
Addison-Wesley Publishing Company

Reading, Massachusetts Menlo Park, California New York

Don Mills, Ontario Wokingham, England Amsterdam Bonn

Sydney Singapore Tokyo Madrid San Juan

Paris Seoul Milan Mexico City Taipei

I N S I D E M A C I N T O S H

AOCE Service Access Modules

Apple Computer, Inc.

© 1994 Apple Computer, Inc.
All rights reserved.

No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form or
by any means, mechanical, electronic,
photocopying, recording, or otherwise,
without prior written permission of
Apple Computer, Inc. Printed in the
United States of America.

No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application
developers to develop applications only
for Apple Macintosh computers.

Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
printing or clerical errors.

Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, AppleLink,
AppleTalk, APDA, LaserWriter,
Macintosh, MacTCP, MPW, and
PowerBook are trademarks of Apple
Computer, Inc., registered in the United
States and other countries.

AOCE, AppleMail, Balloon Help,
DigiSign, Finder, Monaco, PowerShare,
PowerTalk, QuickTime, and ResEdit are
trademarks of Apple Computer, Inc.

Adobe Illustrator, Adobe Photoshop,
and PostScript are trademarks of Adobe
Systems Incorporated, which may be
registered in certain jurisdictions.

America Online is a service mark of
Quantum Computer Services, Inc.

cc:Mail is a trademark of cc:Mail, Inc.

CompuServe is a registered service
mark of CompuServe, Inc.

FrameMaker is a registered trademark
of Frame Technology Corporation.

Helvetica and Palatino are registered
trademarks of Linotype Company.

Internet is a trademark of Digital
Equipment Corporation.

ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.

Optrotech is a trademark of Orbotech
Corporation.

QuickMail is a trademark of CE
Software, Inc.

Simultaneously published in the United
States and Canada.

LIMITED WARRANTY ON MEDIA AND
REPLACEMENT

ALL IMPLIED WARRANTIES ON THIS
MANUAL, INCLUDING IMPLIED
WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN DURATION
TO NINETY (90) DAYS FROM THE DATE
OF THE ORIGINAL RETAIL PURCHASE
OF THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO WARRANTY
OR REPRESENTATION, EITHER EXPRESS
OR IMPLIED, WITH RESPECT TO THIS
MANUAL, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT,
THIS MANUAL IS SOLD “AS IS,” AND
YOU, THE PURCHASER, ARE ASSUMING
THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the possibility
of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND IN
LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or liability
for incidental or consequential damages, so
the above limitation or exclusion may not
apply to you. This warranty gives you
specific legal rights, and you may also have
other rights which vary from state to state.

ISBN 0-201-40846-5
1 2 3 4 5 6 7 8 9-CRW-9897969594
First Printing, April 1994

Library of Congress Cataloging-in-Publication Data

Inside Macintosh : AOCE service acess modules.
p. cm.

Includes index.
ISBN 0-201-40846-5
1. Macintosh (Computer) 2. Systems software.

QA76.8.M3I42 1994
005.4'2—dc20 94-7195

CIP

iii

Contents

Figures, Tables, and Listings ix

Preface About This Book xi

Format of a Chapter xii

Conventions Used in This Book xiii

Special Fonts xiii

Types of Notes xiii

Parameter Block Information xiv

Development Environment xiv

For More Information xv

Chapter 1 Introduction to Service Access Modules 1-1

Overview 1-3

Messaging Service Access Modules 1-4

Catalog Service Access Modules 1-6

AOCE Setup and Address Templates 1-7

Chapter 2 Messaging Service Access Modules 2-1

Introduction to Messaging Service Access Modules 2-6

Personal MSAMs 2-9

Server MSAMs 2-11

MSAM Modes of Operation 2-12

Types of Messages 2-16

Basic Messages 2-16

Letters 2-17

Reports 2-23

AOCE Addresses 2-23

AOCE High-Level Events 2-32

System Location 2-35

Using the MSAM API 2-35

Determining Whether the Collaboration Toolbox Is Available 2-36

Determining the Version of the IPM Manager 2-36

Launching a Personal MSAM 2-36

Initializing a Personal MSAM 2-37

Initializing a Server MSAM 2-40

iv

Handling Outgoing Messages 2-43

Enumerating Messages in an Outgoing Queue 2-44

Opening and Closing a Message 2-46

Determining the Message Family 2-47

Determining What Is in a Message 2-47

Reading Letter Attributes 2-47

Interpreting Creator and Type for Messages and Blocks 2-50

Reading Addresses 2-51

Reading Letter Content 2-57

Reading a Nested Message 2-59

Marking Recipients 2-60

Generating a Report 2-61

Writing Incoming Messages 2-62

Choosing Creator and Type for Messages and Blocks 2-64

Creating a Letter’s Message Summary 2-64

Creating a Letter 2-70

Creating a Non-Letter Message 2-71

Writing Letter Attributes 2-72

Writing Addresses 2-73

Writing Letter Content 2-76

Submitting a Message 2-79

Receiving a Report 2-80

Deleting a Message 2-81

Translating Addresses 2-82

Translating From an AOCE Address 2-83

Translating to an AOCE Address 2-88

Logging Personal MSAM Operational Errors 2-91

Messaging Service Access Module Reference 2-93

Data Types and Constants 2-94

The MSAM Parameter Block 2-94

The Mail Buffer 2-96

The Mail Reply Structure 2-96

The Enumeration Structures 2-97

The Mail Time Structure 2-99

The Letter Attribute Structures 2-99

The Recipient Structures 2-106

The Segment Types 2-109

The Enclosure Information Structure 2-111

The Image Block Information Structure 2-112

The High-Level Event Structures 2-113

The Server MSAM Administrative Event Structures 2-116

The Personal MSAM Setup Structures 2-119

The Personal MSAM Letter Flag Structures 2-122

The Personal MSAM Message Summary Structures 2-124

The Personal MSAM Error Log Entry Structure 2-128

v

MSAM Functions 2-130

Initializing an MSAM 2-131

Enumerating Messages in a Queue 2-138

Opening an Outgoing Message 2-140

Reading Header Information 2-142

Reading a Message 2-150

Marking a Recipient 2-163

Closing a Message 2-167

Creating, Reading, and Writing Message Summaries 2-168

Creating a Message 2-176

Writing Header Information 2-178

Writing a Message 2-185

Submitting a Message 2-200

Deleting a Message 2-202

Generating Log Entries and Reports 2-204

Shutting Down a Server MSAM 2-210

Setting Message Status 2-211

Personal MSAM Template Functions 2-213

Application-Defined Function 2-219

High-Level Events 2-220

Summary of the MSAM Interface 2-238

C Summary 2-238

Data Types and Constants 2-238

MSAM Functions 2-262

Application-Defined Function 2-264

Pascal Summary 2-264

Data Types and Constants 2-264

MSAM Functions 2-290

Application-Defined Routine 2-292

Assembly-Language Summary 2-293

Trap Macros 2-293

Result Codes 2-294

Chapter 3 Catalog Service Access Modules 3-1

Introduction to Catalog Service Access Modules 3-3

Components of a CSAM 3-5

Writing a Driver Resource for a CSAM 3-7

Responding to the Catalog Manager 3-10

The Catalog Service Function 3-11

The Parse Function 3-13

Determining the Version of the Catalog Manager 3-16

Indicating the Features You Support 3-16

vi

Human Interface Considerations 3-22

Supporting Records Having the Same Name and Type 3-23

Supporting Multiple Attribute Values of the Same Type 3-23

Supporting Browsing and Finding 3-24

Supporting Large Catalogs 3-24

Supporting Attribute Lookups 3-26

Providing Access Controls 3-26

Handling Application Completion Routines 3-27

Catalog Service Access Module Reference 3-28

CSAM Functions 3-29

Initializing a CSAM 3-29

Adding a CSAM and Its Catalogs 3-31

Removing a CSAM and Its Catalogs 3-35

Application-Defined Functions 3-37

Resources 3-40

The Driver Resource 3-40

Summary of Catalog Service Access Modules 3-42

C Summary 3-42

Data Types and Constants 3-42

CSAM Functions 3-45

Application-Defined Functions 3-46

Pascal Summary 3-46

Data Types and Constants 3-46

CSAM Functions 3-51

Application-Defined Functions 3-51

Assembly-Language Summary 3-51

Trap Macros 3-51

Result Codes 3-52

Chapter 4 Service Access Module Setup 4-1

Introduction to SAM Setup 4-3

About Personal MSAMs and Addresses 4-4

Adding Catalog and Mail Services 4-5

Adding a Combined Service 4-6

Adding the Catalog Service 4-10

Adding the Mail Service 4-12

Adding a Mail Service Only 4-22

Setting Up the Associated Catalog Service 4-27

Setting Up the Mail Service 4-28

Adding a Catalog Service Only 4-28

Modifying an Existing Service 4-30

Writing and Modifying Addresses 4-30

Writing an Address Template 4-31

vii

Writing an Address Template Code Resource 4-41

Main Routines for the Address Template Code Resource 4-41

Data Input Subroutines for the Address Template 4-47

Data Output Subroutines for the Address Template 4-51

Miscellaneous Subroutines 4-57

SAM Setup Reference 4-63

The PowerTalk Setup Catalog 4-63

The Setup Record 4-64

The MSAM Record 4-64

The CSAM Record 4-65

The Mail Service Record 4-66

The Catalog Record 4-67

The Combined Record 4-70

The Setup Template Resources 4-73

The Address Template 4-80

Glossary GL-1

Index IN-1

ix

Figures, Tables, and Listings

Chapter 2 Messaging Service Access Modules 2-1

Figure 2-1 Adding an MSAM 2-7
Figure 2-2 An MSAM’s relationship to AOCE software 2-8
Figure 2-3 Communication between the IPM Manager and an MSAM 2-8
Figure 2-4 Personal MSAM with its slots and queues 2-10
Figure 2-5 Store-and-forward gateway model 2-13
Figure 2-6 Online model 2-13
Figure 2-7 Nested letters 2-20
Figure 2-8 How the nesting level increments 2-21
Figure 2-9 Structure of a letter 2-22
Figure 2-10 AOCE system connected to external messaging systems 2-24
Figure 2-11 Adding a dNode for a messaging system 2-26
Figure 2-12 MSAMs, messaging system names, and extension types 2-27
Figure 2-13 Exploded view of an OCERecipient structure 2-28

Table 2-1 Differences between personal MSAMs and server MSAMs 2-11
Table 2-2 MSAM operating modes 2-16
Table 2-3 Predefined letter block types 2-18
Table 2-4 External address: Contents of an OCERecipient structure 2-29
Table 2-5 AOCE address: Contents of an OCERecipient structure 2-30
Table 2-6 AOCE extension types 2-31
Table 2-7 Sample addresses 2-32
Table 2-8 Selected Catalog record attributes 2-40
Table 2-9 Outgoing tasks and functions 2-44
Table 2-10 Incoming tasks and functions 2-63

Listing 2-1 Enumerating outgoing messages 2-45
Listing 2-2 Reading letter attributes 2-48
Listing 2-3 Getting resolved and original recipients 2-53
Listing 2-4 Reading addresses from an outgoing message 2-55
Listing 2-5 Reading a letter’s content block 2-58
Listing 2-6 Creating a message summary 2-67
Listing 2-7 Creating a letter 2-70
Listing 2-8 Adding attributes to a letter header 2-72
Listing 2-9 Adding recipients to a letter 2-74
Listing 2-10 Adding a specific type of recipient 2-75
Listing 2-11 Writing letter content 2-78
Listing 2-12 Submitting a letter 2-80
Listing 2-13 Building SMTP addresses 2-84
Listing 2-14 Converting from AOCE to SMTP address 2-87
Listing 2-15 Building an OCERecipient structure 2-90
Listing 2-16 Calling an MSAM function from assembly language 2-130

x

Chapter 3 Catalog Service Access Modules 3-1

Figure 3-1 Relationship of an application, the Catalog Manager,
and a CSAM 3-4

Figure 3-2 Calling relationships 3-6
Figure 3-3 Who calls the CSAM driver subroutines and the catalog service and

parse functions 3-7
Figure 3-4 Relationship of 'DRVR' and 'STR ' resources 3-10

Table 3-1 Determining the scrolling method for a catalog 3-26

Listing 3-1 A sample CSAM’s driver resource header 3-8
Listing 3-2 A CSAM’s driver name string resource 3-9
Listing 3-3 A catalog service function 3-13
Listing 3-4 Calling an application’s callback routine 3-15
Listing 3-5 Setting the feature flags for a catalog 3-21
Listing 3-6 Calling an application’s completion routine 3-28
Listing 3-7 'DRVR' resource definition 3-40

Chapter 4 Service Access Module Setup 4-1

Figure 4-1 Catalog-choice dialog box 4-26
Figure 4-2 Alternate forms of a single address information page 4-31

Table 4-1 Setup-catalog record types 4-64
Table 4-2 Attributes of an MSAM record 4-65
Table 4-3 Attributes of a CSAM record 4-66
Table 4-4 Attributes of a Mail Service record 4-67
Table 4-5 Attributes of a Catalog record 4-68
Table 4-6 Attributes of a Combined record 4-70
Table 4-7 Required resources for setup aspect templates 4-73

Listing 4-1 Combined catalog and mail service setup template 4-6
Listing 4-2 Matching an MSAM file ID 4-12
Listing 4-3 Inserting a record reference into a record 4-21
Listing 4-4 Mail service setup template 4-23
Listing 4-5 Address template 4-31
Listing 4-6 Main routines of the address template code resource 4-41
Listing 4-7 Input subroutines for the address template code resource 4-48
Listing 4-8 Output subroutines for the address template

code resource 4-52
Listing 4-9 Miscellaneous subroutines used by the address template

code resource 4-57

xi

P R E F A C E

About This Book

This book, Inside Macintosh: AOCE Service Access Modules, describes the

mechanisms by which you can add catalog and messaging services to those

that are available through PowerTalk system software and PowerShare

collaboration servers. The technology underlying the PowerTalk and

PowerShare software is called the Apple Open Collaboration Environment
(AOCE). In this book, the term AOCE software refers to the Macintosh

Operating System managers, Finder extensions, and other system software

that the PowerTalk system software and PowerShare servers use to

implement their many features. You use this AOCE software to implement

your service access module. The term PowerTalk system software refers

specifically to the implementation of the AOCE technology for the Macintosh

Computer, and the term PowerShare collaboration servers refers to AOCE-based

servers provided by Apple Computer, Inc., that provide mail, messaging,

catalog, security, and time services.

You need to read this book if you want to extend the capabilities of the

PowerTalk system software to take advantage of services offered by external

catalogs (also known as directories or databases) and external messaging

systems. This book describes the architecture of catalog service access

modules (CSAMs) and messaging service access modules (MSAMs) and

explains how each type of service access module (SAM) interacts with AOCE

software. This book also describes the special AOCE templates that SAMs

require to obtain configuration and address information from the user. It

provides a technical reference to the system software routines that you use

to provide catalog and messaging services.

This book assumes that you are an experienced C and Macintosh programmer

and are familiar with the capabilities of AOCE software. Before reading this

book, you should read at least these chapters in Inside Macintosh: AOCE
Application Interfaces:

■ “Introduction to the Apple Open Collaboration Environment” describes
some of the uses of PowerTalk and PowerShare system software and
introduces all of the AOCE managers. It discusses some concepts
fundamental to an understanding of the AOCE software and defines
many new terms.

■ “AOCE Utilities” describes AOCE data structures and utility routines.

■ “AOCE Templates” describes AOCE template resources. You need to under-
stand standard AOCE templates before you can write the setup template
that most SAMs require and the address template that all MSAMs require.

■ “Catalog Manager” describes functions you implement in your CSAM to
service user requests for information about the catalogs that you support
and to manipulate the data in those catalogs.

xii

P R E F A C E

In addition, portions of the chapters “Interprogram Messaging Manager” and

“Authentication Manager” in Inside Macintosh: AOCE Application Interfaces

provide information useful in developing a SAM. This book contains cross-

references to those chapters where appropriate.

In this book, the chapter “Introduction to Service Access Modules” provides

a brief overview of the different types of SAMs and their setup and address

templates.

The chapter “Catalog Service Access Modules” describes the architecture and

the components of a CSAM. This chapter does not stand alone. To implement

a CSAM, you need a sound understanding of Catalog Manager functions and

AOCE data types, described in the chapters “Catalog Manager“ and “AOCE

Utilities” in Inside Macintosh: AOCE Application Interfaces.

The chapter “Messaging Service Access Modules” describes how you can

interface an external mail or messaging system with the PowerTalk system

software by writing an MSAM. It explains the structure of personal and

server MSAMs and the differences between them, and describes how you

can accomplish the most common tasks of an MSAM.

The chapter “Service Access Module Setup” describes the setup template,

required for CSAMs and personal MSAMs, and the address template,

required for all MSAMs. It also describes the records in the PowerTalk Setup

catalog that the templates manipulate.

For your convenience, this book and Inside Macintosh: AOCE Application
Interfaces include the same glossary of AOCE terminology. Thus, some

glosssary entries refer to topics that are not introduced in this book.

Format of a Chapter

The chapters in this book typically contain an overview of the features

provided by the subject of the chapter, sections that describe how to use the

most common routines along with code samples, a reference section, and a

summary section.

The content of the reference section differs somewhat from chapter to chapter.

For example, whereas the reference section of the chapter “Messaging Service

Access Modules” describes the data structures and functions used by the

MSAM API, the reference section of the chapter “Service Access Module

Setup” describes the records in the PowerTalk Setup catalog and the resources

that constitute the setup template. In each case, the reference section provides

a complete reference to the portion of AOCE system software described by

that chapter.

Function descriptions follow a standard format, which gives the function

declaration and a description of every parameter of the function. Some

function descriptions also give additional descriptive information, such

xiii

P R E F A C E

as special considerations and cross-references to other sections, chapters,

and books.

The summary section typically provides the API’s C interface, as well as the

Pascal interface, for the constants, data structures, functions, and result codes

associated with the API. It also includes some assembly-language interface

information.

Some chapters include additional main sections that provide more detailed

discussions of certain topics. For example, the chapter “Messaging Service

Access Modules” contains the section “AOCE Addresses,” which describes

the format of addresses used by PowerTalk software.

Conventions Used in This Book

Inside Macintosh uses various conventions to present information. Words that

require special treatment appear in specific fonts or font styles. Certain

information, such as parameter blocks, use special formats so that you can

scan them quickly.

Special Fonts
All code listings, reserved words, and the names of actual data structures,

constants, fields, parameters, and functions are shown in Courier (this is
Courier).

Words that appear in boldface are key terms or concepts defined in the

glossary.

Types of Notes
Three types of notes are used in this book:

Note

A note like this contains general information that is supplemental to the
main text. (An example appears on page 3-5.) ◆

Special topic note

A note like this contains information about a specific topic that is
supplemental to the main text. (An example appears on page 2-6.) ◆

IMPORTANT

A note like this contains information that is essential for an
understanding of the main text and that might cause you problems if
ignored. (An example appears on page 2-67.) ▲

xiv

P R E F A C E

▲ W A R N I N G

Warnings like this indicate potentially severe problems that you should
be aware of as you design your application. Failure to heed these
warnings could result in system crashes or loss of data. (An example
appears on page 2-197.) ▲

Parameter Block Information
Inside Macintosh presents information about the fields of a parameter block in

this format:

Parameter block

The arrow in the far left column indicates whether the field is an input

parameter, output parameter, or both. You must supply values for all input

parameters and input/output parameters. The function returns values in

output parameters and input/output parameters.

The second column shows the field name as defined in the MPW C interface

files; the third column indicates the C data type of that field. The fourth

column provides a brief description of the use of the field. For a complete

description of each field, see the discussion that follows the parameter block

or the description of the parameter block in the reference section of the

chapter.

Development Environment

The system software routines described in this book are available using C or

Pascal interfaces. You can call most of these routines in assembly language,

but no assembly-language interface files are provided. How you access these

routines depends on the development environment you are using. This book

shows system software functions in their C interface using the Macintosh

Programmer’s Workshop (MPW).

All code listings in this book are shown in C, or, for resources, in Rez input

format. They show methods of using various routines and illustrate

techniques for accomplishing particular tasks. Not all code listings have been

compiled or tested. These code listings are for illustrative purposes only;

Apple Computer, Inc., does not intend for you to use these code samples in

your application.

↔ inAndOut Boolean Input/output parameter.

← output1 OSErr Output parameter.

→ input1 long Input parameter.

xv

P R E F A C E

For More Information

APDA is Apple’s worldwide source of information about more than 300

development tools, technical resources, and training products. APDA is a

valuable resource for anyone interested in developing applications on Apple

platforms. Customers receive the quarterly APDA Tools Catalog featuring all

current versions of Apple development tools and the most popular

third-party development tools. Ordering is easy. There are no membership

fees, and application forms are not required for most products. APDA offers

convenient payment and shipping options, including site licensing.

To order products or to request a complimentary copy of the APDA Tools
Catalog, contact

APDA

Apple Computer, Inc.

P.O. Box 319

Buffalo, NY 14207-0319

If you provide commercial products and services, call 408-974-4897 for

information on the developer support programs available from Apple.

For information on registering application signatures, file types, Apple events,

and other technical information, contact

Macintosh Developer Technical Support

Apple Computer, Inc.

20525 Mariani Avenue, M/S 303-2T

Cupertino, CA 95014-6299

Telephone 800-282-2732 (United States)
800-637-0029 (Canada)
716-871-6555 (International)

Fax 716-871-6511

AppleLink APDA

America Online APDAorder

CompuServe 76666,2405

Internet APDA@applelink.apple.com

Contents 1-1

C H A P T E R 1

Introduction to Service

Contents

Access Modules

Overview 1-3

Messaging Service Access Modules 1-4

Catalog Service Access Modules 1-6

AOCE Setup and Address Templates 1-7

C H A P T E R 1

Overview 1-3

Introduction to Service Access Modules

This book describes service access modules and their setup and address templates. A

service access module (SAM) extends a user’s PowerTalk system to provide access to

non-AOCE mail and messaging services and catalog services.

The AOCE software comes with a set of application programming interfaces (APIs) that

allow you to extend the features provided by PowerTalk, to build collaborative

applications, and to create service access modules that integrate external services into

a user’s PowerTalk environment. This book describes the APIs you can use to create

SAMs and tells you how to write and set up a SAM. The AOCE APIs used by application

programs are described in the book Inside Macintosh: AOCE Application Interfaces.

You should read this chapter if you are interested in developing a service access module

for PowerTalk system software. PowerTalk system software is the implementation of

the Apple Open Collaboration Environment (AOCE) technology by Apple Computer,

Inc. You will find detailed information about service access modules in the remaining

chapters of this book.

This chapter gives a brief overview of service access modules and describes how they fit

into a PowerTalk system. Then, it briefly describes mail and messaging service access

modules, catalog service access modules, and the AOCE setup and address templates

needed for the configuration of service access modules.

Overview

Service access modules and their setup and address templates provide

■ a user interface for non-AOCE mail and messaging services that is consistent with
that provided by the PowerTalk system software and PowerShare servers

■ a user interface for browsing, searching, and editing information contained in
non-AOCE databases and address directories that is consistent with that provided
 by PowerTalk and PowerShare catalogs

■ a consistent programming interface for collaborative application developers,
facilitating the development of cross-platform collaborative applications

Through the mechanism of the service access module, the PowerTalk system software

architecture simplifies a Macintosh computer user’s interaction with existing mail and

messaging services and with catalog services. A service access module (SAM) is a

software component that provides the PowerTalk user with access to external mail and

messaging services or catalog services. External services are those that are not provided

automatically with PowerTalk system software and PowerShare servers. A SAM

provides its services to the user through the Catalogs and Mailbox Extensions to the

Finder and through AOCE templates. Therefore, the user interface is consistent across

different mail and messaging services and catalog services.

Consider the situation prior to the advent of AOCE technology. A Macintosh user with

accounts on a variety of electronic mail services, such as AppleLink, the Internet,

CompuServe, cc:Mail, and QuickMail, had to log on to each of these services to send and

receive mail. With PowerTalk software installed, by contrast, a user can employ a single

C H A P T E R 1

Introduction to Service Access Modules

1-4 Messaging Service Access Modules

method to access all electronic mail services, sending and receiving all types of electronic

mail through a single mailbox on the desktop. You can provide a PowerTalk user with

access to an external mail or messaging system by writing a messaging service access

module (MSAM).

Typically, a user needs a repository of addresses and the ability to look up those

addresses to make use of a mail service. In a PowerTalk system, addresses are stored in

catalogs. Although one of the primary uses of a catalog is to store addresses, the content

of catalogs is not limited to address information. In fact, you can provide a catalog

service access module (CSAM) and associated AOCE templates to allow a PowerTalk

user to browse and read any sort of information stored in any sort of external database,

address directory, or catalog, regardless of the structure of the underlying information.

