation.

sleep queue An operating-system queue that
contains pointers to all currently installed sleep
procedures.

sleep queue record A data structure that
contains information about a sleep procedure.
Defined by the SleepQRec data type.

sleep request A message from the Power
Manager that informs a sleep procedure that the
Power Manager would like to put the computer
into the sleep state. The sleep procedure has the
option of denying this request.

sleep-request revocation A message from the
Power Manager that informs a sleep procedure
that the Power Manager has canceled a sleep
request. The procedure can then reverse any
changes it made in response to the sleep request.

sleep state A power conservation state of
portable Macintosh computers in which the
Power Manager and the various device drivers
shut off power or remove clocks from the
computer’s various subsystems, including the
CPU, RAM, ROM, and I/O ports. See also idle
state and power-saver state.

slot 1. A connector attached to the processor bus
or the NuBus expansion interface. 2. A region in
address space allocated to a physical slot.

slot ID The hexadecimal digit corresponding to
each card slot. For Macintosh computers with the
NuBus expansion interface, each slot ID number
is established by the main logic board of the
computer and communicated to the card through
the /IDx signals.

slot information record A Slot Manager data
structure containing information about a slot. If
a card is installed, the slot information record
contains the card’s initialization status, a pointer
to the sResource directory, and other information.

Slot Manager The set of Macintosh Operating
System routines that communicate with an
expansion card’s declaration ROM and allow
applications to access expansion cards.

slot resource See sResource.

slot resource table (SRT) A private Slot
Manager data structure that lists all of the
sResource data structures currently available to
the system. Applications and device drivers use
Slot Manager routines to get information from
the slot resource table.

slot space The address space assigned to
expansion cards in Macintosh computers. See
also standard slot space, super slot space.

sResource A data structure in the firmware of
an expansion card’s declaration ROM that
defines a function or capability of the card. An
sResource is also called a slot resource; the small s
indicates a slot resource as opposed to the type of
resource associated with the Resource Manager.
There is one board sResource that identifies the
card, and a functional sResource for each
function a card can perform.

G L O S S A R Y

GL-6

sResource directory An element in a card’s
declaration ROM that lists all the sResources and
provides an offset to each one.

sResource ID A field in the sResource directory
that identifies the type of sResource contained in
or pointed to by the offset field.

SRQ See service request signal.

standard device drivers The device drivers built
into the Macintosh ROM or Operating System.

standard slot space The upper one-sixteenth of
the total address space. These addresses are in
the form $Fsxx xxxx, where s is a slot ID and x is
any hexadecimal digit. This address space is
geographically divided among the NuBus slots
according to slot ID number. Compare super slot
space.

status phase The phase in which a SCSI target
sends 1 byte of status information to the initiator.

status routine A device driver routine used to
return status information from a driver. The
function of the status routine is driver-specific.
This routine is optional and need not be
implemented.

super slot space The portion of memory in the
range $9000 0000 through $EFFF FFFF. NuBus
addresses of the form $sxxx xxxx address the
super slot space that belongs to the card in slot s,
where s is a slot ID and x is any hexadecimal
digit. Compare standard slot space.

synchronous device driver A device driver that
completes each request before returning control to
the Device Manager. This type of device driver has
no provision for background processing.

Talk An ADB command that requests a specific
device to send the contents of a specific device
register across the bus. See also Flush, Listen,
and SendReset.

target device A SCSI device that responds to
commands from an initiator.

TIB instructions Commands that control the
SCSI Manager data transfer routines.

TIB pseudoprogram A sequence of TIB
instructions.

transfer instruction block (TIB) A data structure
used to pass instructions to the SCSI Manager data
transfer routines.

transport (XPT) The part of SCSI Manager 4.3
that accepts I/O requests and passes them to the
appropriate SCSI interface module (SIM).

unit number The position of a device driver’s
entry in the unit table. It is the one’s complement
of the driver reference number.

unit table A Device Manager data structure
containing an array of handles to the device
control entries of all installed device drivers.

virtual bus The grouping of SCSI devices on
different buses into a single logical bus for
compatibility with software that cannot address
multiple buses.

virtual ID The SCSI ID of a device on the
virtual bus.

wakeup demand A message from the Power
Manager that informs a sleep procedure that it
must reverse whatever steps it followed when it
prepared for the sleep state.

wakeup timer A timer that the Power Manager
uses to return a portable Macintosh computer
from the sleep state to the operating state at a
specific time.