AOCE technology allows two types of MSAMs: server-based and personal. Whereas a

server-based MSAM requires a system administrator to set it up and maintain it, any

user can install a personal MSAM on his or her computer, becoming both the system

administrator and a user of the system (in much the same way that System 7 provided

personal file sharing). All CSAMs are personal, installed on an individual user’s

computer. Personal SAMs require minimal setup by the user and need no intervention

by a system administrator.

Messaging Service Access Modules

A messaging service access module (MSAM) provides a link or gateway to an external

mail or messaging service. A mail service transfers information between people. A
messaging service transfers information between processes. An MSAM may provide

either mail or messaging services, or both.

An MSAM’s basic tasks are to translate addresses and data from AOCE formats to

external formats and vice versa, and to transfer messages. Historically, most gateways

have been mail gateways, and most mail has consisted of plain text data. However, users

can now exchange mail that contains styled text, pictures, sounds, and movies as well.

Processes can also exchange data in a variety of formats.

MSAMs come in two basic types—server-based and personal. A server-based MSAM

acts much like a traditional store-and-forward mail gateway. It provides a transport-

level connection between a PowerShare mail server and one or more external mail or

messaging services. The external services may be of different types. For instance, it is

possible for a single server-based MSAM to provide a connection to AppleLink and to

the Internet. A server-based MSAM must be set up and maintained by a system

administrator and typically connects large systems.

A server-based MSAM does not work on behalf of individual users; it does not need

individual account or password information. It delivers messages to a system. It is not

responsible for delivering the message to the recipient. You implement a server-based

MSAM as a foreground application.

C H A P T E R 1

Introduction to Service Access Modules

Messaging Service Access Modules 1-5

Personal MSAMs represent a major innovation in the use of gateways, unique to the

Macintosh computer. A personal MSAM is user-centered; it acts as the user’s agent. It

provides a user with a personal connection to an external mail or messaging service

through the Mailbox Extension to the Finder. A user simply drops the MSAM into the

System Folder and provides configuration information through the PowerTalk Key

Chain. A personal MSAM does not require the services of a network or system

administrator.

Usually, one thinks of a personal MSAM as connecting a user to a mail service, for

example, the AppleLink service. A personal MSAM can also provide access to private

devices connected to the user’s Macintosh computer. For instance, you can write a

personal MSAM to connect to a fax modem.

There are many implementation decisions you must make when writing a personal

MSAM. For instance, once the user has read a message, you must decide whether to

delete the message in the user’s account on the external mail service, or to keep a copy

of the message. The choice has certain implications for the user. Consider an MSAM

that automatically deletes mail once it has been read. Suppose a user opts to have mail

automatically downloaded at certain times (a feature all personal MSAMs should offer).

In this case, when the user is not at his or her Macintosh computer, he or she may not

have access to the mail (because, once the MSAM has downloaded the mail, no copy

exists on the external mail service). If, however, the MSAM keeps a copy of previously

read mail on the external mail system, then the user must periodically empty the

mailbox on the external mail system or the mail server’s disk will eventually become

full. Your MSAM can deal with such choices in any way you see fit, including offering

the user both options in a preferences dialog box.

Another example concerns whether or not to store incoming mail on the user’s Macintosh

computer. Personal MSAMs create message summaries for incoming mail. A message

summary contains important information about the message, such as the sender, the

subject, the time it was sent, and so forth. As a result, the user can browse incoming mail

without the message itself being physically present on the user’s computer. An MSAM

can then download the message itself only when the user actually wants to open and

read the message. Downloading a message on demand is an advantage if disk space is

in short supply on the user’s Macintosh. On the other hand, it is a disadvantage if the

physical connection over which the message is transferred is slow.

You make these and other implementation decisions by considering the characteristics of

the mail system to which you provide access and the needs of your users. PowerTalk

system software does not dictate these decisions. You implement a personal MSAM as a

background application.

The current implementation of AOCE system software does not fully support the

transfer of process-to-process messages by a personal MSAM.

For detailed information about writing an MSAM, see the chapter “Messaging Service

Access Modules” in this book.

C H A P T E R 1

Introduction to Service Access Modules

1-6 Catalog Service Access Modules

Catalog Service Access Modules

A catalog service access module (CSAM) provides a user with access to one or more

catalogs of information and with a consistent way of browsing and searching the

information. A CSAM implements the Catalog Manager API for an external catalog or

database and translates data between AOCE data formats and those of the external

catalogs that the CSAM supports.

AOCE catalog services grew out of the need to provide a way for users to browse and

search for the addresses of those they wanted to communicate with. Once an MSAM is

available to a user, it is useful only if the user knows one or more addresses reachable

through that MSAM. Typically, a user wants to look up addresses in an address

directory. For this reason, an MSAM is usually accompanied by a CSAM that gives the

user access to a catalog containing addresses available on a given messaging service.

AOCE catalogs can contain any type of information. You can write a CSAM that has no

association with an MSAM. The CSAM may provide access to a database containing, for

example, a native plant encyclopedia or a reference on human nutrients. A catalog can

contain any information that can be stored in AOCE records and attributes and that can

be displayed by AOCE templates.

Because not all external catalogs and databases have the same capabilities, a CSAM

must provide a set of capability flags to the Catalogs Extension to the Finder. The flags

indicate the capabilities of each catalog the CSAM supports. The user interacts directly

with the Catalogs Extension (CE) to search a catalog. Therefore, the user is limited to the

search capabilities of the CE and cannot use additional search or query capabilities that

may exist in the external catalog or database.

A CSAM is not limited to accessing traditional shared databases. You can write a CSAM

to access private devices that the user connects to the Macintosh computer. For example,

a catalog can reside on a compact disc.

Most users search or browse catalogs in real time. Because the task of retrieving informa-

tion is performance-sensitive, you implement a CSAM as a driver.

The AOCE software architecture does not prevent the development of server-based

CSAMs. However, support for server-based CSAMs is not currently implemented in

the AOCE software. If you want to make information available to networked users as a

server-based catalog, you can write an application that transfers your external catalog

information into a PowerShare catalog.

As is the case with MSAMs, there are numerous implementation decisions that you must

make when writing a CSAM. The AOCE system software architecture allows for much

flexibility. For example, you can cache information from your external catalog locally or

you can retrieve it when the user wants it. You make these decisions based on the

characteristics of the catalog services you support and the needs of your users.

For detailed information about writing a CSAM, see the chapter “Catalog Service Access

Modules” in this book.

C H A P T E R 1

Introduction to Service Access Modules

AOCE Setup and Address Templates 1-7

AOCE Setup and Address Templates

A special catalog called the PowerTalk Setup catalog stores information about all of the

mail and messaging and catalog services available to the user of a given Macintosh. The

writer of a personal MSAM or CSAM must provide a setup template, which is a set of

AOCE templates that work with the PowerTalk Key Chain to allow the user to set up and

configure the mail or catalog service. The user enters such information as the account

name and password, automatic connection preferences, and so forth.

If you are writing an MSAM, you also need to provide an address template that allows

the user to create addresses for the external messaging system.

For detailed information about writing AOCE setup and address templates, see the

chapter “Service Access Module Setup” in this book.

Contents 2-1

C H A P T E R 2

Messaging Service Access

Contents

Modules

Introduction to Messaging Service Access Modules 2-6

Personal MSAMs 2-9

Server MSAMs 2-11

MSAM Modes of Operation 2-12

Types of Messages 2-16

Basic Messages 2-16

Letters 2-17

Reports 2-23

AOCE Addresses 2-23

AOCE High-Level Events 2-32

System Location 2-35

Using the MSAM API 2-35

Determining Whether the Collaboration Toolbox Is Available 2-36

Determining the Version of the IPM Manager 2-36

Launching a Personal MSAM 2-36

Initializing a Personal MSAM 2-37

Initializing a Server MSAM 2-40

Handling Outgoing Messages 2-43

Enumerating Messages in an Outgoing Queue 2-44

Opening and Closing a Message 2-46

Determining the Message Family 2-47

Determining What Is in a Message 2-47

Reading Letter Attributes 2-47

Interpreting Creator and Type for Messages and Blocks 2-50

Reading Addresses 2-51

Reading Letter Content 2-57

Reading a Nested Message 2-59

C H A P T E R 2

2-2 Contents

Marking Recipients 2-60

Generating a Report 2-61

Writing Incoming Messages 2-62

Choosing Creator and Type for Messages and Blocks 2-64

Creating a Letter’s Message Summary 2-64

Creating a Letter 2-70

Creating a Non-Letter Message 2-71

Writing Letter Attributes 2-72

Writing Addresses 2-73

Writing Letter Content 2-76

Submitting a Message 2-79

Receiving a Report 2-80

Deleting a Message 2-81

Translating Addresses 2-82

Translating From an AOCE Address 2-83

Translating to an AOCE Address 2-88

Logging Personal MSAM Operational Errors 2-91

Messaging Service Access Module Reference 2-93

Data Types and Constants 2-94

The MSAM Parameter Block 2-94

The Mail Buffer 2-96

The Mail Reply Structure 2-96

The Enumeration Structures 2-97

The Mail Time Structure 2-99

The Letter Attribute Structures 2-99

The Recipient Structures 2-106

The Segment Types 2-109

The Enclosure Information Structure 2-111

The Image Block Information Structure 2-112

The High-Level Event Structures 2-113

The Server MSAM Administrative Event Structures 2-116

The Personal MSAM Setup Structures 2-119

The Personal MSAM Letter Flag Structures 2-122

The Personal MSAM Message Summary Structures 2-124

The Personal MSAM Error Log Entry Structure 2-128

MSAM Functions 2-130

Initializing an MSAM 2-131

Enumerating Messages in a Queue 2-138

Opening an Outgoing Message 2-140

Reading Header Information 2-142

Reading a Message 2-150

Marking a Recipient 2-163

Closing a Message 2-167

Creating, Reading, and Writing Message Summaries 2-168

Creating a Message 2-176

Writing Header Information 2-178

Writing a Message 2-185

C H A P T E R 2

Contents 2-3

Submitting a Message 2-200

Deleting a Message 2-202

Generating Log Entries and Reports 2-204

Shutting Down a Server MSAM 2-210

Setting Message Status 2-211

Personal MSAM Template Functions 2-213

Application-Defined Function 2-219

High-Level Events 2-220

Summary of the MSAM Interface 2-238

C Summary 2-238

Data Types and Constants 2-238

MSAM Functions 2-262

Application-Defined Function 2-264

Pascal Summary 2-264

Data Types and Constants 2-264

MSAM Functions 2-290

Application-Defined Routine 2-292

Assembly-Language Summary 2-293

Trap Macros 2-293

Result Codes 2-294

C H A P T E R 2

2-5

Messaging Service Access Modules

This chapter describes Apple Open Collaboration Environment (AOCE) messaging

service access modules. A messaging service access module is a software component that

provides the PowerTalk user with access to external mail and messaging services. You

do not need to read this chapter if you are writing a mail or messaging application or

adding mail or messaging capabilities to your application.

To write a messaging service access module, you need to be familiar with many

components of AOCE software. You should read the chapters “Introduction to the Apple

Open Collaboration Environment” and “AOCE Utilities” in Inside Macintosh: AOCE

Application Interfaces before reading this chapter to get a general overview of AOCE

software components and the shared AOCE data types and the utility routines that act

on them. This chapter assumes that you are familiar with AOCE catalogs and records

and their structures, and that you know how to read and write data to them. The

chapters “Standard Catalog Package” and “Catalog Manager” in Inside Macintosh: AOCE

Application Interfaces describe the high-level application programming interface (API)

and the low-level API to AOCE catalogs, respectively.

To read and write AOCE records, you must obtain an authentication identity. Identities

are described in the chapter “Authentication Manager” in Inside Macintosh: AOCE

Application Interfaces.

Along with your messaging service access module, you need to provide a type of AOCE

template called an address template to allow the user to enter address information. If you

are writing a personal messaging service access module, you also need to provide a

setup template that allows the user to configure your access module. The chapter

“AOCE Templates” in Inside Macintosh: AOCE Application Interfaces describes how to

write an AOCE template. The chapter “Service Access Module Setup” in this book

provides additional specific information about setup and address templates and their

interaction with messaging service access modules and the PowerTalk Key Chain.

All messaging service access module developers need to be familiar with high-level

events. See the chapter “Event Manager” in Inside Macintosh: Macintosh Toolbox Essentials

for information about high-level events.

This chapter starts with an introduction to messaging service access modules.

Subsequent sections describe

■ personal messaging service access modules

■ server messaging service access modules

■ the types of messages that are read and written by messaging service access modules

■ AOCE addresses

■ the AOCE high-level events

■ how to get messages out of an AOCE system

■ how to put messages into an AOCE system

■ the structures and routines in the messaging service access module API

C H A P T E R 2

Messaging Service Access Modules

2-6 Introduction to Messaging Service Access Modules

Introduction to Messaging Service Access Modules

A messaging system is a combination of hardware and software that provides people

and processes with the ability to exchange electronic messages—it provides messaging

services. Apple’s AOCE messaging system consists of PowerTalk system software and

PowerShare mail servers that allow Macintosh users and processes accessible over a

network or via a modem to exchange electronic messages. Today there are many types of

messaging systems, such as Internet, AppleLink, QuickMail, and so forth, with which

AOCE users might want to communicate. To facilitate the exchange of messages between

an AOCE messaging system and other existing and future messaging systems, the AOCE

architecture defines a messaging service access module (MSAM). An MSAM links

Apple’s AOCE messaging system to another messaging system, extending the reach of

messaging service clients.

The AOCE architecture defines two kinds of MSAMs. A personal MSAM translates

messages and transfers them between a user’s Macintosh and the user’s account on

another messaging system. It runs on a user’s Macintosh. A server MSAM translates

and transfers messages between a PowerShare mail server and a non-AOCE messaging

system. A server MSAM transfers messages for any number of users located on the

AppleTalk network to which it is connected. It runs on a Macintosh with a PowerShare

mail server. Thus, the MSAM component of AOCE software architecture is scalable. It

can provide service to a single user who uses a non-networked Macintosh computer or

to large numbers of users in large internetworks.

Figure 2-1 shows how adding an MSAM to an AOCE system extends the reach of AOCE

users. Prior to adding an MSAM, AOCE users cannot exchange electronic messages with

others who are accessible only on a non-AOCE messaging system. Once an MSAM that

connects to the non-AOCE messaging system is added, the AOCE users can exchange

messages with people accessible on the non-AOCE messaging system.

The basic services provided by both personal and server MSAMs include

■ transferring messages between an AOCE messaging system and another
messaging system

■ translating the content of messages between AOCE-defined formats and other formats

■ translating message addresses between AOCE-defined formats and other formats

■ reporting the results of attempts to deliver messages

Personal and server MSAMs are described in more detail in the following sections.

A note on terminology

Throughout this chapter, the term message is used as an inclusive term
to refer to all types of messages. When information applies only to
letters (a specific type of message), the term letter is used. When
information applies only to messages that are not letters, the term
non-letter message is used. Letters and messages are defined in the
section “Types of Messages” beginning on page 2-16.

C H A P T E R 2

Messaging Service Access Modules

Introduction to Messaging Service Access Modules 2-7

Figure 2-1 Adding an MSAM

Messaging systems that are not provided automatically with PowerTalk
system software and PowerShare servers are collectively referred to as
external messaging systems. An external messaging system may handle
only letters or non-letter messages or both.

The term mail refers to letters. Messaging systems that handle only
letters are sometimes referred to as mail systems.

As a convention, this chapter refers to messages coming into an AOCE
system from an external messaging system as incoming messages and
to those that are leaving an AOCE system to go into an external
messaging system as outgoing messages.

Throughout the chapter, the text distinguishes between personal and
server MSAMs where appropriate. The term MSAM is used when the
text applies to both personal and server MSAMs, unless it is clear from
the context that only a personal or server MSAM is meant. ◆

An MSAM is a low-level component in the AOCE software hierarchy. It does not directly

provide services to a user or process; rather, it provides services indirectly through either

the Standard Mail Package or the Interprogram Messaging (IPM) Manager. Thus, a client

has a standard interface to all messaging systems, including those that are accessible via

C H A P T E R 2

Messaging Service Access Modules

2-8 Introduction to Messaging Service Access Modules

MSAMs as well as Apple’s PowerTalk and PowerShare services, regardless of underlying

differences in how messages are accessed and formatted. Figure 2-2 shows the relation-

ship of two clients, the Standard Mail Package, the IPM Manager, an MSAM, and an

external messaging system.

Figure 2-2 An MSAM’s relationship to AOCE software

MSAMs interact with the IPM Manager. Either the MSAM or the IPM Manager can

initiate communication with the other. Figure 2-3 illustrates the way the IPM Manager

and an MSAM initiate communications with each other. An MSAM initiates communi-

cation with the IPM Manager by calling one of the functions provided in the MSAM API.

These functions are described in detail in the section “MSAM Functions” beginning on

page 2-130.

The IPM Manager initiates communication with an MSAM by sending it a high-level

event. The events that the IPM Manager may send to an MSAM, which typically instruct

the MSAM to take some action or advise it of a status change, are described in the

section “High-Level Events” beginning on page 2-220.

Figure 2-3 Communication between the IPM Manager and an MSAM

C H A P T E R 2

Messaging Service Access Modules

Personal MSAMs 2-9

Personal MSAMs

A personal MSAM allows a user or a mail or messaging application to transfer messages

between the user’s Macintosh and users or applications on one or more external

messaging systems. A personal MSAM connects to an external messaging system and

transfers messages between the user’s Macintosh and the external messaging system.

The user or process must have an account on the external messaging system to which the

personal MSAM provides access. The user’s Macintosh does not need to be connected to

an AppleTalk network.

A personal MSAM is a background-only application; that is, it has no user interface.

Every personal MSAM must be accompanied by AOCE templates that allow the user to

configure the MSAM and to enter address information. These templates, called the setup

template and address template, are described in the chapter “Service Access Module Setup”

in this book. Information that applies to all AOCE templates is provided in the chapter

“AOCE Templates” in Inside Macintosh: AOCE Application Interfaces.

A file containing a personal MSAM must have a file type of either 'msam' or 'csam'. If

you provide both a personal MSAM and a catalog service access module (CSAM) in the

same file, use the file type'csam'(for “combined service access module”). If you

provide a personal MSAM only, use the file type 'msam'. You must include your setup

and address templates in the same file as your personal MSAM.

Although personal MSAMs and server MSAMs both connect to external messaging

systems and translate and transfer messages, there are a number of differences between

them. See Table 2-1 on page 2-11 for a list of these differences.

A slot, as the term is used in the MSAM API and in this chapter, refers to a collection of

information about one account on an external messaging system. The information

includes whatever is necessary to allow an MSAM to access the account and retrieve and

send messages. Slot information determines what external messaging system the MSAM

connects to. The term mail slot refers to a slot that allows the transfer of letters. The term

messaging slot refers to a slot that allows the transfer of non-letter messages.

Slot information is stored in the form of AOCE record attributes in records in the

PowerTalk Setup catalog. The record types in which the information is stored differ

depending on whether you provide a combined MSAM/CSAM or a stand-alone MSAM.

If you provide a combined MSAM/CSAM, slot information and its associated catalog

information is stored in a single Combined record. If you provide a stand-alone MSAM,

slot information is stored in a Mail Service record (sometimes called a slot record) and

associated catalog information is stored in a Catalog record. The setup template that you

provide with your MSAM writes slot information to some of these records; the PowerTalk

Key Chain writes to others. The chapter “Service Access Module Setup” in this book

describes the required attributes of the Combined, Mail Service, and Catalog records,

and it explains who is responsible for writing those attributes to the different types of

records in the Setup catalog.

C H A P T E R 2

Messaging Service Access Modules

2-10 Personal MSAMs

In addition to the required record attributes, slot information includes whatever is

necessary to allow the MSAM to service the slot—for instance, an access telephone

number and the line speed. MSAMs can define record attribute types to store slot

configuration information.

A personal MSAM can manage more than one slot. For example, if a user had two

accounts on an external messaging system of a given type, a personal MSAM

would manage two slots, one for each of the user’s accounts on that messaging system.

A personal MSAM also can connect to more than one external messaging system.

For example, if a user has an account on each of two independent messaging systems,

the same personal MSAM can connect to each system and manage a slot for the

user’s account there.

Each mail slot that a personal MSAM manages has two queues: an incoming queue and

an outgoing queue.

Each messaging slot that a personal MSAM manages has an outgoing queue. The notion

of an incoming queue does not apply to messaging.

An incoming queue contains AOCE letters that the personal MSAM translates from mail

received from its external messaging system and each letter’s associated message

summary. (See the section “MSAM Modes of Operation” beginning on page 2-12 for

information about message summaries.) An outgoing queue contains messages that the

personal MSAM must deliver to an external messaging system. A personal MSAM

retrieves a message from an outgoing queue, translates it, and delivers it to the intended

recipients on the external messaging system.

Note that any given queue contains either letters and message summaries or non-letter

messages. It does not contain both. Figure 2-4 shows an example of a personal MSAM

with three slots and their associated queues.

Figure 2-4 Personal MSAM with its slots and queues

C H A P T E R 2

Messaging Service Access Modules

Server MSAMs 2-11

IMPORTANT

In release 1 of the AOCE software, the handling of non-letter messages is
not fully supported for personal MSAMs. Therefore it is not advisable
for a personal MSAM to implement the transfer of non-letter messages
using release 1 of the AOCE software. ▲

Server MSAMs

A server MSAM allows users and processes on an AppleTalk network to exchange

messages with other users and processes on one or more external messaging systems. It

serves its clients indirectly by acting as a conduit for messages between a PowerShare

mail server and the external systems to which the MSAM is connected. It must run on

the same Macintosh as its PowerShare mail server.

Server MSAMs route messages between different messaging systems rather than between

individual accounts on those systems. Therefore, a server MSAM does not necessarily

need to know about specific accounts on an external messaging system, and, as a result, it

has no concept of slots.

A server MSAM can connect to different types of messaging systems. For instance, a

single server MSAM might connect to one or more Simple Mail Transfer Protocol

(SMTP), X.400, and X.500 systems.

A server MSAM is a foreground Macintosh application. Once a server MSAM is

launched, it should run continuously.

(A server MSAM and its PowerShare mail server do not have to run on a dedicated

Macintosh. However, performance of other applications on the same Macintosh may

suffer when the MSAM and server are very busy.)

Table 2-1 summarizes the differences between personal MSAMs and server MSAMs.

(Not all of the differences have been discussed at this point.) You may want to refer to

this table as you read succeeding sections in this chapter.

Table 2-1 Differences between personal MSAMs and server MSAMs

Characteristic Personal MSAM Server MSAM

Application type Background-only Foreground

Interconnects User/process to
specific account

Multiple users/
processes to
messaging system

Needs specific account
information

Yes No

Uses slots Yes No

continued

C H A P T E R 2

Messaging Service Access Modules

2-12 MSAM Modes of Operation

MSAM Modes of Operation

In addition to its type (either personal or server), another important characteristic of an

MSAM is its mode of operation. Mode of operation refers to the degree of control an

MSAM retains over messages that it puts into an AOCE system. Some MSAMs function

in some respects like a standard store-and-forward gateway; others function as an agent

for the user. This section explains these modes in more detail.

The store-and-forward gateway model consists of a source messaging system, a series

of one or more store-and-forward gateways, and a destination messaging system. A

store-and-forward gateway links different systems, providing temporary data storage

and, where necessary, address translation. Figure 2-5 illustrates the store-and-forward

gateway model. In such a model, the gateway hands off a message to the next link in the

store-and-forward chain. Once it transfers a message, its responsibility for (and control

of) that message ends. MSAMs that operate in this fashion are said to operate in

standard mode.

Queues 1 outgoing queue per
slot; 1 incoming queue
per mail slot

1 outgoing queue

Writes message summaries Yes No

Can write incoming letters
on demand

Yes No

Needs setup template Yes No

Needs address template Yes Yes

Runs on A user’s Macintosh A server Macintosh with
a PowerShare mail server

Must be connected to an
AppleTalk network

No Yes

Transfers messages for more
than one user

No Yes

Mode of operation Standard, online,
quasi-batch

Standard

File type 'csam' or 'msam' 'APPL'

Linked to its catalogs through Mail Service and
Catalog records in
the Setup catalog

Foreign dNodes in
AOCE catalog

Represented by MSAM record in the
Setup catalog

Forwarder record

Table 2-1 Differences between personal MSAMs and server MSAMs (continued)

Characteristic Personal MSAM Server MSAM

C H A P T E R 2

Messaging Service Access Modules

MSAM Modes of Operation 2-13

Figure 2-5 Store-and-forward gateway model

The online model consists of a source messaging system, a destination messaging

system, and a personal MSAM that acts as an agent for the user in connecting those

systems. In the online model, a personal MSAM does not act simply as a link in a series

of store-and-forward gateways. Rather, it actively manages letters in a user’s AOCE

mailbox and in the user’s accounts on external messaging systems, reflecting changes in

one to the other, and keeping both ends synchronized as much as possible. Figure 2-6

illustrates the online model. MSAMs that operate in this fashion are said to operate

in online mode. A personal MSAM operating in online mode can affect the user’s

experience quite directly, something an MSAM operating in standard mode cannot do.