IN-1

Index

A

A5 world
accessing in SCSI completion routines 4-38, 4-59

activity timer
controlling 6-28 to 6-30
defined 6-7
resetting 6-15, 6-29
types of activity 6-8

ADB (Apple Desktop Bus) 5-3 to 5-51
ADB commands

described 5-7 to 5-9
format of 5-9
Listen Register 3 5-12, 5-16
sending directly to devices 5-24 to 5-29
Talk Register 0 5-7, 5-10, 5-17, 5-18, 5-19, 5-20, 5-36
Talk Register 3 5-14, 5-15, 5-16, 5-17, 5-31

ADB data block 5-37
ADBDataBlock data type 5-23, 5-37
ADB device handler ID

described 5-12 to 5-13
obtaining 5-4
special 5-13

ADB device handlers
described 5-5 to 5-6
installing 5-30 to 5-37
writing 5-29 to 5-30

ADB device registers
defined 5-10
register 0 5-10
register 3 5-10 to 5-11

ADB devices
active 5-17
address resolution for 5-5, 5-15 to 5-17
characteristics of 5-4
collision detection among 5-4, 5-15, 5-16
communication with 5-17 to 5-21
default addresses of 5-11 to 5-12
device handler ID. See ADB device handler ID
device handlers for. See ADB device handlers
getting information about 5-22 to 5-23
licensing of 5-4
polling of 5-7, 5-17 to 5-20
random addresses returned by 5-15
registers of 5-4, 5-9 to 5-11
sending commands directly to 5-24 to 5-29
sending commands to

Listen Register 3 5-12, 5-16
Talk Register 0 5-7, 5-10, 5-17, 5-18, 5-19, 5-20, 5-36

Talk Register 3 5-14, 5-15, 5-16, 5-17, 5-31
service request signals asserted by 5-7, 5-20
specifications for 5-3, 5-4
types of 5-12

ADB device table 5-5, 5-13 to 5-15
ADB device table entry 5-30
ADB information block 5-38
ADB Manager 5-3 to 5-51

and the Device Manager 5-5
application-defined routines for 5-45 to 5-47
data structures in 5-37 to 5-39
routines in 5-39 to 5-45
testing for availability 5-22

ADBOpBlock data type 5-38
ADB operation block 5-38
ADBOp function 5-40 to 5-42
ADBReInit procedure 5-39 to 5-40
ADBSetInfoBlock data type 5-38
ADB transactions 5-9
AOff procedure 6-35
AOnIgnoreModem procedure 6-34
AOn procedure 6-34
Apple Desktop Bus (ADB) 5-3 to 5-51
Apple Software Licensing 5-4
application global variables

using in sleep procedures 6-19 to 6-20
asynchronous device driver 1-4, 1-37
asynchronous I/O requests

and SCSI Manager 4.3 4-13
and the I/O queue 1-10
and the Serial Driver 7-17, 7-18
guidelines for using 1-37
initiating 1-15

asynchronous serial communication protocol 7-5
automatic sleep

determining if enabled 6-44
enabling and disabling 6-43. See also sleep timer

AutoSleepControl function 6-43
AuxDCE data type 1-56 to 1-58

B

battery, portable Macintosh computers
charging 6-40
low voltage 6-6, 6-17, 6-24, 6-39
number of 6-56
reading the status of 6-38 to 6-40, 6-54 to 6-57

I N D E X

IN-2

battery, portable Macintosh computers (continued)
relative charge 6-55
state of charger 6-55
time remaining 6-57
voltage 6-56
warning level 6-55

BatteryCount function 6-56
BatteryInfo data type 6-28
battery information structure 6-27
BatteryStatus function 6-38 to 6-40
BatteryTimeRec data type 6-28
battery time structure 6-28
baud rate 7-5, 7-19
blind transfer 3-22, 3-37, 3-39, 4-9, 4-18, 4-27
Block0 data type 3-23 to 3-24
block device 1-3, 3-12
BoardID entries 2-11
board sResources 2-11 to 2-12
BOff procedure 6-36
BOn procedure 6-35
bus interfaces 2-4
byte lanes 2-4, 2-13

C

cards. See expansion cards
CDB data type 4-20
character device 1-3
Chooser

extensions 1-40 to 1-49
messages 1-47

CloseDeskAcc function 1-50 to 1-51, 1-68
CloseDriver function 1-65 to 1-66
close routine 1-12, 1-33
CntrlParam data type 1-54 to 1-56
command descriptor block (CDB) 3-7, 3-17, 3-34, 4-20,