Figure 2-6 Online model

A significant difference between standard mode and online mode is the point at which

the MSAM is active. In standard mode, an MSAM is removed from any contact with the

user. In online mode, the MSAM is actively involved with the user experience through

the MSAM API and Finder interface.

C H A P T E R 2

Messaging Service Access Modules

2-14 MSAM Modes of Operation

A server MSAM always operates in standard mode. It delivers messages to a PowerShare

mail server, at which point the MSAM’s responsibility for the message ends. The AOCE

system is responsible for delivering the message to its final destination. Similarly, from

an AOCE system perspective, a server MSAM is a store-and-forward gateway in that

messages sent to a server MSAM are addressed to a particular messaging system, not a

specific address within that system.

A personal MSAM may operate in standard mode, online mode, or a variation of online

mode referred to as quasi-batch mode. A personal MSAM always operates in standard

mode when it is dealing with incoming non-letter messages. Much as a server MSAM

hands off a message to a PowerShare mail server, the personal MSAM hands off a

non-letter message to the IPM Manager resident on the Macintosh. Once it submits

such a message to an AOCE system, the personal MSAM has no further control of or

responsibility for the message. The AOCE system delivers the message to its final

destination on the Macintosh. When a personal MSAM is dealing with incoming letters,

however, it operates in online mode or quasi-batch mode.

IMPORTANT

A single personal MSAM may operate in both standard and online or
quasi-batch modes; that is, it may handle both letters and non-letter
messages. The MSAM API is general enough to cover all variations. As a
result, the API contains features that do not apply in every case.

However, as noted earlier, the handling of non-letter messages is not
fully supported for personal MSAMs in release 1 of the AOCE software.
Therefore it is not advisable for a personal MSAM to implement the
transfer of non-letter messages using release 1 of AOCE software. ▲

The AOCE software architecture allows a personal MSAM to operate in online mode (act

as a user agent) by providing it with the means to deliver an incoming letter to a specific

queue and to manipulate that letter after placing it in the queue.

The user’s AOCE mailbox is a repository for letters from all of the different sources to

which the user has access. These sources include an incoming queue for each mail slot

managed by a personal MSAM installed on the Macintosh. On any given Macintosh with

AOCE software installed, there are some number of destination queues for incoming

messages, each of which contains either letters or non-letter messages. An incoming

queue is a special type of destination queue for letters. It is special because a personal

MSAM can manipulate an incoming queue and its contents. All other destination queues

are under the control of the IPM Manager.

A personal MSAM submitting letters to an AOCE system must conform to certain

minimal requirements of online mode. These requirements are to create, manage, and

delete information blocks about the letters that it puts into an incoming queue. The

information blocks are called message summaries. The AOCE Mailbox extension to the

Finder uses message summaries to display information about the letters to the user.

Message summaries are also the means by which a personal MSAM reflects changes in

the status of a letter from the local Macintosh computer to the remote system and vice

versa. Only personal MSAMs create message summaries for incoming letters.

C H A P T E R 2

Messaging Service Access Modules

MSAM Modes of Operation 2-15

Before a personal MSAM puts a letter into an incoming queue, it must first create

the letter’s message summary and put it into the incoming queue. A message

summary contains

■ information that is needed to display the letter to the user (this includes the subject of
the letter, its timestamp, the sender’s name, and so forth)

■ status information, such as whether the user has read the letter or deleted the letter (a
personal MSAM uses the status flags to maintain consistency between the letter’s
status on an AOCE system and on an external system)

■ state information about the letter, such as whether the letter itself currently exists in
the incoming queue

■ whatever private data that you wish to attach to this letter (for instance, you may
want to store the ID or reference number that uniquely identifies the letter on the
external messaging system)

A message summary is defined by the MSAMMsgSummary structure, described on

page 2-127.

After creating and submitting a message summary for a letter, a personal MSAM may

immediately translate the letter into the AOCE letter format and put it into the incoming

queue. Alternately, the MSAM can delay writing the letter until the user actually opens

it. (The MSAM receives a high-level event when a user opens a letter.)

In general, a personal MSAM that connects to an external messaging system over a slow

link should create the message summary and put the letter into the incoming queue at

the same time. This gives a user faster access to the letter when he or she decides to

read the letter. Also, when a link is slow or expensive, the MSAM might keep the copy of

the letter the user has already read to avoid a retransmission if the user wants to read the

letter again.

A personal MSAM that connects to an external messaging system over a fast link such

as a local area network may choose to create just the message summary without auto-

matically translating and transferring the letter itself. The MSAM can retrieve the letter

on demand, that is, only when the user actually wants to read the letter. In these

circumstances, it can delete the letter after the user reads it because retransmission

would not cause much of a delay.

A personal MSAM may implement some features of online mode but not all, and it may

thus operate somewhere in between standard and online modes. Quasi-batch mode

represents a continuous gradation between standard and online modes. In quasi-batch

mode, a personal MSAM may simply create a message summary, transfer the letter to an

AOCE system, and do nothing further with regard to the letter. For example, a personal

MSAM for fax transmissions might simply download a fax and put it into the incoming

queue. Such a personal MSAM complies with only the minimal requirements of online

mode and operates as much as possible like a standard store-and-forward gateway.

C H A P T E R 2

Messaging Service Access Modules

2-16 Types of Messages

Table 2-2 shows the types of operating modes available to server and personal MSAMs.

This section has described the incoming queue as a special queue for incoming letters,

available only to personal MSAMs with mail slots. There is no analogous construct on

the outgoing side. All MSAMs, personal and server alike, have an outgoing queue from

which they obtain outgoing messages. A server MSAM has a single outgoing queue that

contains all of the messages addressed to external messaging systems to which it is

connected. A personal MSAM, regardless of its operating mode, has one outgoing queue

for each of its slots. Each queue contains the outgoing messages for the associated slot.

Types of Messages

The following sections discuss messages, letters, and reports.

Basic Messages
A message is the basic unit of communication defined by the Interprogram Messaging

(IPM) Manager. A message consists of a message header followed by zero or more

message blocks, each of which is a sequence of any number of bytes. The message
header contains control information about the message, such as the message creator and

message type, the total length of the message, the time it was submitted, addressing

information, and so forth. It also contains the length, creator, and type of each block in

the message. For more detailed information on the structure of messages and more

information on the IPM Manager and the services it provides, see the chapter

“Interprogram Messaging Manager” in Inside Macintosh: AOCE Application Interfaces.

Every message has a message creator and a message type. The message creator and type

are analogous to a Macintosh file’s creator and type. The message creator indicates

which application created the message. A message type indicates the semantics of the

message, the type of blocks the message should contain, and the relationships among the

various blocks in the message.

Similarly, every block has a block creator and a block type. The block creator indicates

which application created the block. A block type indicates the format of the data

contained within the block.

Table 2-2 MSAM operating modes

Operating mode Type of MSAM

Standard Personal MSAM (for non-letter messages) and server MSAM

Online Personal MSAM (for letters)

Quasi-batch Personal MSAM (for letters)

C H A P T E R 2

Messaging Service Access Modules

Types of Messages 2-17

In addition to message types, AOCE software defines the concept of message families. A

message that belongs to a message family shares a similar form with all other messages

that belong to the same message family. Messages of the same family conform to the

syntax of a defined set of message block types and their associated semantics. The syntax

specifies which block types are optional and which are mandatory and specifies the

relationships between the various blocks. Messages that belong to the same message

family may also contain additional blocks whose types are not defined as part of the

message family.

Apple defines three message families for an MSAM’s use. All non-letter messages that an

MSAM transfers belong to the kIPMFamilyUnspecified family. Letters may belong to

either the kMailFamily or kMailFamilyFile family, both of which are defined in the

next section. Although it is possible to distinguish a new class of messages by defining a

new message family, it is not recommended that you do so.

IMPORTANT

Apple Computer, Inc., reserves all values for message and block types,
message and block creators, and message families that consist entirely of
lowercase letters and special characters. You are free to create and use
other values except 0 and '????'. Apple Computer, Inc., does not
provide a registry for message and block types, message and block
creators, and message families. ▲

A message can contain another message. A message that is contained within another

message is called a nested message.

Letters
A letter is a type of message, consisting of a defined set of message blocks, that is

intended to be read by a person.

A letter must contain a letter header block. A letter header block contains the address of

the sender and of each recipient. It also contains the letter’s attributes.

Letter attributes are bits of information about a letter. They include such things as the

time the letter was sent, the subject of the letter, the priority assigned to the letter by the

sender, and so forth.

Note

In this chapter, letter attributes are usually referred to simply as
attributes. Do not confuse these letter attributes with record attributes. A
record attribute refers to a part of an AOCE record. For information
about record attributes, see the chapters “AOCE Utilities” and “Catalog
Manager” in Inside Macintosh: AOCE Application Interfaces. ◆

A letter may have blocks that contain letter content, a nested letter, enclosures, and an

image of the letter content. The MSAM API provides functions that you can use to read

and write most of these blocks without specifying the block type. For example, the

function MSAMPutContent automatically creates a block of type kMailContentType.

However, to add a block of type image (kMailImageBodyType) or a private data block

C H A P T E R 2

Messaging Service Access Modules

2-18 Types of Messages

(kMailMSAMType), you need to provide the block type to the MSAMPutBlock function.

Table 2-3 lists the AOCE-defined block types that a letter may contain and the functions

you use to read and write a block of a given type.

Letter content is that part of the letter that the sender typically wants the recipient

to read first, like the body of a conventional hard-copy letter. Letter content may be

in three forms:

■ a content block (block type is kMailContentType)

■ an image block (block type is kMailImageBodyType)

■ a content enclosure (block type is kMailEnclosureFileType)

A content block contains the body of a letter in one or more data segments. Each

segment contains data of one of the following types:

■ Plain text. A text segment contains data in one or more character sets (Roman, Arabic,
Kanji, and so on) with 1-byte or 2-byte character codes, depending on the character set.

Table 2-3 Predefined letter block types

Block type Value Block contents To read/write

kMailLtrHdrType 'lthd' Letter header MSAMGetRecipients
MSAMPutRecipient

MSAMGetAttributes
MSAMPutAttribute

kMailContentType 'body' Body of letter MSAMGetContent
MSAMPutContent

kMailEnclosureListType 'elst' List of enclosures MSAMGetEnclosure
MSAMPutEnclosure

kMailEnclosureDesktopType 'edsk' Desktop Manager
information for
enclosures

MSAMGetEnclosure
MSAMPutEnclosure

kMailEnclosureFileType 'asgl' A file enclosure MSAMGetEnclosure
MSAMPutEnclosure

kMailImageBodyType 'imag' Image of letter MSAMGetBlock
MSAMPutBlock

kMailMSAMType 'gwyi' MSAM-defined
information

MSAMGetBlock
MSAMPutBlock

kIPMEnclosedMsgType 'emsg' Nested letter MSAMOpenNested
MSAMBeginNested

kIPMDigitalSignature 'dsig' Digital signature MSAMGetBlock
MSAMPutBlock

C H A P T E R 2

Messaging Service Access Modules

Types of Messages 2-19

■ Styled text. The segment contains text and a StScrpRec structure containing the style
information for that text.

■ Pictures. The segment contains data in PICT format.

■ Sounds. The segment contains data in Audio Interchange File Format (AIFF).

■ Movies. The segment contains data in QuickTime movie file format ('MooV').

These five data formats are collectively called standard content or standard interchange
format, sometimes referred to as AppleMail format. All MSAMs must support standard

content to facilitate interoperability. Any user with AOCE software installed can read

and write letters containing standard content using the AppleMail application.

Another way of communicating a letter’s content is to include it in an image block.
Data in an image block is stored in a structure of type TPfPgDir followed by picture

elements (PICTs). The format of data in an image block is sometimes referred to as

snapshot format.

The AppleMail application can read image blocks. Thus, by including an image block in

a letter, an application that uses formats other than standard interchange format can

ensure that a user having the AppleMail application can view the formatted content. A

receiver cannot edit image data. MSAMs should support image blocks.

The third form in which letter content may be transmitted or received is a content
enclosure, sometimes referred to as a main enclosure. Such an enclosure is typically in

the native format of the sending application. An MSAM is not required to support

translations of various application file formats. A recipient must have a copy of the

sending application to read a content enclosure. A letter can have only one content

enclosure.

The contents (if any) of a letter may be in any or all of these three forms. Typically, you

can expect letters to contain a content block as well as a content enclosure.

An enclosure is a file or folder sent along with a letter. An enclosure may be either a

regular enclosure or a content enclosure. A regular enclosure is a file or folder included

in a letter like an attachment in a conventional hard-copy letter. That letter may or may

not contain a content block.

A letter can have up to 50 enclosures. An enclosure file can be of any type. If an

enclosure is a folder, it can contain any number of files of any type, so long as the total

number of enclosures does not exceed 50. Each file and folder counts as one enclosure.

For example, if a letter had as an enclosure a folder containing three files, the total

number of enclosures in the letter is four: one folder and three files. A content enclosure

counts when totaling the number of enclosures in a letter.

C H A P T E R 2

Messaging Service Access Modules

2-20 Types of Messages

A nested letter is a complete letter included whole within another letter. A letter can

have only one letter nested within it. However, the nested letter itself may contain a

nested letter. Figure 2-7 illustrates this concept.

Figure 2-7 Nested letters

The nesting level of a letter indicates how many letters are nested within it. The nesting

level of a letter that contains no nested letters is 0. A letter that contains a letter with a

nesting level of n has a nesting level of n + 1. Thus, if a reply letter contains a copy of the

original letter, the nesting level of the reply is one greater than the nesting level of the

original letter. Figure 2-8 illustrates an example of nesting letters. Sue sends a memo to

Dan. Her original memo has a nesting level of 0. Dan replies to Sue and includes a copy

of Sue’s original memo in the reply. His reply has a nesting level of 1. Sue sends a

different memo to Tim and includes Dan’s reply. The nesting level of her memo to Tim is

2. The theoretical limit to the number of nesting levels is very large.

C H A P T E R 2

Messaging Service Access Modules

Types of Messages 2-21

A forwarded letter is always a nested letter. It is nested within a letter that has no content

and no enclosures. The letter that contains the forwarded letter has a nesting level of

n + 1, where n is the nesting level of the forwarded letter.

Figure 2-8 How the nesting level increments

Figure 2-9 illustrates the structure of a hypothetical letter. In the message header, the

message creator and type ('lap2' and 'lttr') indicate that this message is a letter

that was created by the AppleMail application. Next is the letter header block. The letter

header information includes the letter’s nesting level, set to 2, indicating that this letter

has two letters nested within it. The letter contains a content block. The blocks of type

kMailEnclosureListType ('elst') and kMailEnclosureDesktopType ('edsk')

 are private to Macintosh system software. There are two enclosures in the letter, one

of which is a content enclosure. An image block is present. It contains an alternate

representation of the data in the content block. The letter also contains a nested letter in a

C H A P T E R 2

Messaging Service Access Modules

2-22 Types of Messages

nested letter block. The nested letter is a complete letter consisting of a message header, a

letter header block, a content block, and a nested letter block. Its letter header shows that

its nesting level is 1. The nested letter block contains a complete letter consisting of a

message header, a letter header block, and a content block. Its nesting level is 0.

Figure 2-9 Structure of a letter

Ordinarily, letters belong to one of two message families defined by AOCE software. A

letter that belongs to the kMailFamily family may contain either a content block or any

type of enclosure or both. A letter that belongs to the kMailFamilyFile family does

not contain a content block or a content enclosure, but may contain a regular enclosure.

You should not put a content block into or expect to get a content block from a letter in

the kMailFamilyFile family.

C H A P T E R 2

Messaging Service Access Modules

AOCE Addresses 2-23

Reports
A report communicates delivery information about a message to the sender of the

message. A report, like a letter, is a message with a defined set of message blocks.

The sender of a message can request information about successful delivery of the

message, failure to deliver the message, or both, for a message. The sender’s request

applies to all of the message’s recipients.

A single report may contain information about the outcome of delivery attempts to one

or more recipients of a message; that is, it may contain delivery indications, non-delivery

indications, or both. A delivery indication indicates the successful delivery of a specific

message to one or more specified recipients. A non-delivery indication indicates failure

to deliver a specific message to one or more specified recipients. A delivery or

non-delivery indication is sometimes referred to as a recipient report.

An MSAM can both create a report about an outgoing message and receive a report

about an incoming message.

Note

A report that an MSAM creates or receives (an MSAM report) differs
somewhat from a report created or received by other clients of the IPM
Manager (an IPM report). An IPM report may contain a copy of the
original message, but an MSAM report never does. An IPM report goes
directly to an IPM Manager client. An MSAM report goes to an AOCE
agent, which interprets the information in the MSAM report and creates
an IPM report to send to the ultimate report recipient. ◆

The sections “Generating a Report” on page 2-61 and “Receiving a Report” on page 2-80

describe how an MSAM generates and receives reports. For information on IPM reports,

see the chapter “Interprogram Messaging Manager” in Inside Macintosh: AOCE
Application Interfaces.

AOCE Addresses

The AOCE software architecture provides for the exchange of messages among different

types of messaging systems. The exchange of messages requires a way of uniquely

specifying the sender and receiver of a message. This unique specification is called an

address. This section discusses the syntax and semantics of the AOCE address structure.

To provide connectivity between AOCE messaging systems and other messaging

systems, the AOCE address structure is designed to accommodate already existing

address formats, in addition to address formats that may be developed for future

messaging systems.

One way that messaging systems can be differentiated is by the syntax and semantics of

their addresses. Messaging systems that share the same addressing conventions are said

to be of the same type.

C H A P T E R 2

Messaging Service Access Modules

2-24 AOCE Addresses

An address is unique within a messaging system. To exchange messages between

messaging systems, a sender must specify an address plus the messaging system in

which the address is unique.

At the most general level, you can think of an AOCE address structure as having two

parts: a messaging system specifier and an entity specifier that uniquely identifies a

person or process within that messaging system. When an address specifies a recipient

within an AOCE messaging system, the AOCE software delivers the message to the

specific address. When an address specifies a recipient in a non-AOCE messaging

system, the AOCE software delivers the message to the MSAM responsible for that

messaging system.

For AOCE routing software, the basic problem can be stated as follows: assume an

external messaging system is named System X. System X contains many addressable

entities (users and processes). To send a message to an entity Y in System X, AOCE needs

a way to say “Y in System X.” AOCE doesn’t care what Y is. Y is internal to, and should

be unique in, System X.

Figure 2-10 shows an AOCE messaging system, an AppleLink system, and two SMTP

systems. (SMTP stands for Simple Mail Transfer Protocol. Computers connected to the

Internet often use SMTP to exchange messages.) Within this environment, AOCE routing

software needs a way to specify each messaging system. Each messaging system is

partially described by a four-character extension type. An extension type identifies a

type of messaging system that uses a specific addressing convention—for example, an

AppleLink system or an X.400 system. Because there can be more than one messaging

system of a given type, an address based on the extension type alone is not sufficient to

distinguish between two or more messaging systems of the same type. In the illustration,

AOCE routing software could not distinguish between the two SMTP systems on the

basis of type. To solve this problem, AOCE software requires that each messaging system

have a unique name by which it is known within an AOCE system. In Figure 2-10, the

names Felines and Canines distinguish between the two SMTP messaging systems.

Figure 2-10 AOCE system connected to external messaging systems

C H A P T E R 2

Messaging Service Access Modules

AOCE Addresses 2-25

In some cases, there is only one messaging system of a given type, and the messaging

system already has a unique, well-known name. The Internet is a good example of this.

In cases like this, if your MSAM provides a preassigned name, it should use the well-

known name. A unique name for each messaging system is fundamental to AOCE

addressing.

Within some messaging systems, multiple address formats are allowed. The Internet, for

example, accepts both UUCP and SMTP addresses. An Internet MSAM has one unique

name associated with it, but it may service multiple extension types, one for each form of

Internet address that it knows how to translate.

Note

There is no registry for extension types. If you want to use an existing
extension type, you are responsible for ensuring that the extension type
always represents the same address syntax and semantics. If you want
to create a new extension type, it is recommended that you use your
application’s signature type, registered with Macintosh Developer
Technical Services, to ensure uniqueness. ◆

Before describing an AOCE address structure, it is helpful to understand a little about

how the AOCE software implements unique names for messaging systems. Within an

AOCE system, each external messaging system is associated with a unique catalog name.

The catalog name identifies to AOCE software the messaging system and the set of

addresses that belong to that messaging system.

For server MSAMs, the AOCE system administrator creates a reference to an external

messaging system by creating a dNode, sometimes called a foreign dNode, in an AOCE

catalog. Figure 2-11 illustrates the addition of a dNode that represents an external

messaging system. The original AOCE configuration has a catalog named Catalog A that

contains dNodes named Artists Unlimited and Legal Services. AOCE software routes

messages only among addresses in Catalog A. There exists an external messaging system

called TriColor Labs. People within the original AOCE messaging system may want to

communicate with people who are accessible only via the TriColor Labs messaging

system. A server MSAM is installed within the AOCE system to extend the messaging

environment to include people within the TriColor Labs messaging system. The AOCE

system administrator creates a new dNode representing the TriColor Labs system and

gives the dNode a unique name, TCL, within Catalog A. AOCE software still routes

messages only among addresses in Catalog A, but Catalog A now includes a new set of

addresses represented by the dNode TCL.

C H A P T E R 2

Messaging Service Access Modules

2-26 AOCE Addresses

Figure 2-11 Adding a dNode for a messaging system

For personal MSAMs, the PowerTalk Key Chain creates a Catalog record in the Setup

catalog to represent the set of addresses belonging to a given messaging system. See the

chapter “Service Access Module Setup” for more information.

The name that uniquely identifies an external messaging system in an AOCE system is

the name of the dNode (for server MSAMs) or the name of the Catalog record in the

Setup catalog (for personal MSAMs).

Figure 2-12 illustrates the following points about MSAMs, messaging system names, and

extension types:

■ An external messaging system must have a unique name.

■ Different MSAMs may connect to different external messaging systems of the same
extension type.

■ A single MSAM may connect to more than one external messaging system, each
having a different extension type (it may also connect to more than one external
messaging system having the same extension type).

■ A single external messaging system may have more than one extension type.

C H A P T E R 2

Messaging Service Access Modules

AOCE Addresses 2-27

Figure 2-12 MSAMs, messaging system names, and extension types

Now look at the AOCE address structure. AOCE software already defines a RecordID

structure to uniquely identify a record in an AOCE catalog. This structure is adapted and

extended for use as an address structure. In an AOCE messaging system, an address is

specified as an OCERecipient structure, which is identical to a DSSpec structure.

struct DSSpec {

RecordID *entitySpecifier;

OSType extensionType;

unsigned short extensionSize;

Ptr extensionValue;

};

typedef DSSpec OCERecipient;

(The RecordID structure is described in the chapter “AOCE Utilities” in Inside
Macintosh: AOCE Application Interfaces.)

C H A P T E R 2

Messaging Service Access Modules

2-28 AOCE Addresses

Figure 2-13 shows an exploded view of an OCERecipient structure. An AOCE address

is a two-level specification that first identifies a messaging system and then identifies

an individual entity within it. This is roughly analogous to an address on a piece of

hard-copy mail that specifies a large organization and a mailstop within it. The postal

service uses part of the address—organization name, street number, city, state, and zip

code—to deliver the mail to the organization. The organization itself uses the remainder

of the address, the mailstop number, to deliver the mail to a specific internal address. With

an AOCE address, the OCERecipient.entitySpecifier.rli substructure identifies

the messaging system. The value pointed to by the OCERecipient.extensionValue

field identifies the individual entity within that messaging system.

Figure 2-13 Exploded view of an OCERecipient structure

C H A P T E R 2

Messaging Service Access Modules

AOCE Addresses 2-29

Table 2-4 lists the elemental fields of the address structure and the type of information

each field contains when it is used to specify an address on an external system. The

structure identifies both the external system and a specific sender or receiver within it

that is the source or destination of a message.