4-25
Common Access Method (CAM) specification 4-3
Communications Toolbox 7-3
completion routine 1-15, 1-37
configuration ROM. See declaration ROM
Control function 1-75 to 1-76
control routine 1-12, 1-35
CountADBs function 5-42
CPU, portable Macintosh computers 6-60 to 6-63

current speed
determining 6-30, 6-60
setting 6-62

cycling
determining if enabled 6-62
enabling or disabling 6-62

maximum speed
determining 6-60

restart speed
determining 6-61
setting 6-61

CurrentProcessorSpeed function 6-60

D

data communication equipment 7-7
data terminal equipment 7-7
dCtlEnable flag 1-27
dCtlStorage field 1-31
declaration ROM 2-7, 2-61 to 2-67
desk accessory

closing 1-50, 1-68
creating driver resources for 1-50
opening 1-49, 1-65
writing 1-49 to 1-52

device control entry
for slot device drivers 2-17

device control entry (DCE) data structure 1-6, 1-56 to
1-58

device driver
asynchronous 1-4
asynchronous requests 1-10, 1-15, 1-37
asynchronous routines 1-37
Chooser extensions 1-40 to 1-49
close routine 1-12, 1-33
communicating with 1-20
controlling and monitoring 1-22
control routine 1-12, 1-35
driver resource 1-12
flags 1-25 to 1-28
header 1-25
immediate requests 1-10, 1-15
installing 1-38
I/O queue 1-10
KillIO requests 1-17, 1-35
loading from sResources 2-58 to 2-59
naming 1-18
notification of impending sleep state 6-5
opening and closing 1-18
open routine 1-12, 1-32
prime routine 1-12, 1-17, 1-34
reentrant 1-10, 1-15
standard types 1-4
status routine 1-12, 1-36
synchronous 1-4, 1-10
writing 1-24

device handlers for ADB devices 5-5 to 5-6, 5-30 to 5-37
DeviceIdent data type 4-19 to 4-20
device identification record 4-19 to 4-20
Device Manager 1-3 to 1-101

data structures in 1-53 to 1-58

I N D E X

IN-3

functions in 1-58 to 1-89
parameter block 1-53 to 1-56
resources for 1-89 to 1-90

device package 1-41
creating 1-45 to 1-46

dialog boxes
effect on a portable Macintosh computer’s sleep

state 6-24
DimmingControl function 6-47
dimming timer

controlling 6-46 to 6-48
determining whether enabled 6-48
enabling and disabling 6-47
reading 6-46
setting 6-46

DisableIdle procedure 6-29 to 6-30
DisableWUTime function 6-17, 6-32
dNeedGoodbye flag 1-27, 1-35
dNeedLock flag 1-17, 1-27, 1-66, 1-67
dNeedTime flag 1-27, 1-35, 1-50, 1-52
dRAMBased flag 1-17, 1-57, 1-66, 1-67, 1-83, 1-84, 1-86
dReadEnable flag 1-27
driver descriptor record 3-12 to 3-13, 3-23 to 3-24
driver flags 1-25 to 1-28
driver header 1-25, 1-28
DriverInstall function 1-83 to 1-84
DriverInstallReserveMem function 1-84 to 1-85
driver I/O queue 1-10, 1-17
driver name 1-18
driver reference number 1-6
driver registration table 4-11, 4-52 to 4-54
DriverRemove function 1-85 to 1-86
driver resources 1-12 to 1-13

creating 1-24 to 1-28
driver routines

close 1-12, 1-31
control 1-12, 1-34
entering and exiting 1-29
open 1-12, 1-31
prime 1-12, 1-33
status 1-12, 1-34

drvrDelay value 1-27, 1-50
drvrEMask value 1-50
drvrMenu value 1-50
'DRVR' resource type 1-89 to 1-90
dStatEnable flag 1-27
dWritEnable flag 1-27

E

EnableIdle procedure 6-29
EnableProcessorCycling function 6-62
EnteringSIM function 4-58

ExitingSIM function 4-59
expansion cards

base addresses of 2-66 to 2-67
determining if changed 2-65 to 2-66
getting information from 2-61 to 2-68
initialization status of 2-64 to 2-65
NuBus. See NuBus cards
processor-direct slot (PDS) 2-3 to 2-4. See also Slot

Manager

F

f32BitMode flag 2-54
fAll flag 2-24, 2-33, 2-36
fCardIsChanged flag 2-25, 2-79
fCkForNext flag 2-86
fConsecBytes flag 2-74
Fetch routine 1-33, 1-87 to 1-88
FHeaderRec data type 2-26
firmware, in declaration ROM 2-7 to 2-14
fNext flag 2-24, 2-34, 2-36
fOneSlot flag 2-24, 2-34, 2-36
fOpenAtStart flag 2-16
format block 2-7, 2-13, 2-62 to 2-63
format header record 2-26
FSRead function 1-6, 1-69 to 1-70
FSWrite function 1-72 to 1-73
FullProcessorSpeed function 6-61
functional sResources 2-11, 2-14
fWarmStart flag 2-82