Table 2-4 External address: Contents of an OCERecipient structure

Field name Contents

directoryName A pointer to an RString structure containing the unique name
of a catalog in the AOCE environment. The name identifies the
external messaging system to AOCE. The name is limited to
32 characters.

discriminator An 8-byte value that further describes the catalog. The first
4 bytes indicate the extension type of the associated messaging
system, for example, ALNK or SMTP. It is the same as the value
in the extensionType field. The second 4 bytes are private to
the catalog.

dNodeNumber Unused. Set to 0.

path Unused. Set to nil.

cid Unused. Set to 0.

recordName A pointer to an RString structure containing the name of the
sender or receiver. This should be a displayable string.

recordType A pointer to an RString structure containing the type of the
sender or receiver—for example, “user” or “group”. This should
be a displayable string.

extensionType The four-character extension type that specifies a type of
messaging system, for example, 'ALNK' or 'SMTP'. The
extension type is the same as the first 4 bytes of the associated
catalog’s discriminator value.

extensionSize The length, in bytes, of the extensionValue field.

extensionValue A pointer to a buffer that contains the address of the sender or
receiver on the external system. The address is used only by the
MSAM. Its content and format are not examined by AOCE
software. However, for the type-in addressing feature in the
mailer to work, the address must be a single RString structure.

C H A P T E R 2

Messaging Service Access Modules

2-30 AOCE Addresses

Table 2-5 lists the elemental fields of the OCERecipient structure and the type of infor-

mation each field contains when it is used to specify an address within an AOCE system.

Table 2-6 lists the extension types for addresses within an AOCE messaging system.

These extension types are discussed in more detail in the chapter “Interprogram

Messaging Manager” in Inside Macintosh: AOCE Application Interfaces. You do not need

to understand the semantics of the extension types. You do need to be sure that a

recipient to whom you transmit a message from an AOCE system can reply to the

message. Your MSAM might include the extension information with the outgoing

message and reconstruct it when it submits the reply to the AOCE system. Alternatively,

Table 2-5 AOCE address: Contents of an OCERecipient structure

Field name Contents

directoryName A pointer to an RString structure containing the name of the
PowerShare catalog that contains the record representing the
sender or receiver. The name is limited to 32 characters.

discriminator The discriminator value of the catalog that contains the record
representing the sender or receiver.

dNodeNumber A value that identifies the dNode that contains the record
representing the sender or receiver. Set to 0 if you use the path
field to specify the dNode.

path A pointer to a buffer that contains the names of all of the
dNodes on the path from the catalog node in which the sender
or receiver record resides, up to the catalog root node. Set
this field to nil if you use the dNodeNumber field to identify
the dNode.

cid The creation ID of the record that represents the sender
or receiver.

recordName A pointer to an RString structure containing the name of the
sender or receiver. This is a displayable string.

recordType A pointer to an RString structure containing the type of the
sender or receiver. It tells you what the entity is, such as a user.
This is a displayable string.

extensionType A four-character extension type that specifies the format of the
data pointed to by the extensionValue field. AOCE defines
the following extension types: kOCEalanXtn, kOCEentnXtn,
kOCEaphnXtn.

extensionSize The length, in bytes, of the extensionValue field.

extensionValue A pointer to a buffer that contains the address of the sender or
receiver on the AOCE system. The address is used only by the
AOCE software. Its content and format need not be examined
by the MSAM.

C H A P T E R 2

Messaging Service Access Modules

AOCE Addresses 2-31

your MSAM might maintain mapping tables to convert between addresses within the

AOCE messaging system and external addresses. In this way, it can avoid sending to its

external system information that is only relevant inside an AOCE system. This

implementation decision is up to you.

Before you submit an incoming message to AOCE, you must construct OCERecipient

structures containing the addresses of the sender and each of the recipients. Table 2-4 on

page 2-29 describes the information you must provide in each field of the address

structure for (a) the sender from your external messaging system and (b) any recipient

in an external messaging system. Table 2-5 on page 2-30 describes the information

you must provide in each field of the address structure for a recipient within the

AOCE system.

When you read an outgoing message from AOCE, you must translate the OCERecipient

structures that contain the address information for the sender and each of the recipients

into a format that your external messaging system understands. Table 2-4 on page 2-29

describes what information you will find in each field of the address structure when the

structure specifies a recipient on an external messaging system. Table 2-5 on page 2-30

describes the information contained in each field of the address structure when the

structure specifies the sender of an outgoing message or a PowerTalk recipient.

The address of a recipient in an AOCE messaging system might include only the entity

specifier portion of the OCERecipient structure; that is, it may not have any data in the

extensionType, extensionSize, and extensionValue fields. This form is called

an indirect address because it is not actually an address but points to a record in an AOCE

catalog that contains the address. It uniquely identifies the messaging system and

provides a displayable name and type to identify the sender or receiver. The direct form

of an address always includes both the entity specifier and the extension information.

The extension information gives a more detailed form of address. Addresses in external

messaging systems are always in the direct form. Addresses in PowerShare catalogs may

be in either the direct or indirect form. For more information about direct and indirect

addressing, see the chapter “Interprogram Messaging Manager” in Inside Macintosh:
AOCE Application Interfaces.

Table 2-6 AOCE extension types

Constant Value Description

kOCEalanXtn 'alan' Indicates an EntityName structure (an NBP name)
plus a queue name in the form of a Pascal string. It is
used for an address accessible on the local AppleTalk
network.

kOCEentnXtn 'entn' Indicates a DSSpec structure. It is used for an address
accessible through a PowerShare mail server.

kOCEaphnXtn 'aphn' Indicates a structure that specifies an address
accessible by telephone.

C H A P T E R 2

Messaging Service Access Modules

2-32 AOCE High-Level Events

Table 2-7 shows examples of the content of the fields of an OCERecipient structure for

an indirect AOCE address and an SMTP address.

When the entitySpecifier portion of the OCERecipient structure contains infor-

mation about a sender or receiver on an external system, that information does not

specify a record in a PowerShare catalog that represents the sender or receiver. However,

when the structure contains information on a sender or receiver inside an AOCE

messaging system, it does specify an existing record.

With your MSAM, you need to provide a special kind of AOCE template, called an

address template, that allows a user to enter address information. Basic information about

AOCE templates is provided in the chapter “AOCE Templates” in Inside Macintosh:
AOCE Application Interfaces. Specific information about address templates is provided in

the chapter “Service Access Module Setup” in this book.

AOCE High-Level Events

Both personal and server MSAMs must be prepared to receive and respond to high-level

events defined by AOCE software. The chapter “Event Manager” in Inside Macintosh:
Macintosh Toolbox Essentials describes the use of high-level events in detail; that

information is not repeated in this section.

Table 2-7 Sample addresses

OCERecipient fields
AOCE system
(indirect address form) SMTP system

directoryName Engineering Finance

discriminator ACAP1234 SMTP0000

dNodeNumber 6 0

path nil nil

creationID 44894489 00000000

recordName Joe Bernard Suzy Durksen

recordType aoce User aoce User

extensionType Not applicable 'SMTP'

extensionSize Not applicable 16

extensionValue Not applicable Suzy@finance.com

C H A P T E R 2

Messaging Service Access Modules

AOCE High-Level Events 2-33

Personal MSAMs may receive the following high-level events:

Server MSAMs may receive these high-level events:

Detailed descriptions of these events can be found in the section “High-Level Events”

beginning on page 2-220.

When an MSAM receives an AOCE high-level event, it manipulates a standard

EventRecord structure (defined in the chapter “Event Manager” in Inside Macintosh:
Macintosh Toolbox Essentials). The fields of an event record associated with an AOCE

high-level event have a particular meaning.

struct EventRecord {

short what;

long message;

long when;

long where;

short modifiers;

};

Field descriptions

what Always contains the constant kHighLevelEvent.

message Always contains the event class kMailAppleMailCreator.

Constant Event ID Description

kMailEPPCCreateSlot 'crsl' Slot created

kMailEPPCModifySlot 'mdsl' Slot modified

kMailEPPCDeleteSlot 'dlsl' Slot deleted

kMailEPPCMailboxOpened 'mbop' User opened mailbox

kMailEPPCMailboxClosed 'mbcl' User closed mailbox

kMailEPPCMsgPending 'msgp' Messages waiting to be sent

kMailEPPCSendImmediate 'sndi' Send letter now

kMailEPPCShutDown 'quit' Shut down operations and quit

kMailEPPCContinue 'cont' Resume operation after error fixed

kMailEPPCSchedule 'sked' Time for scheduled activity

kMailEPPCInQUpdate 'inqu' Incoming queue updated

kMailEPPCMsgOpened 'msgo' User opened letter

kMailEPPCDeleteOutQMsg 'dlom' Delete outgoing queue message

kMailEPPCWakeup 'wkup' Launched due to wakeup

kMailEPPCLocationChanged 'locc' System location changed

Constant Event ID Description

kMailEPPCAdmin 'admn' Server administration function

kMailEPPCMsgPending 'msgp' Messages waiting to be sent

C H A P T E R 2

Messaging Service Access Modules

2-34 AOCE High-Level Events

when Unused.

where Contains the event ID that identifies a specific event—for example,
kMailEPPCAdmin.

modifiers For personal MSAMs, this field contains the slot ID when the event
applies to a particular slot; otherwise, it is set to 0. Server MSAMs
can ignore this field.

Some AOCE high-level events require more information than that provided in the event

record. After you receive such an event, you should call the AcceptHighLevelEvent

function to get the additional data associated with the event. The additional data is in the

form of a MailEPPCMsg structure.

A MailEPPCMsg structure consists of a version number and a union field. The union

field may have any of the following contents: a pointer to an SMCA structure; a letter

sequence number; a MailLocationInfo structure.

The version number indicates the version of the event. The MSAM should compare the

version number in the MailEPPCMsg structure with kMailEPPCMsgVersion. If they

are not the same, software incompatibilities may exist between the PowerTalk software

and the MSAM, and there is no guarantee that the MailEPPCMsg structure used by the

MSAM and by the IPM Manager are the same. The MSAM should ignore the event.

Most of the AOCE high-level events are informational in nature. For example, a

kMailEPPCMsgPending event tells an MSAM that it has a new outgoing message.

Informational events sent by the IPM Manager are not guaranteed to be received by the

MSAM. The MSAM should consider these events as hints; that is, it should not rely on

them as the only mechanism to initiate an action. For example, to make sure it transfers

outgoing messages in a timely manner, it could check its outgoing queues every 20

minutes, each time it is launched, and each time it receives a kMailEPPCMsgPending

event.

A few events are more than informational in nature. An MSAM must receive the

kMailEPPCCreateSlot, kMailEPPCModifySlot, kMailEPPCDeleteSlot,

kMailEPPCMsgOpened, and kMailEPPCSendImmediate events in order to take the

relevant actions. For these events, the MailEPPCMsg structure contains a pointer to an

SMCA structure. The MSAM needs to set the result field of the SMCA structure to

acknowledge the event or to report the outcome of its effort to handle the event.

Additionally, the IPM Manager informs the client if the event does not reach the MSAM.

(An MSAM cannot acknowledge or set a result for an event whose MailEPPCMsg

structure does not contain a pointer to an SMCA structure.)

Once the MSAM sets the result field to acknowledge the event or to signal completion,

the SMCA structure is no longer valid.

An MSAM defines the error codes that it returns in response to the

kMailEPPCCreateSlot, kMailEPPCModifySlot, kMailEPPCDeleteSlot, and

kMailEPPCMsgOpened events. For the kMailEPPCSendImmediate event, it typically

should return the kMailSlotSuspended or kMailTooManyErr result code.

C H A P T E R 2

Messaging Service Access Modules

System Location 2-35

System Location

The concept of location serves users with mobile Macintosh computers. Personal MSAMs

must understand the concept of location, whereas server MSAMs need not. A personal

MSAM, residing on a user’s Macintosh, must be aware of the possibility that the system

location may change. For instance, a personal MSAM installed on a PowerBook may be

launched at different locations, such as the user’s business office, the user’s home, a

customer site, an airport, and so forth. The personal MSAM is likely to be affected by

such changes of location. A fax MSAM, for example, would use different telephone

numbers when running at home or in the office; an Internet MSAM cannot work if a

TCP/IP network connection is not available.

After it is launched, a personal MSAM gets the current system location from the Setup

record in the Setup catalog. Then it determines, for each slot, whether the slot is active at

that location by checking the location flags in the slot’s standard slot information. See

the section “Initializing a Personal MSAM” on page 2-37 for a description of how you

do this.

If a slot is not active at the current location, the personal MSAM should not perform any

work on behalf of that slot. If none of the personal MSAM’s slots are active at the current

location, the MSAM should quit.

If the system location changes, the IPM Manager sends the MSAM one

kMailEPPCLocationChanged high-level event for each slot. The event tells the

MSAM the slot to which it applies, the current system location, and the location flags

for the slot. If the location flags show that the slot is inactive at the current location,

the MSAM should immediately stop performing any activity on behalf of the slot,

such as downloading or sending letters.

A user can activate or deactivate a mail slot in a given location. In response, the IPM

Manager updates the location flags in the MailStandardSlotInfoAttribute

structure for that slot and sends a kMailEPPCLocationChanged high-level event to

the MSAM. At that point, the MSAM needs to determine if the slot is active at the

current location. If the slot is active, the MSAM should continue to act for the slot; if it

is not, the MSAM should cease acting for the slot.

Using the MSAM API

This section shows you how to

■ determine whether the Collaboration toolbox is available

■ launch a personal MSAM

■ initialize personal and server MSAMs

■ transfer an outgoing letter from an AOCE system to another messaging system

C H A P T E R 2

Messaging Service Access Modules

2-36 Using the MSAM API

■ transfer an incoming letter from another messaging system to an AOCE system

■ delete a message

■ translate addresses

■ log personal MSAM operation errors

Determining Whether the Collaboration Toolbox Is Available
Before calling any of the functions in the MSAM API, a server MSAM should verify

that the Collaboration toolbox is available by calling the Gestalt function with the

selector gestaltOCEToolboxAttr. If the Collaboration toolbox is present but not

running (for example, if the user deactivated it from the PowerTalk Setup control

panel), the Gestalt function sets the bit gestaltOCETBPresent in the response

parameter. If the Collaboration toolbox is running and available, the function sets the

bit gestaltOCETBAvailable in the response parameter. The Gestalt Manager is

described in the chapter “Gestalt Manager” in Inside Macintosh: Operating System Utilities.

Because a personal MSAM is launched by the IPM Manager, it can assume that the

Collaboration toolbox is available.

If you want to be informed when the IPM Manager starts up or shuts down, you can

install an entry in the AppleTalk Transition Queue (ATQ). Then the AppleTalk

Link-Access Protocol Manager calls your ATQ routine with the transition selector

ATTransIPMStart when the IPM Manager has finished starting up and with the

selector ATTransIPMShutdown when the IPM Manager has started to shut down. The

ATQ is described in the “Link-Access Protocol (LAP) Manager” chapter in Inside
Macintosh: Networking.

Determining the Version of the IPM Manager
To determine the version of the IPM Manager that is available, call the Gestalt

function with the selector gestaltOCEToolboxVersion. The function returns the

version number of the Collaboration toolbox in the low-order word of the response

parameter. For example, a value of 0x0101 indicates version 1.0.1. If the Collaboration

toolbox is not present and available, the Gestalt function returns 0 for the version

number. You can use the constant gestaltOCETB for AOCE Collaboration toolbox

version 1.0.

Launching a Personal MSAM
A personal MSAM must be launched by the IPM Manager. If you launch a personal

MSAM in any other manner, it will not work properly with the IPM Manager.

If a personal MSAM is not already running, the IPM Manager launches it in response to

any of the following events:

■ The MSAM’s setup template calls the MailCreateMailSlot or
MailModifyMailSlot function.

C H A P T E R 2

Messaging Service Access Modules

Using the MSAM API 2-37

■ An application calls the MailWakeupPMSAM function.

■ The MSAM’s scheduled send or receive time occurs, or its send/receive time
interval elapses.

Initializing a Personal MSAM
Before the IPM Manager launches a personal MSAM for the first time, the setup template

you provide with your personal MSAM must obtain information about the MSAM,

the accounts on external messaging systems to which it will connect, and the catalogs

associated with those external messaging systems. It gets this information from the user

and stores it in the Setup catalog.

Once launched, a personal MSAM needs to obtain a variety of information, much of it in

the Setup catalog. The information includes:

■ the current system location

■ information about each slot for which it is responsible (each slot represents one
account on a messaging system)

■ the incoming and outgoing queue references for each of its slots

■ any additional configuration or private information it may require

A personal MSAM obtains much of the necessary information by reading records in the

Setup catalog. It then often copies this information into private structures.

The following steps illustrate a typical sequence of actions your MSAM can take to

obtain the necessary startup information after it has been launched:

1. Get the creation ID of the MSAM’s record in the Setup catalog by calling the
PMSAMGetMSAMRecord function. Build a record ID that contains your MSAM’s
record creation ID.

2. Get the local identity by calling the AuthGetLocalIdentity function. If the user
hasn’t set up a local identity yet, the function returns the kOCESetupRequired
result code. If the local identity is locked, the function returns the
kOCELocalAuthenticationFail result code. In either case, call the
AuthAddToLocalIdentityQueue function to be notified when the local identity
is set up and unlocked. If the AuthGetLocalIdentity function returned
kOCELocalAuthenticationFail, you can pass the locked local identity provided
by the function to the DirLookupGet and DirLookupParse functions. Therefore,
you should proceed with the initialization process.

3. Get the reference number of the Setup catalog and the creation ID of the Setup
record by calling the DirGetOCESetupRefnum function. You need to provide the
catalog’s reference number in the dsRefNum field of the DirLookupGet and
DirLookupParse parameter blocks when you want to read the records in the
Setup catalog. You need the creation ID to build a record ID for the Setup record.

4. Get the current location from the Setup record in the Setup catalog by calling the
DirLookupGet and DirLookupParse functions. As the target of the aRecordList
field in the DirLookupGet parameter block, specify the record ID of the Setup record.
You can set all fields of the record ID except the creation ID to nil. Set the creation ID

C H A P T E R 2

Messaging Service Access Modules

2-38 Using the MSAM API

to the value you obtained in the previous step. Instead of providing record location
information, you provide the catalog’s reference number in the dsRefNum field of the
DirLookupGet function’s parameter block. As the target of the attrTypeList field
in the parameter block, specify the AttributeType structure referenced by the
attribute type index kLocationAttrTypeNum. The function reads the Setup record
and places the location information into a buffer in a private data format.

Call the DirLookupParse function to read the data in the buffer. The function calls a
callback routine that you provide and passes it a pointer to an Attribute structure
containing the location information (type OCESetupLocation) that you requested.

5. Get a reference to each Mail Service or Combined record that belongs to the MSAM
by calling the DirLookupGet and DirLookupParse functions. If you provide a
stand-alone MSAM, attributes for a slot and its associated catalog are stored in a Mail
Service and a Catalog record, respectively. If you provide a combined MSAM/CSAM,
attributes for a slot and its associated catalog are stored in a single Combined record.

As the target of the aRecordList field in the DirLookupGet parameter block,
specify the RecordID structure that you created that contains the creation ID of
your MSAM record. As the target of the attrTypeList field in the parameter
block, specify the AttributeType structure referenced by the attribute type index
kMailServiceAttrTypeNum. The function reads the MSAM record and places the
packed record ID of each Mail Service or Combined record that it finds into a buffer in
a private data format.

Call the DirLookupParse function to read the data in the buffer. The function calls
your callback routine and passes it a pointer to an Attribute structure containing
a packed record ID that points to either a Mail Service or a Combined record. The
DirLookupParse function calls your callback routine once for each packed record
ID in the buffer, each of which corresponds to a slot for which your MSAM is
responsible. Now you know how many slots you are responsible for and in what
records their specific information is stored.

6. Unpack the packed record IDs of the Mail Service or Combined records by calling the
OCEUnpackRecordID utility function.

7. Get the slot ID, standard slot information, and associated catalog information for each
slot by calling the DirLookupGet and DirLookupParse functions. As the target of
the aRecordList field in the DirLookupGet parameter block, specify the unpacked
record IDs that point to your Mail Service or Combined records. As the target of the
attrTypeList field in the parameter block, specify AttributeType structures that
are referenced by the following attribute type indexes: kSlotIDAttrTypeNum,
kStdSlotInfoAttrTypeNum, and kAssoDirectoryAttrTypeNum.

Call the DirLookupParse function. It repeatedly calls your callback routine and
passes it a pointer to an Attribute structure containing one of the record attributes
you requested for each of your Mail Service or Combined records.

The value of each kSlotIDAttrTypeNum attribute is the slot ID you previously
assigned to the slot while processing the kMailEPPCCreateSlot high-level event
for that slot. It is a number (type MailSlotID) that uniquely identifies the slot. (If
you have never received and processed a kMailEPPCCreateSlot high-level event,
no kSlotIDAttrTypeNum attributes exist.)

C H A P T E R 2

Messaging Service Access Modules

Using the MSAM API 2-39

The value of each kStdSlotInfoAttrTypeNum attribute is a
MailStandardSlotInfoAttribute structure that indicates if the slot is active
and provides its send and receive timer information. For each slot, you must
determine if the slot is active at the current system location. The active field of the
MailStandardSlotInfoAttribute structure is a bit array; each bit corresponds to
a possible system location. If the slot is active at that location, the bit is set. You can
test the bits with the MailLocationMask macro (see page 2-115)

The value of each kAssoDirectoryAttrTypeNum attribute is a packed record ID
that points to the Catalog record associated with this slot or to the Combined record.

8. If you provide a stand-alone MSAM, unpack the packed record ID for each slot’s
associated Catalog record by calling the OCEUnpackRecordID utility function. (If
you provide a combined MSAM/CSAM, attributes for the slot and catalog are both
stored in the Combined record— you already unpacked the Combined record IDs.)

9. Get information about the catalog associated with each slot by calling the
DirLookupGet and DirLookupParse functions. As the target of the aRecordList
field in the DirLookupGet parameter block, specify the unpacked record IDs that
point to your Catalog or Combined records. As the target of the attrTypeList
field in the parameter block, specify AttributeType structures that are
referenced by the following attribute type indexes: kCommentAttrTypeNum,
kRealNameAttrTypeNum, and kDiscriminatorAttrTypeNum. If you provide a
combined MSAM/CSAM, also specify kSFlagsAttrTypeNum.

Call the DirLookupParse function. It repeatedly calls your callback routine and
passes it a pointer to an Attribute structure containing one of the attributes you
requested from each Catalog or Combined record. Table 2-8 on page 2-40 describes
the information contained in those attributes.

10. Get the user’s account name and decrypted password by calling the
OCESetupGetDirectoryInfo function. If the local identity is still locked, this
function returns an error. You cannot proceed until the local identity is unlocked.

Note that the value of the nativeName field returned by the
OCESetupGetDirectoryInfo function is the value of the Real Name attribute
(kRealNameAttrTypeNum) in the Catalog or Combined record. The content and use
of the Real Name attribute and the nativeName field are defined by the personal
MSAM and its setup template. A setup template can store the user’s account name
in the Real Name attribute.

At this point, you have obtained all of the standard information stored in your MSAM
and Combined records (or MSAM, Mail Service, and Catalog records) in the Setup
catalog. Using the DirLookupGet and DirLookupParse functions, you may read
other attributes of private types that your setup or address template has added to
the records.

11. Get the incoming and outgoing queue references for each of the slots by calling the
PMSAMOpenQueues function for each slot.

C H A P T E R 2

Messaging Service Access Modules

2-40 Using the MSAM API

Now the personal MSAM can begin performing its primary functions of translating and

transferring messages between an AOCE system and external messaging systems.

The chapter “Service Access Module Setup” in this book describes the information that

your setup template obtains from the user and stores in the Setup catalog as well as the

process it uses to do so. See the chapter “Catalog Manager” in Inside Macintosh: AOCE

Application Interfaces for descriptions of the DirGetOCESetupRefnum, DirLookupGet,

and DirLookupParse functions. For a description of the OCEUnpackRecordID

function and the record and attribute type indexes, see the chapter “AOCE Utilities” in

Inside Macintosh: AOCE Application Interfaces. The OCESetupGetDirectoryInfo

function is described in the chapter “Authentication Manager” in Inside Macintosh: AOCE

Application Interfaces.

Initializing a Server MSAM
The first time a server MSAM is launched, it needs to solicit user input to obtain

information about itself. Then it initializes itself within the AOCE system by calling

the SMSAMSetup and SMSAMStartup functions.

The SMSAMSetup function creates the server MSAM’s Forwarder record. The Forwarder
record (record type index kMnMForwarderRecTypeNum) contains information about

the server MSAM. The Forwarder record name is the name of the server MSAM. The

record contains the record ID of the MSAM’s PowerShare mail server, an optional

comment string describing the server MSAM, and a list of the foreign dNodes to which

the server MSAM is connected. (See the chapter “Catalog Manager” in Inside Macintosh:
AOCE Application Interfaces for information about PowerShare catalogs, dNodes, and

foreign dNodes, as well as other concepts that pertain to AOCE catalogs.)

Table 2-8 Selected Catalog record attributes

Attribute type
Data type of
attribute value Description

kDiscriminatorAttrTypeNum DirDiscriminator Discriminator value for this catalog.

kSFlagsAttrTypeNum long Bit array indicating the features
supported by this catalog. Present for
combined MSAM/CSAM only.

kCommentAttrTypeNum RString Displayable string describing this
catalog/external messaging system.

kRealNameAttrTypeNum RString Defined by the MSAM and its setup
template. For example, it may be the
user’s account (logon) name or the
name of the external messaging
system and its address catalog.

C H A P T E R 2

Messaging Service Access Modules

Using the MSAM API 2-41

After being launched for the first time, a server MSAM must find out its name,

password, messaging system extension type, and a descriptive comment string about

the extension type. The MSAM should display one or more dialog boxes to obtain its

name and password from the system administrator. Typically, an MSAM has built-in

knowledge of the extension type it supports and a descriptive comment string about

the extension type; if it does not, it must obtain that information from the system

administrator.

Once a server MSAM has all this information, it calls the SMSAMSetup function to

create its Forwarder record. Prior to calling the function, the MSAM must allocate a

RecordID structure for its Forwarder record. Then the MSAM sets the recordName

field to its name that the user provided, and the recordType field to the constant

kMnMForwarderRecTypeNum. The MSAM passes to the function a pointer to the

RecordID structure, the MSAM’s password, its extension type, and a string describing

its extension type. In the RecordID structure, the function returns the creation ID for

the newly created Forwarder record and the record location information. In the

catalogServerHint field, the function returns the AppleTalk address (an AddrBlock

structure) of the PowerShare catalog server that created the Forwarder record. The

MSAM can pass this address to a Catalog Manager function (in the serverHint field of

the function’s parameter block) if it wants to direct the request to that particular catalog

server. This can be helpful in preventing failures in the setup process due to delays in

replicating the MSAM’s Forwarder record.

During the execution of the SMSAMSetup function, the PowerShare mail server prompts

the user for the system administrator’s name and password. You may find it helpful to

consult the PowerShare System Manager’s Guide, which describes the setup process from

the system administrator’s perspective.

If the system administrator does not provide this information, the function returns an

error. The function will also return an error if

■ the PowerShare catalog server was unreachable

■ the MSAM’s name is not unique

■ the disk is full

■ an error occurred in creating the Forwarder record (any record creation error)

If an error occurs, the MSAM must display an appropriate dialog box telling the user

about the error. If the PowerShare catalog server was unreachable, the MSAM should

give the user the option of trying the operation again and, if the user chooses to try

again, the MSAM should call the SMSAMSetup function once more. If the user chooses

not to try again, the MSAM should quit. If the MSAM’s name was not unique, the

MSAM should allow the user to enter another name. In any error, the MSAM should fix

the problem when it can or quit when it cannot. Until the SMSAMSetup function

executes successfully, the MSAM cannot proceed with its initialization process.

When the SMSAMSetup function completes successfully, the server MSAM must save

knowledge of this fact so that if it is launched again in the future, it does not call the

SMSAMSetup function again. It is recommended that the server MSAM create a

preferences file in the Preferences folder and save the record ID of its Forwarder record

in its preferences file.

C H A P T E R 2

Messaging Service Access Modules

2-42 Using the MSAM API

Once the SMSAMSetup function completes successfully, the server MSAM should call

the AuthBindSpecificIdentity function, providing the record ID of its Forwarder

record and its encrypted password, to obtain its authentication identity. Once a server

MSAM has obtained its authentication identity, it should provide that information on

subsequent calls to AOCE functions that require an identity.

At this point, the server MSAM may present dialog boxes to the user to obtain any

additional configuration information it needs to function within an AOCE system and to

connect to its external messaging system, such as an IP address, a telephone number,

how often it should connect, and so forth. In general, an MSAM should ask for more

generic information first—that is, information that applies independently of a messaging

system. Then it should prompt for specific information for each messaging system that it

supports. It should then add this information to its Forwarder record in MSAM-defined

attribute types.

Note

In addition to its Forwarder record, a server MSAM should store a copy
of its configuration information in its preferences file for quick, efficient
access.

A server MSAM should keep a backup copy of its preferences file in
case the file is lost or damaged. If its preferences file is lost or damaged
and a server MSAM does not have a backup copy, it can retrieve the
information stored in the MSAM’s Forwarder record and rebuild the file.
To read its Forwarder record, an MSAM must have the Forwarder record
ID (which it obtains from the SMSAMSetup function). ◆

As the final step in the server MSAM’s initialization process, the MSAM calls the

SMSAMStartup function to obtain a reference number for its outgoing queue. After

the SMSAMStartup function completes successfully, the PowerShare mail server

may send high-level events to the server MSAM. The MSAM should respond to

high-level events, connect to external messaging systems, and begin to translate and

transfer messages.

A server MSAM must run on the same Macintosh computer as its PowerShare mail

server. If the PowerShare mail server is not running, the SMSAMStartup function

returns the corErr result code. You can detect when the PowerShare mail server

becomes available by

■ repeatedly calling the Gestalt function and using the
gestaltOCESFServerAvailable mask on its response parameter to determine if
a PowerShare mail server is running on the local Macintosh computer

■ repeatedly calling the SMSAMStartup function

■ adding an entry to the AppleTalk Transition Queue and waiting to receive a
notification that the PowerShare mail server is available

Using the AppleTalk Transition Queue is the recommended approach. The transition

event code ATTransSFStart indicates that the PowerShare mail server has finished

starting up, and the code ATTransSFShutdown indicates that the PowerShare mail

server has started to shut down.

C H A P T E R 2

Messaging Service Access Modules

Using the MSAM API 2-43

The AppleTalk Transition Queue is described in the chapter “Link-Access Protocol (LAP)

Manager” in Inside Macintosh: Networking.

If the PowerShare mail server quits, your queue reference becomes invalid. You know

that the PowerShare mail server is not running when any of the MSAM API functions

return the corErr result code or you receive notification of the ATTransSFShutdown

AppleTalk transition event. If the PowerShare mail server quits unexpectedly, you do not

receive an AppleTalk transition event.

When it starts up again, the PowerShare mail server does not know that your server

MSAM exists. You need to call the SMSAMStartup function again to get a new queue

reference. You detect the restarting of the PowerShare mail server by any of the three

methods listed previously.

If the PowerShare mail server quits, your server MSAM can keep running. Although you

can no longer retrieve messages from your outgoing queue, you can continue to process

any outgoing messages you queued separately. You can mark recipients and send reports

for those messages after the PowerShare mail server resumes operations. If you have a

separate spool area to hold them, you can continue to process incoming messages while

the PowerShare mail server is not running.

Handling Outgoing Messages
This section describes what you need to do with messages in an outgoing queue. It

assumes you have already initialized your MSAM. Each subsection addresses a specific

task, such as

■ enumerating messages in an outgoing queue

■ opening and closing messages

■ determining the message family

■ determining what is in a message

■ reading letter attributes

■ reading addresses

■ reading letter content

■ reading nested messages

■ marking recipients

■ generating reports

There are some differences between how you read letters and how you read non-letter

messages. These differences are noted in the sections that address the specific tasks. For

convenience, Table 2-9 lists the tasks you perform while handling messages in an

outgoing queue and the functions you use to accomplish the task for a letter and a

non-letter message.

C H A P T E R 2

Messaging Service Access Modules

2-44 Using the MSAM API

The order in which functions are listed in Table 2-9 corresponds to the sequence in which

you would call the functions to process a message in an outgoing queue. You first

enumerate the messages in the queue. Then you open a specific message and read its

header information. Header information consists of such items as the message creator

and type, and address (recipient) information. Next, you read the substance of the

message—for a letter, its content block, other blocks it may contain, and enclosures; for a

non-letter message, its blocks. When you have finished reading the message, you close it.

After you have transmitted the message to the recipients for which you are responsible,

you indicate the outcome of your delivery attempts—that is, you generate a report

containing delivery and non-delivery indications if required and mark the recipients.

Setting the status of a message is a task that you perform at several points while you are

processing the message.

You should call the functions that handle outgoing messages asynchronously so that you

can receive and process an AOCE high-level event at any time.

Enumerating Messages in an Outgoing Queue

Before you can read a message from an outgoing queue, you must obtain its sequence

number. A sequence number uniquely identifies the message in the queue. You provide

it when you open the message. You get the sequence number of a message by calling the

MSAMEnumerate function.

To make sure it transfers outgoing messages in a timely manner, an MSAM should

enumerate an outgoing queue on a regular basis. The MSAM should enumerate each

Table 2-9 Outgoing tasks and functions

Task Letters Non-letter messages

Enumerate a queue MSAMEnumerate MSAMEnumerate

Open a message MSAMOpen
MSAMOpenNested

MSAMOpen
MSAMOpenNested

Read header information MSAMGetAttributes
MSAMGetRecipients

MSAMGetMsgHeader
MSAMGetRecipients

Read letter content MSAMGetContent Not applicable

Read an enclosure MSAMGetEnclosure Not applicable

Enumerate a block MSAMEnumerateBlocks MSAMEnumerateBlocks

Read a block MSAMGetBlock MSAMGetBlock

Close a message MSAMClose MSAMClose

Generate a report MSAMCreateReport
MSAMPutRecipientReport
MSAMSubmit

MSAMCreateReport
MSAMPutRecipientReport
MSAMSubmit

Mark a recipient MSAMnMarkRecipients MSAMnMarkRecipients

Set message status
(personal MSAMs only)

PMSAMSetStatus PMSAMSetStatus

C H A P T E R 2

Messaging Service Access Modules

Using the MSAM API 2-45

time it is launched and each time it receives a kMailEPPCMsgPending event. It should

also enumerate at periodic intervals—for instance, every 20 minutes. If an MSAM puts

itself into an idle state, it should enumerate before entering the idle state. A personal

MSAM should also enumerate when it receives a kMailEPPCSchedule event.

Listing 2-1 illustrates one way that you can enumerate messages in an outgoing queue.

For convenience, the function DoEnumerateOutgoingMessages in Listing 2-1 defines

the type MyEnumOutQReplyType, a structure that contains a buffer that can hold a

2-byte count value plus exactly one MSAMEnumerateOutQReply structure. As a result,

each time DoEnumerateOutgoingMessages calls the MSAMEnumerate function,

MSAMEnumerate returns exactly one MSAMEnumerateOutQReply structure, which

provides identifying information about one message in the queue, including its

sequence number.

Before the DoEnumerateOutgoingMessages function calls the MSAMEnumerate

function, it always initializes the fields of the parameter block. It sets the queue reference

to an outgoing queue reference previously obtained from the PMSAMOpenQueues

function. The first time through the loop, DoEnumerateOutgoingMessages sets the

starting sequence number to 1 to start with the first message in the queue. On subse-

quent executions of the loop, it sets the starting sequence number to the sequence

number of the next message in the queue, which is returned by MSAMEnumerate.

The DoEnumerateOutgoingMessages function calls the MSAMEnumerate function

once for each message in the queue. Into your buffer, MSAMEnumerate places the count

of the number of MSAMEnumerateOutQReply structures followed by the reply

structures themselves. In Listing 2-1, the count is always 1.

Listing 2-1 Enumerating outgoing messages

OSErr DoEnumerateOutgoingMessages(MSAMQueueRef myOutgoingQRef)

{

typedef struct MyEnumOutQReplyType {

MailReply reply; /* number of structures returned */

MSAMEnumerateOutQReply message; /* enumerate reply structure */

} MyEnumOutQReplyType;

OSErr myErr;

MSAMEnumeratePB myParamBlock;

MyEnumOutQReplyType myEnumOutQReply;

long myNextMsgSeq;

myNextMsgSeq = 1;

myErr = noErr;

C H A P T E R 2

Messaging Service Access Modules

2-46 Using the MSAM API

do {

myParamBlock.ioCompletion = (ProcPtr)DoMSAMCompletion;

myParamBlock.queueRef = myOutgoingQRef;

myParamBlock.startSeqNum = myNextMsgSeq;

myParamBlock.buffer.bufferSize = sizeof(MyEnumOutQReplyType);

myParamBlock.buffer.buffer = (Ptr)&myEnumOutQReply;

MSAMEnumerate((MSAMParam *)&myParamBlock,true);

/* poll for completion */

myErr = DoWaitPBDone(&myParamBlock);

myNextMsgSeq = myParamBlock.nextSeqNum;

/* save the MSAMEnumerateOutQReply structure */

DoSaveData((Ptr)&myEnumOutQReply);

}

while (myErr == noErr && myNextMsgSeq != 0);

return myErr;

}

The DoWaitPBDone function, called here and in the listings in the following sections,

polls the ioResult field to determine when an asynchronous request has completed.

While it is polling, it also yields time to other processes running on the computer by

calling the WaitNextEvent function. When the MSAMEnumerate function completes,

DoWaitPBDone returns the MSAMEnumerate result code as its result code.

The DoMSAMCompletion completion routine, called when the MSAMEnumerate function

completes execution, calls the WakeUpProcess function. Then WakeUpProcess makes

the MSAM process, which suspended itself by calling the WaitNextEvent function,

eligible to receive CPU time.

After the MSAMEnumerate function completes, DoEnumerateOutgoingMessages

saves the enumeration information elsewhere by calling its DoSaveData function. It

needs to do this because MSAMEnumerate overwrites the MyEnumOutQReplyType

structure each time through the loop.

Opening and Closing a Message

Before you can read any part of an outgoing message, you must open it. To open a

specific message, you call the MSAMOpen function and provide the queue reference of

the outgoing queue in which the message is located and the sequence number of the

message. The MSAMOpen function returns a reference number for the opened message

that you use when you call other functions to read the various parts of the message, such

as the message header, recipient information, and the content data in the message. If the

message is a letter, you can also read the letter’s attributes. You cannot modify a message

in an outgoing queue.

C H A P T E R 2

Messaging Service Access Modules

Using the MSAM API 2-47

When you have finished reading a message, call the MSAMClose function to close it.

Closing a message reduces PowerTalk software memory requirements. Once you have

closed a message, the message reference number is no longer valid, even though

the message itself remains in the outgoing queue. If you want to read any part of the

message again, you must call the MSAMOpen function and get a new reference number.

You can open and close a message as many times as you wish.

Determining the Message Family

You must determine if a message that you want to read is a letter or a non-letter message

because the functions you use to read a letter or a non-letter message differ somewhat (see

Table 2-9 on page 2-44). You determine the message family to which a message belongs

by examining the msgFamily field in the MSAMEnumerateOutQReply structure.

Letters may belong to either the kMailFamily or kMailFamilyFile family. Non-

letter messages belong to the kIPMFamilyUnspecified family. Once you know the

message family, you can call the appropriate MSAM functions to read the attributes,

addresses, and contents of the letter or non-letter message.

Determining What Is in a Message

Typically, when you read a letter, you call the MSAMGetContent, MSAMGetBlock,

MSAMGetEnclosure, and MSAMOpenNested functions to read the letter’s content

block, image block, enclosures, and nested letter, respectively.

When you want to read a non-letter message, you need to enumerate the blocks in the

message. The MSAMEnumerateBlocks function returns each block’s creator and type,

its offset in bytes from the beginning of the message, and its length in bytes. When you

want to read a given block, you call the MSAMGetBlock function and provide the

block’s creator and type.

Reading Letter Attributes

Every letter contains attributes that provide information about the letter, such as whether

the sender wants to receive a report containing delivery or non-delivery indications,

when the letter was sent, and so forth. You should read this information and include in

the letter as much of the information as is meaningful in your messaging system. You

can read most letter attributes with the MSAMGetAttributes function. However, to

read the recipients of a letter—the from, to, cc, and bcc attributes—you call the

MSAMGetRecipients function.

To the MSAMGetAttributes function, you provide a set of bit flags, known as the request
mask, that represents the attributes whose values you want to read and a buffer to hold

the attribute values. The MailAttributeBitmap structure, described on page 2-100,

defines the attributes that the bit flags in the request mask represent. The function

returns a second set of bit flags, known as the response mask, that indicates which of the

requested attribute values it has returned in your buffer.

C H A P T E R 2

Messaging Service Access Modules

2-48 Using the MSAM API

The function DoReadLetterAttributes in Listing 2-2 shows how you can

request attribute values, test for their presence in your buffer, and save the value

in a file. The DoReadLetterAttributes function defines the structure type

MaximumLetterAttributes that is large enough to hold a value for each

of the attributes that the MSAMGetAttributes function can return. The

DoReadLetterAttributes function declares a variable of that type, myAttribBuf,

and sets a pointer, myAttribPtr, to point to the start of the buffer. Next, it initializes

the request mask to 0 and then sets the request mask to specify every attribute that

the MSAMGetAttributes function can return. If the messaging system to which you

provide access does not use some of this information, don’t ask for it. For instance, if

you know that your messaging system does not understand a reply ID, do not set the

bit for the reply ID in the attribute request mask.

Note

Because the MailAttributeBitmap data type is defined as a
bit field structure, you cannot use predefined masks such as
kMailSubjectMask, kMailMsgTypeMask, and so forth to set or test
the value of a bit field in a variable of type MailAttributeBitmap.
The masks operate on variables of type long. ◆

After the DoReadLetterAttributes function sets its attribute request mask, it calls

the MSAMGetAttributes function. The MSAMGetAttributes function returns the

attributes that you request (if they are present in the letter header) packed into your

buffer, starting with the attribute specified by the least significant bit in the request mask.

The MSAMGetAttributes function also sets the bits in the response mask

corresponding to those attributes for which it returned a value.

Next, DoReadLetterAttributes tests the bits in the response mask to find

out which attributes are in the buffer. Initially, myAttribPtr points to the

beginning of the myAttribBuf buffer. For each bit in the response mask that is set,

DoReadLetterAttributes writes the corresponding attribute value to a file and

adds the size of the attribute value’s data type to myAttribPtr to position the

pointer to the start of the next attribute value in myAttribBuf.

Listing 2-2 Reading letter attributes

OSErr DoReadLetterAttributes(MailMsgRef myMailRef)

{

 /* maximum size structure for calling MSAMGetAttributes */

typedef struct MaximumLetterAttributes {

MailIndications indications;

OCECreatorType msgType;

MailLetterID letterID;

MailTime sendTimeStamp;

MailNestingLevel nestingLevel;

OSType messageFamily;

MailLetterID replyID;

C H A P T E R 2

Messaging Service Access Modules

Using the MSAM API 2-49

MailLetterID conversationID;

RString subject;

} MaximumLetterAttributes;

OSErr myErr;

MSAMGetAttributesPB myParamBlock;

MailAttributeBitmap myRequestBitmap;

MaximumLetterAttributes myAttribBuf;

char *myAttribPtr;

long *myClearBitmap;

myAttribPtr = (char *)&myAttribBuf; /* point to start of buffer */

/* initialize the request mask to 0 */

myClearBitmap = (long *)&myRequestBitmap;

*myClearBitmap = 0L;

/* set bits for the attributes you want */

myRequestBitmap.indications = myRequestBitmap.msgType =

 myRequestBitmap.letterID = myRequestBitmap.sendTimeStamp =

 myRequestBitmap.nestingLevel = myRequestBitmap.msgFamily =

 myRequestBitmap.replyID = myRequestBitmap.conversationID =

 myRequestBitmap.subject = 1;

/* fill in the fields of the parameter block */

myParamBlock.ioCompletion = (ProcPtr)DoMSAMCompletion;

myParamBlock.mailMsgRef = myMailRef;

myParamBlock.requestMask = myRequestBitmap;

myParamBlock.buffer.bufferSize = sizeof(MaximumLetterAttributes);

myParamBlock.buffer.buffer = myAttribPtr;

myParamBlock.more = false;

/* call function to get the attributes */

MSAMGetAttributes((MSAMParam *)&myParamBlock,true);

myErr = DoWaitPBDone(&myParamBlock);

if (myErr!=noErr)

return myErr;

/* save returned attributes to disk */

if (myParamBlock.responseMask.indications) {

myErr = DoWriteToFile(kMailIndicationsMask, myAttribPtr,

sizeof(MailIndications));

C H A P T E R 2

Messaging Service Access Modules

2-50 Using the MSAM API

if (myErr!=noErr)

return myErr;

myAttribPtr += sizeof(MailIndications);

}

if (myParamBlock.responseMask.msgType) {

myErr = DoWriteToFile(kMailMsgTypeMask, myAttribPtr,

sizeof(OCECreatorType));

if (myErr!=noErr)

return myErr;

myAttribPtr += sizeof(OCECreatorType);

}

if (myParamBlock.responseMask.letterID) {

myErr = DoWriteToFile(kMailLetterIDMask, myAttribPtr,

sizeof(MailLetterID));

if (myErr!=noErr)

return myErr;

myAttribPtr += sizeof(MailLetterID);

}

/*

Test for presence of the send time stamp, nesting level, message

family, reply ID, and conversation ID attributes. If present, write

them to file.

*/

if (myParamBlock.responseMask.subject) {

myErr = DoWriteToFile(kMailSubjectMask, myAttribPtr, sizeof(RString));

if (myErr!=noErr)

return myErr;

myAttribPtr += sizeof(RString);

}

}

You can read information such as the message creator and message type from the

message header of non-letter messages by calling the MSAMGetMsgHeader function.

Interpreting Creator and Type for Messages and Blocks

An outgoing message may have any message creator and any message type. Typically,

an application that generates a message uses its own application signature as the

message creator and its document type as the message type.

The message creator value 'lap2' indicates that the AppleMail application created

the message.

C H A P T E R 2

Messaging Service Access Modules

Using the MSAM API 2-51

If the message type of an outgoing message is kMailLtrMsgType, the message is a

letter that contains any or all of the following: data in standard interchange format, data

in image format, or a regular enclosure.

Each block in an outgoing message has a block creator and block type. The AppleMail

application sets the block creator to kMailAppleMailCreator for blocks that it

creates. The block types that you may find in a letter are listed in Table 2-3 on page 2-18.

Reading Addresses

When you read the addresses associated with an outgoing message, you must get both

the original and the resolved recipients for that message. That gives you complete

addressing information for both display and routing purposes.

An original recipient can be a To, From, cc, or bcc recipient. These four types of original

recipients are defined as follows:

■ From: the sender of a message

■ To: a primary recipient of a message

■ cc: a secondary recipient receiving a copy of a letter

■ bcc: a secondary recipient whose address does not appear on the letter as received by
the To and cc recipients and other bcc recipients

An original recipient may be a group address (distribution list).

A resolved recipient is a recipient to which you are responsible for delivering the

message. Usually, a resolved recipient is an individual address; sometimes it can be a

group address.

Reading Original Recipients

To get a list of original recipients, you call the MSAMGetRecipients function. You need

to get original recipients so that you can properly display them as From, To, cc, or bcc

recipients in the message you send to an external messaging system. The function

returns information about one type of original recipient. You specify the type of original

recipient you want by setting the attrID field of the MSAMGetRecipientsPB

parameter block appropriately. You can set the attrID field to any of the following

constants:

If you are reading a letter, you need to get each original recipient type so that when you

translate the letter, it includes display information about all of the recipients. Display

address information refers to an address that may not be usable for routing within a

given messaging system but nevertheless shows that the letter went to the addressee.

Constant Value Recipient type

kMailFromBit 12 From

kMailToBit 13 To

kMailCcBit 14 cc

kMailBccBit 15 bcc

C H A P T E R 2

Messaging Service Access Modules

2-52 Using the MSAM API

(A bcc recipient is an exception, as it should be displayed only to the sender and the bcc

recipient itself.)

If you are reading a non-letter message, the only original recipient types that apply are

From and To. You may not need to get display information. If that is the case, do not call

the MSAMGetRecipients function to retrieve the To recipients. You may still want to

call it to get the From recipient. (You could also get the From recipient by calling the

MSAMGetMsgHeader function.)

When a letter has a bcc recipient, you must make every attempt to conform to the

following AOCE guidelines for bcc recipients: A bcc recipient must know that he or she

is a bcc recipient. A To or a cc recipient must not see any bcc recipient. It is less desirable,

but acceptable, for a bcc recipient to see other bcc recipients.

To support these guidelines, your MSAM may need to generate a separate copy of the

letter for each bcc recipient for which it is responsible or employ other implementations

that are less straightforward or more expensive than usual. As a last resort, if your

MSAM cannot support AOCE guidelines, it must reject bcc recipients. In that case, it

must still apply the guidelines to the letter—that is, no other recipient must know of the

bcc recipients.