G

GetADBInfo function 5-43 to 5-44
GetBatteryTimes function 6-57
GetBatteryVoltage function 6-56
GetCPUSpeed function 6-30
GetDCtlEntry function 1-86
GetDimmingTimeout function 6-46
GetHardDiskTimeout function 6-49
GetIndADB function 5-43
GetIntModemInfo function 6-58
GetScaledBatteryInfo function 6-54 to 6-55
GetSCSIDiskModeAddress function 6-63
GetSleepTimeout function 6-42
GetWakeupTimer function 6-45
GetWUTime function 6-17, 6-32

I N D E X

IN-4

H

hard disk, in portable Macintosh computers
controlling 6-48 to 6-53
determining if automatic spindown is enabled 6-51
determining if on 6-50
enabling or disabling automatic spindown 6-51. See

also hard disk queue, hard disk timer
shutting down, receiving notification of 6-52
turning off 6-50

HardDiskPowered function 6-50
HardDiskQInstall function 6-52
HardDiskQRemove function 6-53
hard disk queue

installing a routine 6-52
removing a routine 6-53

hard disk queue structure 6-27
hard disk timer

enabling or disabling 6-51
reading 6-49
setting 6-49

HBA (host bus adaptor) 4-3
HDQueueElement data type 6-27
hicharge counter 6-39
host bus adaptor (HBA) 4-3

I

idle state 6-5, 6-7 to 6-8
controlling 6-28 to 6-30
defined 6-7
disabling 6-15, 6-30
enabling 6-15, 6-29

IdleUpdate function 6-29
immediate I/O requests

and SCSI Manager 4.3 4-13
and the I/O queue 1-10
at interrupt time 1-15

inactivity, portable Macintosh computers 6-7
InitSDeclMgr function 2-72 to 2-73
InsertSRTRec function 2-17, 2-54 to 2-56
Inside Macintosh

chapter format xvii
format conventions xviii
format of parameter blocks xix

internal modem. See modem, portable Macintosh
computers

interrupt handler 1-17, 1-37
interrupt service routines

Slot Manager 2-22, 2-70 to 2-71
IODone routine 1-31, 1-87
IOParam data type 1-53 to 1-56
I/O queue 1-10

IsAutoSlpControlDisabled function 6-44
IsDimmingControlDisabled function 6-48
IsProcessorCyclingEnabled function 6-62
IsSpindownDisabled function 6-51

J

JADBProc system global variable 5-40

K

keyboards
Apple Extended

ADB device default address of 5-12, 5-16 to 5-17
and the ADB Manager 5-5
device handler ID 5-5, 5-11, 5-12, 5-14
device handlers for 5-4, 5-5, 5-15, 5-29, 5-30, 5-31

Apple Standard
ADB device default address of 5-12, 5-16, 5-17
and the ADB Manager 5-5
device handler ID 5-12, 5-14
device handlers for 5-4, 5-5, 5-15, 5-30, 5-31

KillIO function 1-80 to 1-81
KillIO requests 1-17, 1-35

L

Listen Register 3 command 5-12, 5-16
logical block 3-12

M

MajorBaseOS entries 2-54
MakeCallback function 4-59 to 4-60
MaximumProcessorSpeed function 6-60
MinorBaseOS entries 2-54
minor slot spaces 2-5
modem, portable Macintosh computers

controlling power to 6-25, 6-34 to 6-36
reading status of 6-36 to 6-38, 6-58 to 6-59
ring-detect feature 6-38
ring-wakeup feature 6-38
setting state of 6-59

ModemStatus function 6-36 to 6-38
mouse devices

device handler for 5-4

I N D E X

IN-5

N

NewOldCall function 4-63
NGetTrap function 5-22
NuBus cards

address allocation 2-5 to 2-6
bus interfaces 2-4
byte lanes 2-4, 2-13 to 2-14
declaration ROM 2-7
disabling 2-17
enabling 2-17
firmware 2-7 to 2-12
format block 2-7 to 2-14
minor slot spaces 2-5
slot spaces 2-5 to 2-6
super slot spaces 2-5

NuBus expansion interface 2-3 to 2-14

O

OpenDeskAcc function 1-49, 1-51, 1-65
OpenDriver function 1-6, 1-18, 1-60 to 1-61
open routine 1-12, 1-32
OpenSlot function 1-6, 1-18, 1-63 to 1-65

P

ParamBlockRec data type 1-53 to 1-56
parameter block

Device Manager 1-53 to 1-56
format of xix
SCSI abort command 4-33
SCSI bus inquiry 4-28 to 4-33
SCSI driver identification 4-35
SCSI I/O 4-23 to 4-28
SCSI load driver 4-34
SCSI Manager 4-21 to 4-23
SCSI terminate I/O 4-33
SCSI virtual ID information 4-34
Slot Manager 2-23 to 2-24

parameter RAM 2-15, 2-67 to 2-69
partition 3-12
Partition data type 3-25 to 3-27
partition map 3-13 to 3-15
partition map entry record 3-25 to 3-27
PBClose function 1-66 to 1-68
PBControlAsync function 1-95
PBControl function 1-22, 1-76 to 1-77
PBControlSync function 1-95
PBKillIOAsync function 1-95
PBKillIO function 1-81 to 1-82

PBKillIOSync function 1-95
PBOpen function 1-6, 1-18, 1-61 to 1-63
PBReadAsync function 1-94
PBRead function 1-6, 1-20, 1-70 to 1-72
PBReadSync function 1-94
PBStatusAsync function 1-95
PBStatus function 1-22, 1-78 to 1-80
PBStatusSync function 1-95
PBWriteAsync function 1-94
PBWrite function 1-20, 1-73 to 1-75
PBWriteSync function 1-94
physical block 3-12
PMFeatures function 6-41
PMSelectorCount function 6-41
polled transfer 3-22, 4-10, 4-27
portable Macintosh computers

activity timer
controlling 6-28 to 6-30
defined 6-7
resetting 6-15, 6-29
types of activity 6-8

battery
charging 6-40
low voltage 6-6, 6-17, 6-24, 6-39
number of 6-56
reading the status of 6-38 to 6-40, 6-54 to 6-57
relative charge 6-55
state of charger 6-55
time remaining 6-57
voltage 6-56
warning level 6-55

controlling serial power 6-25
CPU. See CPU, portable Macintosh computers
dimming timer

controlling 6-46 to 6-48
determining whether enabled 6-48
enabling and disabling 6-47
reading 6-46
setting 6-46

hard disk. See hard disk, in portable Macintosh
computers

hicharge counter 6-39
idle state

controlling 6-28 to 6-30
defined 6-7
disabling 6-15, 6-30
enabling 6-15, 6-29

inactivity 6-7
internal modem

controlling power to 6-25, 6-34 to 6-36
reading status of 6-36 to 6-38
ring-detect feature 6-38
ring-wakeup feature 6-38

modem. See modem, portable Macintosh computers
power management circuits 6-5

I N D E X

IN-6

Power Manager IC 6-4, 6-8
processor speed. See CPU, portable Macintosh

computers
SCSI disk mode. See SCSI disk mode
sleep state 6-8 to 6-9
sleep timer

controlling 6-42 to 6-44
enabling and disabling 6-43
reading 6-42
setting 6-43

wakeup timer
controlling 6-45 to 6-46
reading 6-45
setting 6-45

PostEvent function 5-5, 5-29
power cycling 6-7
power management circuits, portable Macintosh

computers 6-5
Power Manager 6-3 to 6-80

application-defined routines for 6-65 to 6-66
dispatch routines 6-40 to 6-64
routines in 6-28 to 6-64. See also portable Macintosh

computers
testing for availability 6-14
testing for features 6-14, 6-40 to 6-42
unsafe assumptions 6-12

Power Manager IC 6-4, 6-8
power-saver state 6-4, 6-6
PRAMInitData entries 2-11, 2-15
PRAM. See parameter RAM
PrimaryInit entries 2-11, 2-15
prime routine 1-12, 1-34
processor-direct slot (PDS) 2-3 to 2-4

Q

queue freezing 4-10

R

reentrant device driver 1-10, 1-15
resources

driver 1-89
resource types
'DRVR' 1-89

rest state. See idle state
ring-detect feature, modem 6-38
ring-wakeup feature, modem 6-38

S

scAdd TIB instruction 3-29
SCalcSPointer function 2-73 to 2-74
SCalcStep function 2-74 to 2-75
SCardChanged function 2-65 to 2-66
scatter/gather list 4-9, 4-20
SCC 7-9

controlling power to 6-25, 6-34 to 6-36
scComp TIB instruction 3-30
scInc TIB instruction 3-28
SCkCardStat function 2-64 to 2-65
scLoop TIB instruction 3-29 to 3-30
scMove TIB instruction 3-29
scNoInc TIB instruction 3-28
scNop TIB instruction 3-30
screen saver. See dimming timer
SCSI

arbitration 3-6, 3-32
asynchronous requests 4-13
autosense 4-5, 4-22 to 4-25
bus phases 3-5 to 3-6
bus signals 3-4 to 3-5
command descriptor block (CDB) 3-7, 3-17, 3-34,