Reading Resolved Recipients

To get a list of resolved recipients, call the MSAMGetRecipients function and specify

the kMailResolvedList constant in the attrID field of the MSAMGetRecipientsPB

parameter block. You need to get a list of resolved recipients so that you know to which

recipients you must send the message.

As you read the MailResolvedRecipient structures that the MSAMGetRecipients

function places in your buffer, you must save the ordinal-position value for each

resolved recipient. The first recipient’s ordinal-position value is 1; the second recipient’s

ordinal-position value is 2; and so forth. The MSAMnMarkRecipients function requires

you to provide the ordinal-position value to identify a recipient for whom you have

completed delivery attempts. If you need to call MSAMGetRecipients more than

once to get all of the resolved recipients, you must increment the ordinal-position

value continuously so that each resolved recipient is associated with a unique ordinal-

position value.

Personal MSAMs always find a one-to-one correspondence between their resolved

recipients and their displayable (original) recipients because the MSAMGetRecipients

function expands all group addresses into individual recipients before it returns

recipient information to the personal MSAM.

Server MSAMs may find more recipients in the resolved list than in the displayable

lists for this reason: the PowerShare mail server expands PowerShare group addresses

into individual addresses for the resolved list, but the original recipient lists may

have included PowerShare group addresses that were not expanded. The

MSAMGetRecipients function does not expand external group addresses.

Server MSAMs may also find that there are recipients in the resolved list that are not

exactly the same as the corresponding recipients in the original list. These have been

resolved by the AOCE software to a more specific form.

C H A P T E R 2

Messaging Service Access Modules

Using the MSAM API 2-53

The PowerShare mail server does not suppress duplicate external addresses. It does

suppress duplicate addresses resulting from the expansion of a PowerShare group

address. However, you are not guaranteed that the MSAMGetRecipients function will

not return duplicate PowerShare addresses.

Listing 2-3 illustrates a dispatch routine that calls the DoReadGenericAddress

function (shown in Listing 2-4 on page 2-55) to get a list of resolved recipients and lists

of the original recipients that are appropriate to a letter or a non-letter message.

Listing 2-3 Getting resolved and original recipients

OSErr DoReadAddress(MailMsgRef myMsgRef)

{

FSSpec myTempFileSpec;

OSErr myErr;

/* initialize the file specification */

myErr = DoReadGenericAddress(&myTempFileSpec, myMsgRef,

kMailResolvedList);

if (myErr!= noErr)

return myErr;

myErr = DoReadGenericAddress(&myTempFileSpec, myMsgRef, kMailFromBit);

if (myErr!= noErr)

return myErr;

myErr = DoReadGenericAddress(&myTempFileSpec, myMsgRef, kMailToBit);

if (myErr!= noErr)

return myErr;

if (myMsg->msgFamily == kMailFamily) { /* it's a letter */

myErr = DoReadGenericAddress(&myTempFileSpec, myMsgRef, kMailCcBit);

if (myErr!= noErr)

return myErr;

myErr = DoReadGenericAddress(&myTempFileSpec, myMsgRef, kMailBccBit);

if (myErr!= noErr)

return myErr;

}

return myErr;

}

C H A P T E R 2

Messaging Service Access Modules

2-54 Using the MSAM API

The function DoReadGenericAddress shown in Listing 2-4 actually reads the addresses

from an outgoing message and writes them to a disk file. The DoReadGenericAddress

function takes three parameters: the file system specification of a temporary disk file to

which it writes the addresses, the message reference number for a given message, and an

attribute ID that identifies the type of address that the caller wants to retrieve from the

message.

First DoReadGenericAddress allocates a buffer, pointed to by the addressBuffer

field, that it uses to hold addresses returned by the MSAMGetRecipients function. It

sets the size of the buffer to 1024 bytes. Your MSAM should determine the buffer size

that is appropriate for your needs.

Next, DoReadGenericAddress determines if it is handling a request to get resolved or

original recipients and sets the doingResolved Boolean variable accordingly. If it is

handling resolved recipients, DoReadGenericAddress initializes its local variable

ordinalPosition to 0. It uses ordinalPosition to save the ordinal position of each

resolved recipient. It needs this information to mark a recipient when it has finished its

efforts to deliver the letter to the recipient. The ordinal-position value must be unique for

each recipient.

Then, DoReadGenericAddress fills in all but one of the fields of the local variable

myParamBlock, which is an MSAMGetRecipientsPB parameter block. It sets the

myParamBlock.mailMsgRef field to its message reference number parameter

(myMailRef) to identify the message and sets the myParamBlock.attrID field to its

attribute ID parameter (attrID) to indicate which type of address (To, From, cc, bcc,

or resolved) it wants the MSAMGetRecipients function to return. Although the

nextIndex and more fields are outputs of the MSAMGetRecipients function,

DoReadGenericAddress sets them here to execute the for statement that follows

and to initialize the myParamBlock.startIndex field properly the first time through

the loop.

To accomplish its main work, DoReadGenericAddress uses two for loops, one nested

inside the other. Note that the outer for statement contains only the logical expression

controlling the iteration of the loop. The loop executes as long as the value of

myParamBlock.more is true and no error has occurred. The MSAMGetRecipients

function sets the more field to true when there are more addresses to return than it

could fit into the caller’s buffer.

The outer for loop sets the myParamBlock.startIndex field to the value of the

myParamBlock.nextIndex field, which it previously set to 1. This tells the

MSAMGetRecipients function that it should begin returning addresses starting

with the first address of the specified type. Then DoReadGenericAddress calls

MSAMGetRecipients asynchronously and polls for its completion.

If no error has occurred, DoReadGenericAddress initializes two variables used by the

inner for loop. The MSAMGetRecipients function always puts at the beginning of

your buffer the count of the number of addresses it placed in your buffer, followed by

the addresses themselves. Therefore, DoReadGenericAddress sets recipientPtr to

point into the address buffer at the byte where address information actually begins,

skipping over the count. It next sets the variable numRecipients to the count of the

C H A P T E R 2

Messaging Service Access Modules

Using the MSAM API 2-55

number of addresses in the buffer. Then, it executes the inner for loop to manipulate the

addresses returned in the buffer.

The inner for loop extracts an address from the buffer and writes it to a disk file.

It executes until all of the addresses have been extracted and written or until an

error occurs. For convenience, DoReadGenericAddress defines two new types,

MailOriginalRecipientExt and MailResolvedRecipientExt. Each consists of

a MailOriginalRecipient or MailResolvedRecipient structure, respectively,

followed by an OCEPackedRecipient structure. The new types enable

DoReadGenericAddress to manipulate all of the relevant information associated

with a particular address using a single structure.

If it is extracting resolved recipients, DoReadGenericAddress first increments

the ordinalPosition local variable. Then it sets the pointer resolvedPtr to

recipientPtr, which in turn points to the beginning of the first resolved address.

The DoReadGenericAddress function writes the MailResolvedRecipientExt

structure to a disk file, tagging it with its address type (attribute ID) and ordinal-position

value for later identification. Once that is done, DoReadGenericAddress advances

the recipientPtr pointer to the next address in the buffer. It moves recipientPtr

past the MailResolvedRecipient structure, past the dataLength field in the

OCEPackedRecipient structure, and then past the number of bytes specified

in the dataLength field. If recipientPtr points to an odd byte address,

DoReadGenericAddress increments it by 1 to point to an even byte boundary.

At this point, the for loop is ready to execute again.

Because of differences in the sizes of the applicable structures, the for loop has separate

but parallel logic to extract and write resolved and original recipients.

The logic of DoReadGenericAddress assumes that after it writes the addresses to disk,

the MSAM translates them from AOCE address format into the format of the destination

messaging system.

Listing 2-4 Reading addresses from an outgoing message

OSErr DoReadGenericAddress(FSSpec *myTempFileSpec, MailMsgRef myMailRef,

MailAttributeID attrID)

{

typedef struct MailOriginalRecipientExt {

MailOriginalRecipient prefix;

OCEPackedRecipient packedRecip;

} MailOriginalRecipientExt;

typedef struct MailResolvedRecipientExt {

MailResolvedRecipient prefix;

OCEPackedRecipient packedRecip;

} MailResolvedRecipientExt;

C H A P T E R 2

Messaging Service Access Modules

2-56 Using the MSAM API

OSErr myErr;

MSAMGetRecipientsPB myParamBlock;

short count, numRecipients, ordinalPosition;

MailOriginalRecipientExt *origPtr;

MailResolvedRecipientExt *resolvedPtr;

Ptr addressBuffer, recipientPtr;

Boolean doingResolved;

addressBuffer = NewPtr(1024L);

if (MemError()!= noErr)

return MemError();

if (attrID == kMailResolvedList) {

doingResolved = true;

ordinalPosition = 0;

else

doingResolved = false;

myParamBlock.ioCompletion = (ProcPtr)DoMSAMCompletion;

myParamBlock.mailMsgRef = myMailRef;

myParamBlock.attrID = attrID;

myParamBlock.buffer.buffer = addressBuffer;

myParamBlock.buffer.bufferSize = 1024L;

myParamBlock.more = true; /* to get into "for" loop */

myParamBlock.nextIndex = 1;

myErr = noErr;

for (; myParamBlock.more == true && myErr == noErr;) {

myParamBlock.startIndex = myParamBlock.nextIndex;

MSAMGetRecipients((MSAMParam *)&myParamBlock,true);

myErr = DoWaitPBDone(&myParamBlock);

if (myErr != noErr) {

DisposPtr(addressBuffer);

return myErr;

} /* end if */

recipientPtr = addressBuffer + sizeof(short);

numRecipients = (MailReply *) addressBuffer->tupleCount;

for (count = 0; count < numRecipients && myErr == noErr;

count++) {

if (doingResolved) {

resolvedPtr = (MailResolvedRecipientExt *)recipientPtr;

ordinalPosition++;

myErr = WriteRecipient(myTempFileSpec, attrID, resolvedPtr,

ordinalPosition);

C H A P T E R 2

Messaging Service Access Modules

Using the MSAM API 2-57

recipientPtr += (sizeof(MailResolvedRecipient) + sizeof(short)

+ resolvedPtr->packedRecip.dataLength);

if ((unsigned long)recipientPtr % 2)/*pad to even boundary */

recipientPtr++;

} /* end if */

else {

origPtr = (MailOriginalRecipientExt *)recipientPtr;

myErr = WriteRecipient(myTempFileSpec, attrID, origPtr, 0);

recipientPtr += (sizeof(MailOriginalRecipient) + sizeof(short)

+ origPtr->packedRecip.dataLength);

if ((unsigned long)recipientPtr % 2)/*pad to even boundary */

recipientPtr++;

} /* end else */

} /* end inner for loop */

} /* end outer for loop */

DisposPtr(addressBuffer);

return myErr;

}

Reading Letter Content

You read a letter’s content block by calling the MSAMGetContent function. A content

block consists of a series of data segments. A segment contains data in any of these

formats: plain text, styled text, pictures, sound, and QuickTime movies. You select which

types of segment you want to read by setting the segmentMask field in the function’s

parameter block appropriately.

To read the segments sequentially, set the segmentID field to 0. The MSAMGetContent

function returns data from the first segment of a type that you requested in your

segment mask. Continue resetting the segmentID field to 0 on subsequent calls to the

MSAMGetContent function to read the segments of interest sequentially.

To access the segments in any order you choose, set the segmentID field to a given

segment’s segment ID. You can obtain the segment ID for each segment in a letter’s

content block by scanning the segments without actually reading in any data. To do this,

set the segmentMask and segmentID fields to 0 before calling the MSAMGetContent

function. This tells the function that you do not want it to return data for any segment

type and that you want it to return information about the segments starting with the first

segment in the block. Save the values of the segmentType, segmentLength, and

segmentID fields that the function returns. Reset the segmentID field to 0 and call the

function again to get information about the next segment in the block. Continue saving

the values of the segmentType, segmentLength, and segmentID fields, resetting the

segmentID field to 0, and calling the function. The function provides information about

the next segment in the content block. When it returns information about the last

segment in the content block, the function returns true in the endOfContent field.

C H A P T E R 2

Messaging Service Access Modules

2-58 Using the MSAM API

At this point, you know the order of the segments in the block, the type of data each

contains, the number of bytes in the segment, and the segment IDs. You can then read

the data in the segments in any order you choose. Set the segmentMask field to indicate

the types of segments from which you want to retrieve data. The types of segment data

you request depends on the capabilities of your messaging system. For instance, if your

messaging system understands only plain text data, there is no point in reading

segments that contain QuickTime movie data.

The function DoReadLetterContent in Listing 2-5 reads a letter’s content block. It

allocates buffer space for the segment data. In the MSAMGetContentPB parameter block,

it sets the segment mask to request data from segments containing plain text, pictures,

and sound. Then it repeatedly calls the MSAMGetContent function until the function

returns true in the endOfContent field, always resetting the segment ID to 0 to

proceed sequentially through the blocks. If MSAMGetContent completes successfully,

DoReadLetterContent writes the segment data to a file. Later, it can read this file and

build its message in the format acceptable to its external messaging system.

Listing 2-5 Reading a letter’s content block

#define kMaxBufferSize 32767L

OSErr DoReadLetterContent(FSSpec *myTempFileSpec, MailMsgRef myMailRef)

{

MSAMGetContentPB myParamBlock;

Ptr dataBuffer;

OSErr myErr;

Boolean startOfBlock;

unsigned short blockIndex;

/* allocate data buffer */

dataBuffer = NewPtr(kMaxBufferSize);

if (MemError() != noErr)

return MemError();

/* fill in parameter block */

myParamBlock.ioCompletion = (ProcPtr)DoMSAMCompletion;

myParamBlock.mailMsgRef = myMailRef;

myParamBlock.buffer.buffer = dataBuffer;

myParamBlock.buffer.bufferSize = kMaxBufferSize;

myParamBlock.segmentMask = kMailTextSegmentMask |

kMailPictSegmentMask | kMailSoundSegmentMask;

myParamBlock.textScrap = nil;

C H A P T E R 2

Messaging Service Access Modules

Using the MSAM API 2-59

/* read letter content */

startOfBlock = true;

blockIndex = 0;

do {

myParamBlock.segmentID = 0;

MSAMGetContent((MSAMParam *)&myParamBlock,true);

myErr = WaitPBDone(&myParamBlock);

if ((myErr == noErr) && (myParamBlock.buffer.dataSize > 0)) {

if (startOfBlock) {

DoWriteContentToFile(myTempFileSpec, myParamBlock.segmentType,

myParamBlock.buffer.buffer,

myParamBlock.buffer.dataSize, blockIndex);

startOfBlock = false;

}

else

DoAppendContentToFile(myTempFileSpec, myParamBlock.segmentType,

myParamBlock.buffer.buffer

myParamBlock.buffer.dataSize, blockIndex);

if (myParamBlock.endOfSegment == true) {

startOfBlock = true;

blockIndex++;

}

}

} while ((myErr == noErr) && (myParamBlock.endOfContent == false));

DisposPtrChk(dataBuffer);

return myErr;

}

Reading a Nested Message

A message can have other messages nested within it. If you are reading a letter, you

can determine if the letter contains nested letters by calling the MSAMGetAttributes

function and requesting the nestingLevel attribute. A nesting level of 0 means there

are no nested letters; a nesting level of 1 means there is one nested letter, and so forth.

If you are reading a non-letter message, you can determine if it contains a nested

message by calling the MSAMEnumerateBlocks function and looking for a block of

type kIPMEnclosedMsgType. Such a block contains a complete message. That nested

message may in turn contain a message block of type kIPMEnclosedMsgType that

contains a complete message, and so on.

To open a nested message, you call the MSAMOpenNested function, which returns a

reference number to the nested message. To read the nested message, you pass this

nested message reference number to functions. An MSAM can call MSAMOpenNested

repeatedly to open a hierarchy of nested messages.

C H A P T E R 2

Messaging Service Access Modules

2-60 Using the MSAM API

You can close a nested message explicitly by calling the MSAMClose function or you can

close it implicitly when you close the parent message.

Note

A letter can have only one nested letter per nesting level, although each
nested letter can itself contain a nested letter, and so forth. A non-letter
message may actually have more than one nested message per nesting
level. The IPM Manager API allows applications to create such
messages. However, the MSAM API restricts you to reading one nested
message per nesting level. You can read only the first occurrence of a
nested message in a sequence of message blocks. ◆

Marking Recipients

Once you have read a message from the outgoing queue, translated it into the format

understood by your external messaging system, and transmitted it, you can mark

one or more recipients. Marking a recipient indicates that you have completed your

efforts to deliver the message to that recipient. You mark a recipient by calling the

MSAMnMarkRecipients function.

Marking a recipient does not indicate that you have successfully delivered the message,

but only that you are finished with your efforts to deliver it to that recipient.

You can use the MSAMnMarkRecipients function to help you keep track of your

delivery status for a message. The function clears the responsible flag in the

MailResolvedRecipient structure for the recipients you specify. Thus, if you later

call the MSAMGetRecipients function to get the resolved recipients for the message,

the responsible flag indicates those recipients you have already processed.

You identify a recipient that you want to mark by its ordinal position in the buffer

returned by the MSAMGetRecipients function. That is, when you call the

MSAMGetRecipients function to get your resolved recipients, it places recipient

information in your buffer, and you must save the ordinal-position value of each

resolved recipient as you retrieve the recipient information from the buffer. The

first recipient’s ordinal-position value is 1; the second recipient’s ordinal-position

value is 2; and so forth. It is this value that you provide to the MSAMnMarkRecipients

function to identify the recipient. If you use the recipient’s absolute index, contained

in a MailResolvedRecipient structure, the MSAMnMarkRecipients function does

not work correctly.

After you mark all of the recipients for a given message, the function sets the done

field in the MSAMEnumerateOutQReply structure to true. If you later call the

MSAMEnumerate function to check the messages in your outgoing queue, you can

determine if you have finished processing a given message by checking the done field.

You can call the MSAMnMarkRecipients function as many times as necessary for a

given message, specifying one or more recipients each time as you complete your

delivery efforts for those recipients.

C H A P T E R 2

Messaging Service Access Modules

Using the MSAM API 2-61

Generating a Report

When you have completed your delivery attempts for an outgoing message, you may

need to generate a report to the sender. An MSAM determines whether it must create a

report for an outgoing message by reading information in the message header. An

MSAM should create a report about an outgoing message only in response to the

sender’s request.

If the message is a letter, an MSAM calls the MSAMGetAttributes function to

read the MailIndications structure. In the MailIndications structure, the

kMailNonReceiptReportsBit bit and the kMailReceiptReportsBit bit, if set,

indicate that the letter’s sender requested non-delivery and delivery indications,

respectively.

If the message is not a letter, an MSAM calls the MSAMGetMsgHeader function

with the constant kIPMFixedInfo as the value of the selector field. The

IPMFixedHdrInfo structure returned by MSAMGetMsgHeader contains the

notification field, which contains the kIPMNonDeliveryNotificationBit bit

and the kIPMDeliveryNotificationBit bit. These bits, if set, indicate that the

sender of the message requested non-delivery and delivery indications, respectively.

Test these bits to determine if you need to create a report.

If a sender asks for delivery indications, non-delivery indications, or both, an MSAM

must provide information on the outcome of delivery attempts (a delivery or non-

delivery indication) for every recipient for which the MSAM is responsible. It is

important that an MSAM provide delivery information on all of the MSAM’s recipients

whenever a sender requests any type of delivery information because an MSAM report

does not go directly to the report requestor. Instead, the report goes to an AOCE agent

that uses the MSAM report information to prepare an IPM report according to the

requestor’s specifications. If an MSAM fails to provide delivery information on all of its

recipients, the requestor may receive inaccurate IPM reports.

An MSAM should ignore the bit fields having to do with including a copy of the original

message in the report. If necessary, a copy of the original is added by the AOCE agent.

To create a report, an MSAM must

1. call the MSAMCreateReport function

2. call the MSAMPutRecipientReport function to add delivery and non-delivery
indications for recipients for which it was responsible

3. call the MSAMSubmit function to deliver its finished report

An MSAM must have certain information about a message in order to create a report

about the message. The MSAMCreateReport function requires the letter or message ID

of the message to which the report applies and the address of the sender. You obtain

this information from either the MSAMGetAttributes and MSAMGetRecipients

functions (for a letter) or the MSAMGetMsgHeader function (for a non-letter message).

The MSAMPutRecipientReport function requires the recipient index to identify

which recipient is being reported upon. You obtain this information from the

MSAMGetRecipients function.

C H A P T E R 2

Messaging Service Access Modules

2-62 Using the MSAM API

Depending on how the external messaging system works, an MSAM may save this

information in its own data store or include it with the message. If, for example, more

than one MSAM connects to the same external messaging system, and the system

might acknowledge receiving the message to any of those MSe s, an MSAM should

include the information with the message. This enables the external messaging system

to extract the information from the message and then include the information with

the acknowledgment of the message. As a result, any MSAM that receives the

acknowledgment has the information necessary to create a report for that message.

You decide how to make sure that the information required to create a report is

available, given the characteristics of the external messaging system to which your

MSAM connects.

Your MSAM and its external messaging system define what constitutes successful or

failed delivery for outgoing messages.

Writing Incoming Messages
This section describes how you create and submit an incoming letter for delivery to its

AOCE recipients. It assumes you have already initialized your MSAM. Each subsection

addresses a specific task, such as

■ creating a message summary for an incoming letter (for personal MSAMs only)

■ creating a letter

■ creating a non-letter message

■ writing letter attributes

■ writing addresses

■ writing letter content

■ submitting a letter for delivery

■ receiving a report

The differences between writing letters and writing non-letter messages are noted in the

sections that address the specific tasks. For convenience, Table 2-10 lists the tasks you

perform while handling incoming messages and the functions you use to accomplish

each task for a letter and a non-letter message.

The order in which functions are listed in Table 2-10 corresponds to the sequence in

which you would call the functions to process an incoming message. A personal MSAM

first creates a message summary if it is dealing with a letter. Then all MSAMs create the

message itself and begin adding information to it. First, you write header information

consisting of message attributes, such as the priority of the message, and address

(recipient) information. Next, you write the substance of the message—for a letter, its

content block, other blocks it may contain, and enclosures; for a non-letter message, its

blocks. You can include an entire message within another message by defining its

beginning and end with the MSAMBeginNested and MSAMEndNested functions and

C H A P T E R 2

Messaging Service Access Modules

Using the MSAM API 2-63

calling the appropriate functions to write the nested message’s header information,

blocks, enclosures, and so forth. When you have finished writing the message, you

submit it to the AOCE system for delivery to its recipients.

A personal MSAM may also delete a letter, or both the letter and the letter’s message

summary, from an incoming queue. For example, the MSAM may delete a letter (but

not the message summary) if it no longer wants the letter to be cached locally. If the

personal MSAM is mirroring the letter’s status on the external messaging system, it can

delete the letter and message summary when the letter is removed from the external

messaging system.

A personal MSAM may also set the status of a letter and enumerate an incoming queue.

Setting the status of a letter is a task that the MSAM performs at several points while it is

processing the letter. Enumerating an incoming queue is a task it may do in response to

receiving a kMailEPPCInQUpdate high-level event.

You should call the functions that handle incoming messages asynchronously so that

you can receive and process an AOCE high-level event at any time.

The sample code in Listing 2-6 through Listing 2-15 illustrates one way a personal

MSAM can write a letter to an incoming queue. Most of the sample code and the text

also apply to a server MSAM. The text notes differences between the operation of

personal and server MSAMs where applicable.

Table 2-10 Incoming tasks and functions

Task Letters Non-letter messages

Create a messaging summary
(personal MSAMs only)

PMSAMCreateMsgSummary Not applicable

Create a message MSAMCreate MSAMCreate

Write header information MSAMPutAttribute
MSAMPutRecipient

MSAMPutMsgHeader
MSAMPutRecipient

Write letter content MSAMPutContent Not applicable

Write an enclosure MSAMPutEnclosure Not applicable

Write a block MSAMPutBlock MSAMPutBlock

Write a nested letter MSAMBeginNested
MSAMEndNested

MSAMBeginNested
MSAMEndNested

Submit a message MSAMSubmit MSAMSubmit

Delete a message
(personal MSAMs only)

MSAMDelete Not applicable

Set message status
(personal MSAMs only)

PMSAMSetStatus Not applicable

Enumerate a queue
(personal MSAMs only)

MSAMEnumerate Not applicable

C H A P T E R 2

Messaging Service Access Modules

2-64 Using the MSAM API

Most of these listings contain code fragments from the DoIncomingLetter function,

but only Listing 2-6 on page 2-67 shows the DoIncomingLetter function definition

and its local variables.