4-20, 4-25
commands 3-7, 3-34
Common Access Method (CAM) specification 4-3
device ID 3-3
DMA 4-18
handshaking 3-7 to 3-8, 3-22, 4-9
host bus adaptor (HBA) 4-3
immediate requests 4-13
initiator device 3-4
messages 3-7, 3-21, 3-35 to 3-36
phase error 3-22
SCSI-2 specification 4-3, 4-4
SCSI interface module (SIM) 4-3, 4-15
specification 3-3, 3-9, 4-3
target device 3-4
timeout error 3-22
transport (XPT) 4-3, 4-5
virtual bus 4-8
virtual memory compatibility 4-14

SCSI_PB data type 4-21 to 4-23
SCSIAbortCommand function 4-45 to 4-46
SCSI abort command parameter block 4-33
SCSIAbortCommandPB data type 4-33
SCSIAction function 4-38 to 4-39
SCSIBusInquiry function 4-43 to 4-44
SCSI bus inquiry parameter block 4-28 to 4-33
SCSIBusInquiryPB data type 4-28 to 4-33
SCSICmd function 3-34 to 3-35
SCSIComplete function 3-21 to 3-22, 3-40
SCSICreateRefNumXref function 4-51 to 4-52
SCSIDeregisterBus function 4-56

I N D E X

IN-7

SCSI disk mode 6-63 to 6-64
determining SCSI ID 6-63
setting SCSI ID 6-64

SCSI driver identification parameter block 4-35
SCSIDriverPB data type 4-35
SCSIExecIO function 4-40 to 4-42
SCSIExecIOPB data type 4-23 to 4-28
SCSIGet function 3-32
SCSIGetVirtualIDInfo function 4-49 to 4-50
SCSIGetVirtualIDInfoPB data type 4-34
SCSI interface module (SIM) 4-3, 4-15
SCSI I/O parameter block 4-23 to 4-28
SCSIKillXPT function 4-58
SCSILoadDriver function 4-50 to 4-51
SCSI load driver parameter block 4-34
SCSILoadDriverPB data type 4-34
SCSILookupRefNumXref function 4-52 to 4-53
SCSI Manager 3-3 to 3-48

data structures in 3-23 to 3-27
routines in 3-31 to 3-42
TIB instructions 3-27 to 3-31

SCSI Manager 4.3 4-3 to 4-90
data structures in 4-19 to 4-37
functions in 4-37 to 4-64

SCSIMsgIn function 3-35
SCSIMsgOut function 3-36
SCSINop function 4-40
SCSIOldCall function 4-62
SCSIRBlind function 3-23, 3-37 to 3-38
SCSIRead function 3-23, 3-36 to 3-37
SCSIRegisterBus function 4-54 to 4-55
SCSIRegisterWithNewXPT function 4-64
SCSIReleaseQ function 4-44 to 4-45
SCSIRemoveRefNumXref function 4-53 to 4-54
SCSIReregisterBus function 4-56 to 4-57
SCSIResetBus function 4-46 to 4-47
SCSIResetDevice function 4-47 to 4-48
SCSIReset function 3-31 to 3-32
SCSISelAtn function 3-33 to 3-34
SCSISelect function 3-33
SCSIStat function 3-41 to 3-42
SCSITerminateIO function 4-48 to 4-49
SCSI terminate I/O parameter block 4-33
SCSITerminateIOPB data type 4-33
SCSI virtual ID information parameter block 4-34
SCSIWBlind function 3-23, 3-39
SCSIWrite function 3-23, 3-38
scStop TIB instruction 3-30
SDeleteSRTRec function 2-17, 2-52 to 2-53
SEBlock data type 2-27 to 2-28
SecondaryInit entries 2-16
SerClrBrk function 7-24
SerGetBuf function 7-24
SerHShake function 7-21 to 7-23
serial communication

asynchronous 7-4, 7-5 to 7-6
baud rate 7-5, 7-16, 7-19, 7-27
Communications Toolbox 7-3
default settings 7-8, 7-20
duplex 7-4
errors 7-10, 7-22
external clocking 7-27
flow control methods 7-4 to 7-5
handshaking 7-4, 7-21, 7-27
protocols 7-3
RS-422 interface 7-6 to 7-7
signals used 7-6 to 7-7
synchronous 7-4