Choosing Creator and Type for Messages and Blocks

When you create an incoming message, you set the message creator to indicate the

application that should open the message. If you set the message creator for a letter to

'lap2', the signature of the AppleMail application, the AppleMail application opens

the letter when the user double-clicks the letter’s icon. If the letter contains a content

enclosure, you can set the message creator to the signature of the application that created

the content enclosure. In this case, if the user has that application, that application will

open the letter.

The message type kMailLtrMsgType designates an AOCE letter that contains data in

standard interchange format or image format, or a regular enclosure. When you create

an incoming letter, you should use this message type when the letter contains data in

standard interchange format or image format, or when it contains a regular enclosure.

If the letter also contains a content enclosure or a private block, and you set the

message creator to the signature of the application that created the enclosure or private

block, then you can use a message type that you define that is consistent with the

message creator.

When you create a non-letter message, you typically use an application-defined message

creator and message type.

Each block in an incoming message has a block creator and block type. When you create

blocks such as header, content, enclosure, and report blocks by calling the appropriate

MSAM function, the function sets the block creator to kMailAppleMailCreator and

the block type to the correct predefined type. (Letter block types are listed in Table 2-3 on

page 2-18.)

When you call the MSAMPutBlock function to add a block to an incoming message, you

set the block creator and block type to values that you select. If you are writing a block of

a predefined type such as an image block or a private block, be sure to set the block type

to kMailImageBodyType or kMailMSAMType, respectively.

Creating a Letter’s Message Summary

A personal MSAM must create a message summary for an incoming letter before

creating the letter itself. Server MSAMs do not create message summaries at any time,

and personal MSAMs do not create message summaries for non-letter messages. The

need to create a message summary is related to the mode of operation in the personal

MSAM. See the section “MSAM Modes of Operation” beginning on page 2-12 for

information on this topic.

The function DoIncomingLetter shown in Listing 2-6 on page 2-67 illustrates how you

can create a message summary for an incoming letter. It assumes that you previously

read the letter from an external messaging system, translated it into AOCE data formats,

C H A P T E R 2

Messaging Service Access Modules

Using the MSAM API 2-65

and saved it to disk. (Note that this method is just one way an MSAM can handle

incoming letters.)

The DoIncomingLetter function first allocates the buffer dataBuffer that it uses to

hold a variety of data throughout the function’s execution. Then it initializes all of

the fields of the message summary structure to 0 prior to setting the fields that a

personal MSAM should set. At the top level of the message summary structure,

DoIncomingLetter sets only the version field. You always set it to the constant

kMailMsgSummaryVersion.

You set the bits in the attribute mask that correspond to the attributes that are present in

the letter. In the attrMask field of the masterData substructure, DoIncomingLetter

sets the bits for the send timestamp, indications, the sender of the letter, the subject of the

letter, the message type, and the message family. Each external messaging system may

differ in the attribute information it routinely provides. In the sample code, the external

messaging system always provides a timestamp and does not provide a reply ID. For

this reason, the corresponding bits in the attribute mask in the message summary are set

and not set accordingly.

Once you have set the bits in the attribute mask, you write the attributes to the message

summary. At a minimum, you must write the message type, send timestamp, sender,

and subject attributes to the message summary. The DoIncomingLetter function first

writes the send timestamp to the message summary by calling its DoGetTimeStamp

routine. Next, it calls its DoGetLetterLength utility routine to get the approximate

size of the letter.

In the coreData substructure, DoIncomingLetter explicitly provides a value for all

of the fields except agentInfo and letterFlags. (The DoIncomingLetter function

implicitly set the letterFlags field to 0 when it initialized the entire message

summary structure to 0.) In the letterIndications field, it sets those bits that

indicate the letter has normal priority and that it has a content block. This technique

assumes that the incoming letter has no priority setting, so DoIncomingLetter

supplies a default value here. (The DoIncomingLetter function also supplies a default

value for content if the letter has no content. See Listing 2-11 on page 2-78.)

The DoIncomingLetter function sets the message type to the constant

kMailLtrMsgType to indicate a standard AOCE letter. It sets the message creator to

kLetterCreator, a constant for 'lap2', the signature of the AppleMail application.

As a result, when a user double-clicks the letter, the Finder launches the AppleMail

application to open the letter. Usually, an MSAM does not set a letter’s creator to its own

signature because the MSAM cannot open the letter and allow the user to view and edit

it. However, if your MSAM is associated with a particular letter application, you should

use that application’s signature so that the application will launch when the user opens

the letter.

The DoIncomingLetter function sets the message family to kMailFamily, indicating

that the letter falls into the general class of mail messages. Next, it sets the messageSize

field to the value returned by the DoGetLetterLength utility routine. The Finder uses

this value when a user chooses the Get Info command from the File menu.

C H A P T E R 2

Messaging Service Access Modules

2-66 Using the MSAM API

The sender and subject fields in the message summary deserve special attention.

Each is declared as an RString32 structure in the MailCoreData structure in the

message summary. However, those declarations only serve to allocate space and indicate

the relative order of the sender and subject data. They do not represent the actual data

layout. You should treat these two fields as a common buffer containing variable-length

sender and subject data. The correct order of information in the common buffer is an

RString32 structure containing the sender information (character set, data length, and

sender data), padded to an even byte boundary if necessary, and followed immediately

by an RString32 structure containing the subject information. (You should also pad the

subject information to an even byte boundary if necessary.) Thus, sender information

always starts at a fixed place whereas subject information does not. Neither subject nor

sender information may exceed kRString32Size bytes although either, of course, may

be smaller.

The DoIncomingLetter function illustrates one way to write the sender and subject

information to a message summary. The DoIncomingLetter function calls its

DoReadFromFile utility routine to read a PackedDSSpec structure containing the

sender’s address information from the letter stored on disk. (The DoReadFromFile

routine reads a file in which an incoming letter is stored and returns in a buffer the

requested letter component and the number of bytes it placed in the buffer.) If the read

operation succeeds, DoIncomingLetter unpacks the packed address and calls its

DoCopyFitRString utility routine. The DoCopyFitRString routine copies the

displayable string that identifies the sender from the recordName field of the unpacked

address into the sender field of the message summary, truncating it if it is longer than

kRString32Size bytes.

Next, DoIncomingLetter reads into its local variable subject an RString structure

containing the subject from the stored letter. Every AOCE letter must have a subject. If

the read operation fails, DoIncomingLetter converts a constant C string containing a

default value for the subject into an RString and writes it to its local variable subject.

Finally, it calls its DoCopyFitRString routine to copy its local variable subject into

the message summary, truncating it if it is longer than kRString32Size bytes. (The

DoIncomingLetter function copies the subject into its local variable subject instead

of directly into the message summary because it uses the local variable when adding the

subject attribute to the letter header. See Listing 2-8 on page 2-72.)

Now that both the subject and sender information are in a common buffer in the

message summary, DoIncomingLetter adjusts the byte position at which the subject

information begins. The subject information must start immediately after the sender

information. DoIncomingLetter calculates the total length of the sender RString,

including the fields for length and character set. If the total is an odd number, it adds

1 to get an even word boundary, then calls the BlockMove routine to move the subject

information immediately after the end of the sender information.

C H A P T E R 2

Messaging Service Access Modules

Using the MSAM API 2-67

IMPORTANT

Because the sender and subject fields form one common buffer
into which the information is packed, using the subject field to
access the subject information does not produce the desired result.
You must compute the beginning of the subject information in the
common buffer. ▲

At this point, the DoIncomingLetter function has filled in the relevant fields of

the message summary. Next, it sets up the fields of the parameter block for the

PMSAMCreateMsgSummary function. One of the parameters to DoIncomingLetter

is a MySlotSpec structure, a data type defined by the personal MSAM that contains

information about a slot. The personal MSAM of which DoIncomingLetter is a

part previously stored the incoming queue reference that it obtained from the

PMSAMOpenQueues function in the MySlotSpec structure. The DoIncomingLetter

function uses that incoming queue reference to fill in the queueRef field of the

MSAMCreate parameter block. Next, it sets the msgSummary field of the parameter

block to the address of the message summary structure it has just initialized.

Although DoIncomingLetter does not do it, you can add up to

kMailMaxPMSAMMsgSummaryData bytes of private data in the buffer structure

pointed to by the buffer field of the PMSAMCreateMsgSummary parameter block.

It is a convenient way for you to store additional information related to a specific

letter. Then DoIncomingLetter calls the PMSAMCreateMsgSummary function, which

returns a sequence number for the letter. The DoIncomingLetter function must use

this sequence number when it calls the MSAMCreate function to create the letter itself.

Listing 2-6 Creating a message summary

OSErr DoIncomingLetter(FSSpec *myTempFileSpec, MySlotSpec *slotSpec)

{

OSErr myErr;

MSAMParam myParamBlock;

MSAMMsgSummary myMsgSum;

Ptr dataBuffer;

unsigned long bufferLen;

unsigned long contentLength;

RString subject;

RecordID entitySpecifier;

OCERecipient fromAddress;

MailMsgRef letterRef;

long letterSeqNum;

char defaultText[256];

unsigned char *subjectOffset;

#define kLetterCreator 'lap2' /* signature of AppleMail app */

#define kDefaultSubject "<no subject>"

C H A P T E R 2

Messaging Service Access Modules

2-68 Using the MSAM API

#define kDefaultBody "<no message>"

#define kMaxBufferSize 32767L

/* constants to identify components of stored letter on disk */

#define kFromType '2FRM'

#define kToType '2MTO'

#define kCCType '2MCC'

#define kBCCType '2BCC'

#define kTextContent '2TXT'

#define kPictContent '2PIC'

#define kSoundContent '2SND'

#define kContentSectionType '2RTY'

#define kSubjectType '2SUB'

/* allocate buffer for reading from disk */

bufferLen = kMaxBufferSize;

dataBuffer = NewPtr(bufferLen);

if (MemError() != noErr)

return MemError();

/* initialize the message summary structure to 0 */

DoClearBuffer(&myMsgSum,sizeof(MSAMMsgSummary));

/* set the version and attribute mask fields */

myMsgSum.version = kMailMsgSummaryVersion;

myMsgSum.masterData.attrMask.sendTimeStamp = true;

myMsgSum.masterData.attrMask.indications = true;

myMsgSum.masterData.attrMask.from = true;

myMsgSum.masterData.attrMask.subject = true;

myMsgSum.masterData.attrMask.msgType = true;

myMsgSum.masterData.attrMask.msgFamily = true;

/* get the timestamp and write it to message summary */

DoGetTimeStamp(myTempFileSpec,&myMsgSum.coreData.sendTime);

/* get length of stored letter data in bytes */

contentLength = kMaxBufferSize;

contentLength = DoGetLetterLength(myTempFileSpec);

/* set other core data fields */

myMsgSum.coreData.letterIndications.priority = kIPMNormalPriority;

myMsgSum.coreData.letterIndications.hasContent = true;

myMsgSum.coreData.letterIndications.hasStandardContent= true;

C H A P T E R 2

Messaging Service Access Modules

Using the MSAM API 2-69

myMsgSum.coreData.messageType.msgType = kMailLtrMsgType;

myMsgSum.coreData.messageType.msgCreator = kLetterCreator;

myMsgSum.coreData.messageFamily = kMailFamily;

myMsgSum.coreData.messageSize = contentLength;

myMsgSum.coreData.addressedToMe = kAddressedAs_TO;

/* get sender name from stored letter and write it to message summary */

bufferLen = kMaxBufferSize;

myErr = DoReadFromFile(myTempFileSpec, kFromType, dataBuffer,

&bufferLen);

if (myErr != noErr) {

DisposPtr(dataBuffer);

return myErr;

}

OCEUnpackDSSpec((PackedDSSpec*)dataBuffer, &fromAddress,

&entitySpecifier);

DoCopyFitRString(entitySpecifier.local.recordName,

(RStringPtr)&myMsgSum.coreData.sender, kRString32Size);

/* get subject from stored letter and write it to message summary */

bufferLen = kMaxBufferSize;

myErr = DoReadFromFile(myTempFileSpec, kSubjectType, &subject,

&bufferLen);

if (myErr != noErr)

OCECToRString(kDefaultSubject, smRoman, &subject, kRStringMaxBytes);

DoCopyFitRString(&subject, (RStringPtr)&myMsgSum.coreData.subject,

kRString32Size);

/* calculate subject offset and move subject flush with sender */

subjectOffset = ((unsigned char *)&myMsgSum.coreData.sender) +

myMsgSum.coreData.sender.dataLength + sizeof(long);

if ((unsigned long)subjectOffset % 2)

subjectOffset++;

BlockMove(&myMsgSum.coreData.subject, subjectOffset,

myMsgSum.coreData.subject.dataLength + sizeof(long));

/*

All required fields have been set. Create the message summary. Save the

letter's sequence number.

*/

myParamBlock.header.ioCompletion = (ProcPtr)DoMSAMCompletion;

myParamBlock.pmsamCreateMsgSummary.inQueueRef = slotSpec->inQueue;

C H A P T E R 2

Messaging Service Access Modules

2-70 Using the MSAM API

myParamBlock.pmsamCreateMsgSummary.msgSummary = &myMsgSum;

myParamBlock.pmsamCreateMsgSummary.buffer = nil;

PMSAMCreateMsgSummary(&myParamBlock,true);

myErr = DoWaitPBDone(&myParamBlock);

if (myErr != noErr) {

DisposPtr(dataBuffer);

return myErr;

}

letterSeqNum = myParamBlock.pmsamCreateMsgSummary.seqNum;

Creating a Letter

After creating a message summary, a personal MSAM may write the letter associated

with the message summary to the incoming queue immediately or at a later time. The

choice of methods should depend on the speed of the link connecting your personal

MSAM to its external messaging system. If the link is fast, you can download the letter

on demand—that is, when the user opens it. If the link is slow, you should cache the

letter locally so that there is no untimely delay when the user opens it. The function

DoIncomingLetter writes the letter immediately. Listing 2-7 is a code fragment from

DoIncomingLetter that shows how you create a letter.

The DoIncomingLetter function sets up the fields of the parameter block for the

MSAMCreate function. It checks whether the letter has a blind copy recipient and sets

the bccRecipients field accordingly. It uses the incoming queue reference originally

obtained from the PMSAMOpenQueues function to fill in the queueRef field of the

parameter block. Then DoIncomingLetter sets the asLetter field to true to indicate

that the message it is creating is a letter. Because it is creating a letter, it must set the

msgType.format field to kIPMOSFormatType. This setting indicates that the rest of

the IPMMsgType structure contained in the msgType.format field consists of an

OCECreatorType structure. Then DoIncomingLetter sets the letter’s creator and

type to the same values it used when it created the letter’s message summary. It sets the

seqNum field to the sequence number it obtained from the PMSAMCreateMsgSummary

function.

Once DoIncomingLetter has finished initializing the parameter block, it calls the

MSAMCreate function. The function returns a reference to the new letter, which

DoIncomingLetter saves. The DoIncomingLetter function must provide the

reference to all subsequent functions that add various components to the letter.

Listing 2-7 Creating a letter

/* check for bcc recipients */

bufferLen = kMaxBufferSize;

myErr = DoReadFromFile(myTempFileSpec, kBCCType, dataBuffer, &bufferLen);

myParamBlock.msamCreate.bccRecipients = (myErr == noErr);

C H A P T E R 2

Messaging Service Access Modules

Using the MSAM API 2-71

/* fill in the rest of the parameter block and create the letter */
myParamBlock.header.ioCompletion = (ProcPtr)DoMSAMCompletion;

myParamBlock.msamCreate.queueRef = slotSpec->inQueue;

myParamBlock.msamCreate.asLetter = true;

myParamBlock.msamCreate.msgType.format = kIPMOSFormatType;
myParamBlock.msamCreate.msgType.theType.msgOSType.msgCreator =

kLetterCreator;

myParamBlock.msamCreate.msgType.theType.msgOSType.msgType =

kMailLtrMsgType;
myParamBlock.msamCreate.seqNum = letterSeqNum;

myParamBlock.msamCreate.tunnelForm = false;

MSAMCreate(&myParamBlock, true);

myErr = DoWaitPBDone(&myParamBlock);
if (myErr != noErr) {

DisposPtr(dataBuffer);

return myErr;

}
letterRef = myParamBlock.msamCreate.newRef;

A server MSAM does basically the same things to create a letter, with the following

differences. A server MSAM uses the queue reference that it obtained from the

SMSAMStartup function to fill in the queueRef field. Because server MSAMs do not

create message summaries, there is no need to ascertain that the values provided to the

MSAMCreate function for the creator and type exactly match those in the message

summary. A server MSAM does not supply a value in the seqNum field of the

MSAMCreate parameter block.

Creating a Non-Letter Message

When you create a non-letter message instead of a letter, the following differences apply

for both personal and server MSAMs:

■ You must set the myParamBlock.msamCreate.asLetter field to false.

■ You can set the myParamBlock.msamCreate.msgType.format field to either
kIPMOSFormatType (which specifies that the message creator and message type
information is formatted as type OCECreatorType) or kIPMStringFormatType
(which specifies that the message creator and message type information is formatted
as type Str32). Typically, you use type OCECreatorType; type Str32 is included
for compatibility with the Program-to-Program Communications (PPC) Toolbox.

■ You may set the myParamBlock.msamCreate.refCon field to a private value. The
MSAMCreate function stores that value in the message header. A recipient can
retrieve the value with the MSAMGetMsgHeader function.

■ You do not supply a value in the myParamBlock.msamCreate.bccRecipients
field.

In addition, a personal MSAM does not supply a value in the

myParamBlock.msamCreate.seqNum field.

C H A P T E R 2

Messaging Service Access Modules

2-72 Using the MSAM API

Writing Letter Attributes

Once you have created a letter, you add the component parts to the letter. To add

information to a letter’s header, you use the MSAMPutAttribute function. Listing 2-8, a

code fragment from the DoIncomingLetter function, shows how you add attributes to

a letter header.

The MSAMPutAttribute function allows you to add one attribute each time you call it.

The DoIncomingLetter function adds the send timestamp, indications, message

family, and subject attributes to the letter’s header by copying the values it previously

stored in the letter’s message summary. Each time it calls the MSAMPutAttribute

function, DoIncomingLetter sets the mailMsgRef field to indicate the letter to which

it wants to add the attribute. It sets the attrID field to a constant that indicates the type

of attribute it wants to add. Then it specifies the buffer in which the attribute data is

located, specifies the buffer size, and calls the MSAMPutAttribute function to add the

attribute to the letter header. Note that when it writes the subject, DoIncomingLetter

does not use the C function sizeof to get the size of the subject attribute because that

would return the size of an RString structure. Instead, it computes the exact size of the

subject string in the buffer by using the actual length of the subject, which is specified

in the subject.dataLength field, and then adding 4 bytes for the dataLength and

charSet fields of the RString structure. If the number of bytes turns out to be odd, it

adds 1 to make an even length.

The DoIncomingLetter function does not add the letter creator and type to the letter

header. That information was already added when DoIncomingLetter called the

MSAMCreate function.

Once the parameter block is initialized, DoIncomingLetter calls the

MSAMPutAttribute function. If the function returns an error, DoIncomingLetter

calls its DoCancelOnSubmit function, which disposes of the data buffer, calls the

MSAMSubmit function to delete the unfinished letter, and calls the MSAMDelete function

to delete the message summary.

Listing 2-8 Adding attributes to a letter header

/* add the time */

myParamBlock.msamPutAttribute.mailMsgRef = letterRef;

myParamBlock.msamPutAttribute.attrID = kMailSendTimeStampBit;

myParamBlock.msamPutAttribute.buffer.buffer =

(Ptr)&myMsgSum.coreData.sendTime;

myParamBlock.msamPutAttribute.buffer.bufferSize = sizeof(MailTime);

MSAMPutAttribute(&myParamBlock, true);

myErr = DoWaitPBDone(&myParamBlock);

if (myErr != noErr) {

DoCancelOnSubmit(letterRef, letterSeqNum, slotSpec->inQueue,

dataBuffer);

return myErr;

}

C H A P T E R 2

Messaging Service Access Modules

Using the MSAM API 2-73

/* add the indications */
myParamBlock.msamPutAttribute.mailMsgRef = letterRef;

myParamBlock.msamPutAttribute.attrID = kMailIndicationsBit;
myParamBlock.msamPutAttribute.buffer.buffer =

(Ptr)&myMsgSum.coreData.letterIndications;
myParamBlock.msamPutAttribute.buffer.bufferSize = sizeof(MailIndications);

MSAMPutAttribute(&myParamBlock, true);
/*

Call DoWaitPBDone and check for error. Then use the same logic used
to add the time and indications to add the message family.

*/

/* add the subject */
myParamBlock.msamPutAttribute.mailMsgRef = letterRef;

myParamBlock.msamPutAttribute.attrID = kMailSubjectBit;
myParamBlock.msamPutAttribute.buffer.buffer = (Ptr)&subject;

myParamBlock.msamPutAttribute.buffer.bufferSize = subject.dataLength + 4;
if ((myParamBlock.msamPutAttribute.buffer.bufferSize % 2) != 0)

myParamBlock.msamPutAttribute.buffer.bufferSize++;
MSAMPutAttribute(&myParamBlock, true);

/* call DoWaitPBDone and check for error */

A server MSAM does not have a message summary from which to copy attribute values,

so it would extract the attribute values from the incoming letter itself.

Note
The MSAMPutAttribute function does not apply to non-letter
messages. In dealing with an incoming non-letter message, both
personal and server MSAMs can add attributes to the message header
by calling the MSAMPutMsgHeader function. ◆

Writing Addresses

Although the different types of recipients—From, To, cc, and bcc—are letter attributes,

you do not add them to a letter using the MSAMPutAttribute function. Instead, you

use the MSAMPutRecipient function. Each time you call the MSAMPutRecipient

function, you can add one recipient to a letter. This function requires you to add all of the

recipients of one type before adding any recipient of another type. The code fragment

from the DoIncomingLetter function shown in Listing 2-9 demonstrates how you can

add recipients to a letter.

The DoIncomingLetter function calls its DoAddTheRecipients function four times,

once for each type of recipient, to actually add the recipient information to the letter. It

passes several parameters to DoAddTheRecipients:

■ the reference number of the letter to which it wants to add a recipient

■ a pointer to the file specification of the temporary file containing the translated
incoming letter

C H A P T E R 2

Messaging Service Access Modules

2-74 Using the MSAM API

■ a constant that identifies the disk file component for a given type of recipient

■ the type of recipient to add (an attribute ID)

■ a pointer to its buffer

■ the size of the buffer

If DoAddTheRecipients returns an error for any type of recipient,
DoIncomingLetter terminates writing the letter.

Listing 2-9 Adding recipients to a letter

/*

Add the recipients. Check for error after calling DoAddTheRecipients

for each recipient type.(Shown only the first time in the following

code.)

*/

myErr = DoAddTheRecipients(letterRef, myTempFileSpec, kFromType,

kMailFromBit, dataBuffer, kMaxBufferSize);

if (myErr != noErr) {

DoCancelOnSubmit(letterRef, letterSeqNum, slotSpec->inQueue,

dataBuffer);

return myErr;

}

myErr = DoAddTheRecipients(letterRef, myTempFileSpec, kToType, kMailToBit,

dataBuffer, kMaxBufferSize);

myErr = DoAddTheRecipients(letterRef, myTempFileSpec, kCcType, kMailCcBit,

dataBuffer, kMaxBufferSize);

myErr = DoAddTheRecipients(letterRef, myTempFileSpec, kBccType,

kMailBccBit, dataBuffer, kMaxBufferSize);

The DoAddTheRecipients function is shown in Listing 2-10. It is a utility routine that

can add any type of recipient to a given letter. It assumes that the MSAM has previously

written the letter’s recipient information to a file in the form of a PackedDSSpec

structure. For a given type of recipient, DoAddTheRecipients reads one recipient at a

time, and places the information in a buffer. Then it unpacks the PackedDSSpec

structure and fills in the fields of the parameter block for the MSAMPutRecipient

function.

The DoAddTheRecipients function sets the mailMsgRef and attrID fields to the

values it was passed by DoIncomingLetter for the letter’s reference number and the

recipient type attribute ID, respectively. It sets the recipient field to the unpacked

DSSpec structure it got by calling the OCEUnpackDSSpec routine. Then it sets the

responsible field to false.

C H A P T E R 2

Messaging Service Access Modules

Using the MSAM API 2-75

A personal MSAM always sets the responsible field of the parameter block for

MSAMPutRecipient to false when it is adding a recipient to a letter. For a non-letter

message, however, it should set the responsible field to false only when the

recipient address is not local to the computer on which the personal MSAM is running.

Setting the responsible field to true for a non-letter message indicates that you want

the AOCE system to be responsible for delivering the message to its destination on the

local computer.