Serial Communications Controller. See SCC
Serial Driver

alternate input buffer 7-15
closing 7-17
data types in 7-21, 7-25
default settings 7-16
handshaking options 7-16
opening 7-15
routines in 7-18 to 7-29
synchronous clocking 7-18

serial handshake record 7-21
serial power, portable Macintosh computers

controlling 6-25, 6-34 to 6-36
serial status record 7-25
SerReset function 7-19 to 7-20
SerSetBrk function 7-23
SerSetBuf function 7-20 to 7-21
SerShk data type 7-21
SerStaRec data type 7-25
SerStatus function 7-25 to 7-26
service request signals (SRQ)

asserted by ADB devices 5-7, 5-20
SetADBInfo function 5-23, 5-44 to 5-45
SetDimmingTimeout function 6-46
SetHardDiskTimeout function 6-49
SetIntModemState function 6-59
SetOSDefault function 3-13
SetProcessorSpeed function 6-61
SetSCSIDiskModeAddress function 6-64
SetSleepTimeout function 6-43
SetSpindownDisable function 6-51
SetSRsrcState function 2-18, 2-51 to 2-52
SetWakeupTimer function 6-45
SetWUTime function 6-17, 6-31
SExec function 2-16, 2-27, 2-59 to 2-60
SFindBigDevBase function 2-75 to 2-76
SFindDevBase function 2-66 to 2-67
SFindSInfoRecPtr function 2-76 to 2-77
SFindSRsrcPtr function 2-77 to 2-78
SFindStruct function 2-16, 2-20, 2-48 to 2-49
SGetBlock function 2-20, 2-47 to 2-48
SGetCString function 2-16, 2-20 to 2-21, 2-45 to 2-46

I N D E X

IN-8

SGetDriver function 2-16, 2-27, 2-58 to 2-59
SGetSRsrc function 2-19, 2-33 to 2-34
SGetSRsrcPtr function 2-78 to 2-79
SGetTypeSRsrc function 2-19, 2-35 to 2-36
SGRecord data type 4-20
SIM (SCSI interface module) 4-3, 4-15
SIMAction function 4-61
SIMInit function 4-60
SIM initialization record 4-36 to 4-37
SIMInitInfo data type 4-36 to 4-37
SIMInterruptPoll function 4-61
SInfoRecord data type 2-24 to 2-25
SInitPRAMRecs function 2-79 to 2-80
SInitSRsrcTable function 2-80 to 2-81
SIntInstall function 2-70 to 2-71
SIntRemove function 2-71
sleep demands 6-10 to 6-11

conditional 6-11
responding to 6-22 to 6-25
sequence of events 6-11
unconditional 6-11

sleep now. See sleep demands, unconditional
sleep procedures 6-9. See also sleep queue

using application global variables 6-19 to 6-20
sleep procedure selector codes 6-21, 6-65
SleepQInstall procedure 6-33
SleepQRec data type 6-26
SleepQRemove procedure 6-33
sleep queue 6-9 to 6-12

adding an entry 6-18 to 6-20, 6-33
controlling 6-33
removing an entry 6-33
responding to calls 6-20
sleep demands 6-10 to 6-11

conditional 6-11
sequence of events 6-11
unconditional 6-11

sleep-request revocations 6-12
sleep requests 6-10

sequence of events 6-10
wakeup demands 6-11

sleep queue record 6-18, 6-26
sleep-request revocations 6-12

responding to 6-25
sleep requests 6-10

responding to 6-21
sequence of events 6-10

sleep state 6-5, 6-8 to 6-9
sleep timer

controlling 6-42 to 6-44
enabling and disabling 6-43
reading 6-42. See also automatic sleep
setting 6-43

slot address allocation 2-5
slot execution parameter block 2-27 to 2-28

slot information record 2-15, 2-24 to 2-25
slot interrupt queue 2-70 to 2-71
slot interrupt queue element 2-28 to 2-29
slot interrupts 2-22, 2-70 to 2-71
SlotIntQElement data type 2-28 to 2-29
Slot Manager 2-3 to 2-100

data structures in 2-22 to 2-29
determining version of 2-30 to 2-31
and firmware in declaration ROM 2-7 to 2-14
initialization 2-15 to 2-16
and interrupt service routines 2-22, 2-70 to 2-71
low-level routines in 2-72 to 2-86
parameter block 2-23 to 2-24
routines in 2-29 to 2-86
versions of 2-15, 2-16

slot parameter RAM record 2-27
slot resources. See sResources
slot resource table 2-15
slots 2-4 to 2-7. See also NuBus cards, Slot Manager
slot spaces 2-5 to 2-6
SNextSRsrc function 2-19, 2-37 to 2-38
SNextTypeSRsrc function 2-19, 2-38 to 2-40
SOffsetData function 2-20, 2-81 to 2-82
SpBlock data type 2-23 to 2-24
SpinDownHardDisk function 6-50
SPRAMRecord data type 2-27
SPrimaryInit function 2-82 to 2-83
SPtrToSlot function 2-83 to 2-84
SPutPRAMRec function 2-69
SReadByte function 2-16, 2-20, 2-41 to 2-42
SReadDrvrName function 2-40 to 2-41
SReadFHeader function 2-62 to 2-63
SReadInfo function 2-61 to 2-62
SReadLong function 2-20, 2-44 to 2-45
SReadPBSize function 2-84 to 2-85
SReadPRAMRec function 2-67 to 2-68
SReadStruct function 2-20, 2-49 to 2-50
SReadWord function 2-20, 2-43 to 2-44
sResource directories 2-7, 2-12 to 2-13
sResource ID 2-8, 2-13
sResource offset 2-8
sResources

board 2-11 to 2-12
data types in 2-9 to 2-12
defined 2-7
deleting 2-17, 2-52 to 2-53
disabling 2-18
enabling 2-18, 2-51 to 2-52
executing code in 2-59 to 2-60
functional 2-11, 2-14
getting information from 2-40 to 2-50
loading device drivers from 2-58 to 2-59
restoring 2-17, 2-54 to 2-57
searching 2-19, 2-31 to 2-40
structure of 2-7 to 2-12

I N D E X

IN-9

sRsrcBootRec entries 2-15
sRsrcFlags entries 2-16, 2-54
SRsrcInfo function 2-31 to 2-33
sRsrcName entries 2-10
sRsrcType entries 2-9 to 2-10
SSearchSRT function 2-85 to 2-86
standard device drivers 1-4
standard slot spaces 2-5
Start Manager

and partition maps 3-13 to 3-15, 4-11
default startup device 4-12

Stash routine 1-33, 1-88
Status function 1-77 to 1-78
status routine 1-12, 1-36
SUpdateSRT function 2-56 to 2-57
super slot spaces 2-5
SVersion function 2-30 to 2-31
synchronous device driver 1-4
synchronous I/O requests

and SCSI Manager 4.3 4-14
and the I/O queue 1-10
and the Serial Driver 7-17
at interrupt time 1-15, 1-59

system extensions
and installing ADB device handlers 5-30 to 5-34

T

Talk Register 0 command 5-7, 5-10, 5-17, 5-18, 5-19,
5-20, 5-36

Talk Register 3 command 5-14, 5-15, 5-17, 5-31
TIB instructions. See also transfer instruction block

data type 3-27
operation codes 3-27
scAdd 3-29
scComp 3-30, 4-7
scInc 3-28
scLoop 3-29 to 3-30
scMove 3-29
scNoInc 3-28
scNop 3-30
scStop 3-30

Ticks global variable 6-15
timer, wakeup. See wakeup timer
transfer instruction block (TIB) 3-10, 3-17, 3-21, 3-27 to

3-31
transport (XPT) 4-3, 4-5

U

UnitNtryCnt system global variable 1-8, 1-40
unit number 1-8
unit table

reserved entries 1-38
searching 1-38
structure 1-8

UTableBase system global variable 1-8, 1-40

V

valid byte lanes 2-13
virtual bus 4-8
virtual ID 4-8
virtual memory

and SCSI device drivers 4-14

W

wakeup demands 6-11
responding to 6-25

WakeupTime data type 6-27
wakeup timer

controlling 6-16 to 6-17, 6-45 to 6-46
reading 6-45
setting 6-45
setting and reading 6-31 to 6-32
use of 6-13

wakeup time structure 6-27

X, Y, Z

XPT (SCSI transport) 4-3, 4-5

T H E A P P L E P U B L I S H I N G S Y S T E M

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh
computers and FrameMaker software.
Proof pages were created on an Apple
LaserWriter Pro printer. Final page
negatives were output directly from text
files on an Optrotech SPrint 220
imagesetter. Line art was created
using Adobe Illustrator™ and
Adobe Photoshop™. PostScript™, the
page-description language for the
LaserWriter, was developed by Adobe
Systems Incorporated.

Text type is Palatino® and display type is
Helvetica®. Bullets are ITC Zapf
Dingbats®. Some elements, such as
program listings, are set in Apple Courier.

WRITERS

Mark Turner, Daphne Steck, Tim Monroe

LEAD WRITERS

Sharon Everson, Tony Francis

EDITORS

Wendy Krafft, Antonio Padial,
George Truett

ART DIRECTOR

Bruce Lee

ILLUSTRATOR

Shawn Morningstar

PRODUCTION EDITOR

Gerri Gray

PROJECT LEADER

Patricia Eastman

COVER DESIGNER

Barbara Smyth

Special thanks to Clinton Bauder,
Mark Baumwell, Cameron Birse,
Paul Black, Lorraine Findlay,
Jerry Katzung, Jim Mensch,
Martin Minow, Craig Prouse,
Mike Puckett, Gary Rensberger,
Eric Shapiro, Paul Wolf, Bill Worzel,
Colleen Zuffoletto

Acknowledgments to Marq Laube,
Ray Valdès, Allen Watson