A server MSAM should set the responsible field to true to indicate that the AOCE

system should deliver the message to the recipient. This applies to both letter and

non-letter messages.

Finally, DoAddTheRecipients calls the MSAMPutRecipient function. The

DoAddTheRecipients function repeats this cycle until either the MSAMPutRecipient

function returns an error or there are no more recipients of a given type for the letter.

Listing 2-10 Adding a specific type of recipient

OSErr DoAddTheRecipients(MailMsgRef mailRef, FSSpec *myTempFileSpec,

OSType recipType, MailAttributeID attrID,

Ptr dataBuffer, unsigned long bufferLen)

{

OSErr myErr;

Boolean moreRecipients = true;

unsigned long gotLength;

OCERecipient recipient;

RecordID entitySpecifier;

MSAMParam myParamBlock;

do {

gotLength = bufferLen;

myErr = DoReadFromFile(myTempFileSpec, recipType, dataBuffer,

 &gotLength);

if (myErr == noErr && gotLength > 0) {

/* unpack a recipient, initialize the parameter block,

add the recipient */

OCEUnpackDSSpec((PackedDSSpec*)dataBuffer, &recipient,

&entitySpecifier);

myParamBlock.msamPutRecipient.ioCompletion =

(ProcPtr)DoMSAMCompletion;

myParamBlock.msamPutRecipient.mailMsgRef = mailRef;

myParamBlock.msamPutRecipient.attrID = attrID;

C H A P T E R 2

Messaging Service Access Modules

2-76 Using the MSAM API

myParamBlock.msamPutRecipient.recipient = &recipient;

myParamBlock.msamPutRecipient.responsible = false;

MSAMPutRecipient(&myParamBlock, true);

myErr = DoWaitPBDone(&myParamBlock);

}

else {

moreRecipients = false;

myErr = noErr;

}

} while (myErr == noErr && moreRecipients);

return myErr;

}

Writing Letter Content

A letter’s content block consists of a series of one or more segments, each containing

data of one of the following types: plain text, styled text, pictures, sounds, and

QuickTime movies. To add a content block to an incoming letter, you call the

MSAMPutContent function.

You provide the function with a buffer containing data of a given type and tell it what

type of data is in the buffer. The first time you call the MSAMPutContent function, set

the append field to false to tell the function to begin a new segment. On subsequent

calls to the function, you set the append field to true or false, depending on whether

you want your data placed in a new segment or appended to the current one.

When you add a text segment, you must specify values for the startNewScript

and script fields. The value of the startNewScript field (true or false) tells the

MSAMPutContent function whether the data in your buffer uses a different character

set than that of text data you previously wrote. You set the script field to a code

that indicates the character set of your data. (See Inside Macintosh: Text for a list of

script codes.)

When you add a styled text segment, you provide the style information in a style scrap

structure (StScrpRec structure). You should allocate the StScrpRec structure

dynamically because it is a very large structure. See the MSAMPutContent function

description on page 2-186 for more information on adding styled text.

You must add all of a letter’s content sequentially. For instance, you cannot call

MSAMPutContent to add some of the content, call MSAMPutBlock to add a private

block, and then call MSAMPutContent again to add the remainder of the content. Once

you call MSAMPutContent, calling any other function in the MSAM API terminates the

content block for the letter. If you call the MSAMPutContent function again for the same

letter, it returns the kMailInvalidOrder result code. The MSAMPutContent function

adds the segments to the letter in the order you provide them.

C H A P T E R 2

Messaging Service Access Modules

Using the MSAM API 2-77

The DoWriteLetterContent function in Listing 2-11 shows one way to add content to

an incoming letter. It assumes the MSAM has previously stored a letter from its external

messaging system in a disk file. The file is composed of a series of sections corresponding

to different components of the letter. The content component of the stored letter consists

of a series of sections, similar to the segments in a letter’s content block, each of which

contains a single type of data.

The DoWriteLetterContent function starts by initializing the fields of the

MSAMPutContent function’s parameter block that won’t change regardless of what it

reads from its file. It sets the mailMsgRef field to the letter’s reference number. It sets

the textScrap field to nil because it does not handle styled text. Because this MSAM

handles just one character set, DoWriteLetterContent sets the script field to

smRoman and never changes this setting. It sets the append field to false because it

intends that each block of data that it previously stored on disk be written to a separate

segment in the letter’s content block.

The DoWriteLetterContent function initializes its local variable contentType to

indicate that it wants to read the content section of its stored letter. It sets the local

variable contentWritten to false because it has not yet written a segment to the

incoming letter.

Then DoWriteLetterContent reads sequentially through the content sections of

the stored letter. It repeatedly calls the DoReadFromFile utility routine to read a buffer

of data from the file. The DoReadFromFile function returns one content section from the

file each time it is called. The buffer is large enough to hold any content section that

the MSAM previously stored. After reading each section, DoWriteLetterContent

determines the type of data in the section and sets the segmentType field accordingly.

Because this MSAM handles only plain text, picture, or sound data, the content sections

can contain only these types of data. If DoReadFromFile returns plain text data,

DoWriteLetterContent sets the startNewScript field to true. This tells the

MSAMPutContent function to examine the script field to discover the character

set of the text in the buffer. Typically, you set this field to true when you first add a plain

text segment and thereafter whenever the character set of the text changes (which does

not apply to this MSAM) or you’ve called MSAMPutContent to add some other type of

segment. Last, DoWriteLetterContent sets the bufferSize field to the number

of bytes it read from its disk file and calls the MSAMPutContent function to write

the data to the letter’s content block. If the MSAMPutContent function returns

successfully, DoWriteLetterContent sets the local variable contentWritten to

true. The DoWriteLetterContent function continues to read from its file and write

segments to the letter’s content block until it has read all the content sections in the file or

it encounters an error.

When DoWriteLetterContent has finished reading the content sections, it tests

the local variable contentWritten. If it failed to write any data successfully,

DoWriteLetterContent copies a default string into its buffer and calls the

MSAMPutContent function. It must do this to provide some content since it set the

hasContent bit in the indications attribute in the letter’s header. (See Listing 2-6 on

page 2-67.)

C H A P T E R 2

Messaging Service Access Modules

2-78 Using the MSAM API

Listing 2-11 Writing letter content

OSErr DoWriteLetterContent(FSSpec *myTempFileSpec, MailMsgRef myMailRef,

Ptr dataBuffer)

{

unsigned long bufferLen;

OSType contentType;

Boolean contentWritten;

MSAMParam myParamBlock;

OSErr myErr,myErr2;

myParamBlock.header.ioCompletion = (ProcPtr)MSAMCompletion;

myParamBlock.msamPutContent.mailMsgRef = myMailRef;

myParamBlock.msamPutContent.textScrap = nil;

myParamBlock.msamPutContent.buffer.buffer = dataBuffer;

myParamBlock.msamPutContent.script = smRoman;

myParamBlock.msamPutContent.append = false;

contentType = kContentSectionType;

contentWritten = false;

do { /* for each content section in the temp file */

bufferLen = kMaxBufferSize;

myErr = DoReadFromFile(myTempFileSpec, contentType, dataBuffer,

 &bufferLen);

switch (contentType) { /* determine segment type */

case kTextContent:

myParamBlock.msamPutContent.segmentType = kMailTextSegmentType;

myParamBlock.msamPutContent.startNewScript = true;

break;

case kPictContent:

myParamBlock.msamPutContent.segmentType = kMailPictSegmentType;

break;

case kSoundContent:

myParamBlock.msamPutContent.segmentType = kMailSoundSegmentType;

break;

} /* endswitch */

myParamBlock.msamPutContent.buffer.bufferSize= bufferLen;

if (myErr == noErr) {

MSAMPutContent(&myParamBlock,true);

myErr2 = WaitPBDone(&myParamBlock);

if (myErr2 != noErr)

return myErr2;

contentWritten = true; /* don't need default content */

C H A P T E R 2

Messaging Service Access Modules

Using the MSAM API 2-79

} /* endif */

} while (myErr != noErr);

if (myErr == kEndOfContentSections)

myErr = noErr;

/* if no content written, write default content */

if (contentWritten == false) {

strcpy(dataBuffer,kDefaultBody);

myParamBlock.msamPutContent.segmentType = kMailTextSegmentType;

myParamBlock.msamPutContent.buffer.bufferSize = strlen(kDefaultBody);

MSAMPutContent(&myParamBlock,true);

myErr = WaitPBDone(&myParamBlock);

}

return myErr;

}

You call the MSAMPutContent function to add content to letters only. You do not call it

to write data to a non-letter message.

Submitting a Message

After composing a message, an MSAM calls the MSAMSubmit function to submit the

message to the AOCE system for delivery. A message must be complete before you

submit it because, when the MSAMSubmit function completes execution, the message’s

reference number is invalid and you cannot change the message in any way.

Listing 2-12 is a code fragment from the DoIncomingLetter function that shows

how you can submit a letter for delivery. The DoIncomingLetter function sets

the mailMsgRef field to the letter’s reference number and the submitFlag field to

true to indicate that the letter is ready for delivery. If you set the submitFlag field

to false, the function deletes the letter. Then DoIncomingLetter calls the

MSAMSubmit function.

If MSAMSubmit returns an error, DoIncomingLetter calls the MSAMDelete function

to delete the message summary associated with the letter. The DoIncomingLetter

function sets the queueRef field to the reference value that identifies the incoming

queue in which the message summary is located. (It originally obtained this value from

the PMSAMOpenQueues function.) Then it sets the seqNum field to the sequence number

that identifies the message summary. Last, DoIncomingLetter sets the msgOnly field

to false. This tells MSAMDelete to delete the letter and its message summary. In this

case, there is no letter to delete. The MSAMDelete function deletes the message

summary and returns the result code noErr.

C H A P T E R 2

Messaging Service Access Modules

2-80 Using the MSAM API

Listing 2-12 Submitting a letter

/* submit the letter */

myParamBlock.msamSubmit.mailMsgRef = letterRef;

myParamBlock.msamSubmit.submitFlag = true;

myErr = MSAMSubmit(&myParamBlock);

if (myErr != noErr) { /* delete message summary */

myParamBlock.msamDelete.queueRef = slotSpec->inQueue;

myParamBlock.msamDelete.seqNum = msgSeqNum;

myParamBlock.msamDelete.msgOnly = false;

myParamBlock.msamDelete.result = noErr;

MSAMDelete(&myParamBlock, true);

DoWaitPBDone(&myParamBlock);

}

DisposPtr(dataBuffer);

return myErr;

If DoIncomingLetter had been dealing with a non-letter message, it would not need to

delete a message summary, because a personal MSAM only creates a message summary

for a letter. A server MSAM, of course, does not need to delete a message summary

because it never creates one.

Because it normally has continuous access to the PowerShare mail server, a server

MSAM should translate incoming messages immediately and submit them to the

PowerShare mail server. If the PowerShare mail server quits, the server MSAM should

either stop accepting incoming messages or store the incoming messages until the

PowerShare mail server is available again.

Receiving a Report

An MSAM can receive reports about incoming messages. Server MSAMs can receive

reports on both letters and non-letter messages. Personal MSAMs can receive reports on

non-letter messages only.

To request a report on a non-letter message, an MSAM should set the appropriate

bits in the deliveryNotification field when it calls the MSAMPutMsgHeader

function. You set the bits by using the kIPMDeliveryNotificationMask or

kIPMNonDeliveryNotificationMask masks to request delivery and non-delivery

indications.

To request a report on a letter, a server MSAM should set the receiptReports bit, the

nonReceiptReports bit, or both in the letter’s MailIndications attribute.

Because personal MSAMs do not receive reports on letters, the IPM Manager ignores

the setting of the receiptReports and nonReceiptReports bits in a letter’s

MailIndications attribute for any letter submitted by a personal MSAM. Instead,

the result code of the MSAMSubmit function tells a personal MSAM if the letter delivery

attempt was successful or not.

C H A P T E R 2

Messaging Service Access Modules

Using the MSAM API 2-81

The report that an MSAM receives never includes a copy of the original message. Thus,

the IPM Manager ignores the bits in a letter’s indications attribute and a non-letter

message’s header that have to do with enclosing a copy of the original with the report.

An MSAM can identify a report from the IPM Manager in its outgoing queue because

all such reports have a message creator of kIPMSignature and a message type of

kIPMReportNotify.

An MSAM reads a report by calling the MSAMOpen, MSAMGetMsgHeader, and

MSAMGetBlock functions. Reports consist of a recipient report block (type

kMailReportType) and possibly a private data block (type kMailMSAMType).

The recipient report block contains a report header and information about some

number of recipients. (See the chapter “Interprogram Messaging Manager” in

Inside Macintosh: AOCE Application Interfaces for a description of the report

header IPMReportBlockHeader and the recipient report information structure

OCERecipientReport.) If an MSAM added a private data block to a message, the

IPM Manager includes a copy of that block in the report.

A report may contain information on one or more AOCE recipients. The IPM Manager

attempts to report as quickly as possible on each recipient. If there is some difficulty in

reporting, it sends a report on the recipients about which it has information and sends

another report about the remaining recipients at a later time. Therefore, if a message that

the MSAM put into an AOCE system has several recipients, the MSAM may get several

reports. If the MSAM plans to forward that information to its external messaging system,

it may want to consolidate the information from the reports before forwarding it.

Note

The AOCE software defines successful delivery to mean that the
message was placed in the recipient’s incoming queue. It does not imply
that the message was actually opened or read. ◆

Deleting a Message
A personal MSAM should not delete messages from its outgoing queues. Messages

should stay in an outgoing queue so that the user can look at them. An exception to

this rule occurs when a user wants to delete a letter rather than send it. In that case,

the IPM Manager sends the personal MSAM a kMailEPPCDeleteOutQMsg event, and

the MSAM should delete the letter. A server MSAM does delete messages from its

outgoing queue.

A personal MSAM can delete letters from an incoming queue. It can delete only a letter

or both a letter and the associated message summary. For example, the MSAM may want

to delete a letter, but not the message summary, when it decides the letter no longer

needs to be cached locally. If the MSAM is trying to mirror the letter’s status on its

external messaging system, it can delete the letter and the message summary when the

letter is removed from the external messaging system.

C H A P T E R 2

Messaging Service Access Modules

2-82 Using the MSAM API

Note
The IPM Manager may also delete a letter from a personal MSAM’s
incoming queue in response to a user action. In that case, it sets the
msgDeleted flag in the letter’s message summary and sends the
kMailEPPCInQUpdate event. ◆

The MSAMDelete function removes a message from the queue that you specify.

You identify the message by its sequence number, which you obtain from the

MSAMEnumerate function. Once you have deleted a message, it is no longer available

to you on the Macintosh computer on which your MSAM is running. (The message

may still exist on the external messaging system.)

Translating Addresses
One of an MSAM’s primary tasks is translating address information from AOCE format

to the format of its external messaging system and vice versa. Within AOCE software, an

address is defined by an OCERecipient structure, a complex structure that contains

other structures and elemental fields. It is described on page 2-106. Figure 2-13 on

page 2-28 illustrates the fields in an OCERecipient structure and their relationship to

each other. Table 2-4 on page 2-29 lists what each field should contain for a non-AOCE

address. Table 2-5 on page 2-30 lists the contents of each field when the OCERecipient

structure contains an AOCE address. If you are already familiar with the information in

Figure 2-13, Table 2-4, and Table 2-5, you’ll find the listings and descriptions in the

sections “Translating From an AOCE Address” and “Translating to an AOCE Address”

easier to understand.

Note that an OCERecipient structure is identical to a DSSpec structure.

Within this chapter and the MSAM API, an address is often referred to as an xxx recipient,
where xxx specifies a type of recipient—To, From, cc, or bcc.

A non-letter message contains only From and To recipients. A letter may contain any

type of recipients.

An address can become known to an AOCE system by any of the following methods:

■ the user provides the address information by means of an address template
(see the chapter “Service Access Module Setup” in this book for an explanation
of address templates)

■ the address is read from an incoming message

■ the user types in the address when using a mailer (this works only if the extension
value portion of the address is formatted as a single RString; see the chapter
“Standard Mail Package” in Inside Macintosh: AOCE Application Interfaces for an
explanation of the mailer and type-in addressing)

■ the address exists in a catalog and can be retrieved by the user or an application

The MSAM whose code is shown in the sections that follow is a personal MSAM that

connects to an SMTP messaging system. The address format understood by the SMTP

messaging system is a string of this form: username@systemlocation. The information

presented applies to server MSAMs as well.

C H A P T E R 2

Messaging Service Access Modules

Using the MSAM API 2-83

Translating From an AOCE Address

Prior to transmitting a letter to its external messaging system, an MSAM must convert

the address information from AOCE format (an OCERecipient structure) to the format

understood by its external messaging system.

The function DoBuildSMTPAddressInfo in Listing 2-13 provides an example

of building a non-AOCE address from an OCERecipient structure. The

DoBuildSMTPAddressInfo function first allocates a buffer pointed to by

addressBuf. This address buffer will eventually hold all of the SMTP address

information for a given letter except the bcc recipients, which are stored in a

separate buffer. The DoBuildSMTPAddressInfo function sets the first byte in the

address buffer to 0 to indicate an empty string.

When it is launched, this MSAM creates and maintains a MySlotSpec structure

for each mail slot for which it is responsible. This privately defined structure contains

all the information relevant to a individual slot. To build the From address, the

DoBuildSMTPAddressInfo function begins by copying the user name from the

MySlotSpec structure for the slot it is processing into the local variable fromAddr.

Then the function appends to the user name the @ character and the SMTP server name,

which it also copies from the MySlotSpec structure. Once it has finished building the

string holding the actual From address, DoBuildSMTPAddressInfo builds a second

string in the address buffer that includes formatting information. First, it copies the

constant kMyFromHeader into addressBuf to label the address. The constant’s value

is "From: ". Next, it appends the From address in fromAddr to the contents of the

address buffer. Finally, it appends a carriage return. At this point, the contents of the

address buffer look like this:

From: username@systemLocation(CR)0

Next, DoBuildSMTPAddressInfo adds the To addresses. To the address buffer, it adds

the string "To: " to label the address. It initializes the hasRecipient Boolean variable

to false to indicate that at this point it has found no To recipients. Then it repeats the

following procedure until it encounters an error:

■ Read a To address from a temporary file. The MSAM created this file when it read the
letter from AOCE. If there are no more To addresses, it will get an error here.

■ If the read succeeded

■ call the DoAOCEToSMTPAddress function (see Listing 2-14 on page 2-87), which
converts an AOCE address into an SMTP address

■ append the SMTP address and a comma to the contents of the address buffer

■ set the hasRecipient Boolean to true

At this point, DoBuildSMTPAddressInfo completes the formatting. If it added any To

addresses to the address buffer, it overwrites the last comma with the string terminator 0

and then appends a carriage return. The contents of the address buffer now look like this:

From: username@systemLocation(CR)To: recipient1@location,
recipient2@location,...,recipientN@location(CR)0

C H A P T E R 2

Messaging Service Access Modules

2-84 Using the MSAM API

If it has not added any To addresses to the address buffer, it positions the string

terminator 0 immediately before the "To: " label, in effect erasing it.

The DoBuildSMTPAddressInfo function processes a letter that has no To recipient

for two reasons. First, AOCE software considers valid a letter whose header has at least

one To, cc, or bcc recipient. Therefore, it is possible for an MSAM to get a letter from

its AOCE system that has no To recipient. Second, as you will see in Listing 2-14 on

page 2-87, this MSAM translates only SMTP addresses. It is possible that all of the To

recipients for a given letter are non-SMTP addresses, but that one or more of the cc or bcc

addresses are SMTP addresses. This topic is discussed in more detail in the explanation

of Listing 2-14.

The DoBuildSMTPAddressInfo function adds the cc addresses to the address buffer

in exactly the same manner as it added the To address. At this point, the address buffer

contains a string that includes the From, To, and cc addresses, formatted with commas

and carriage returns, and terminated by a NULL character.

For bcc addresses, DoBuildSMTPAddressInfo uses the same procedure but a separate

buffer, bccBuf. Typically, an SMTP messaging system does not display a bcc address

even to a bcc recipient. Therefore, DoBuildSMTPAddressInfo places any bcc addresses

in a separate buffer so they can be handled separately. In code not shown in Listing 2-13,

the DoBuildSMTPAddressInfo function uses the information in the address buffer for

both routing and display purposes, but it uses the address information in the bcc buffer

for routing only.

When DoBuildSMTPAddressInfo has finished building its two address buffers, it

adds them to the letter.

Listing 2-13 Building SMTP addresses

OSErr DoBuildSMTPAddressInfo(FSSpec *myTempFileSpec, MySlotSpec *slotSpec)

{

#define kMyMaxAddrBufSize 4096 /* this MSAM's limit on address

 info */

#define kMyFromHeader "From: "

#define kMyToHeader "To: "

#define kMyCCHeader "Cc: "

#define kMyBCCHeader "Bcc: "

#define kMyAddressDelimiter ", "

#define kMyCRStr "\r"

OSErr myErr;

char tmpString[256];

char bccBuf[256];

char fromAddr[256];

char *addressBuf;

unsigned long tmpLen;

C H A P T E R 2

Messaging Service Access Modules

Using the MSAM API 2-85

char packedRecip[kMaxRecipSize];

Boolean hasRecipient;

/* allocate memory to hold addresses in external form */

addressBuf = NewPtr(kMyMaxAddrBufSize);

if (MemError() != noErr) {

return (MemError();

}

addressBuf[0] = 0;

/* build 'from' address */

strcpy(fromAddr, slotSpec->dirIdentity.userName);

strcat(fromAddr, "@");

strcat(fromAddr, slotSpec->specInfo.smtpServer);

strcpy(addressBuf, kMyFromHeader);

strcat(addressBuf, fromAddr);

strcat(addressBuf, kMyCRStr);

/* build 'To' address */

hasRecipient = false;

strcat(addressBuf, kMyToHeader);

for (myErr = noErr; myErr == noErr;) {

tmpLen = kMaxRecipSize;

myErr = DoReadFromFile(myTempFileSpec, kToType, (Ptr)packedRecip,

&tmpLen);

if (myErr == noErr) {

if (DoAOCEToSMTPAddress(

(OCEPackedRecipient *)packedRecip, tmpString)) {

strcat(addressBuf, tmpString);

strcat(addressBuf, kMyAddressDelimiter);

hasRecipient = true;

}

}

}

if (hasRecipient) {

addressBuf[strlen(addressBuf) - strlen(kMyAddressDelimiter)] = 0;

strcat(addressBuf, kMyCRStr);

}

else {

addressBuf[strlen(addressBuf) - strlen(kMyToHeader)] = 0;

}

/* not shown here -- build 'cc' address just like 'To' address */

C H A P T E R 2

Messaging Service Access Modules

2-86 Using the MSAM API

/* build 'bcc' address just like 'To' address but in separate buffer */

hasRecipient = false;

strcpy(bccBuf,kMyBCCHeader);

for (myErr=noErr; myErr==noErr;) {

tmpLen = kMaxRecipSize;

myErr = DoReadFromFile(myTempFileSpec,kBCCType, (Ptr)packedRecip,

&tmpLen);

if (myErr==noErr) {

if (DoAOCEToSMTPAddress(

(OCEPackedRecipient *)packedRecip,tmpString)) {

strcat(bccBuf,tmpString);

strcat(bccBuf,kMyAddressDelimiter);

hasRecipient = true;

}

}

}

if (hasRecipient) {

bccBuf[strlen(bccBuf)-strlen(kMyAddressDelimiter)] = 0;

strcat(bccBuf,kMyCRStr);

}

/* not shown here -- add address information to the letter */

DisposPtr(addressBuf);

return noErr;

}

The DoAOCEToSMTPAddress function in Listing 2-14 converts an SMTP address

contained in an OCEPackedRecipient structure into string format. It returns true

when it produces an SMTP address from an OCEPackedRecipient structure.

The DoAOCEToSMTPAddress function calls the OCEUnpackDSSpec AOCE utility

routine to unpack the packed recipient information pointed to by its packedRecip

parameter. If the extension type of the unpacked address specifies an SMTP address, it

calls the BlockMove function to copy the value from the extensionValue field into

the RString structure recipRString, converts the RString in recipRString into a

C string, and stores the C string in the buffer pointed to by its unixRecip parameter.

Then it returns true. If the extension type specifies some other type of address, the

DoAOCEToSMTPAddress function makes no effort to translate the address and simply

returns false.

A user can send a single letter to recipients in different types of messaging systems; thus,

a single AOCE letter header may contain addresses with different extension types. This

creates a potential problem for an MSAM, which is illustrated in the following example.

The SMTP messaging system to which our sample MSAM is connected understands

C H A P T E R 2

Messaging Service Access Modules

Using the MSAM API 2-87

Listing 2-14 Converting from AOCE to SMTP address

Boolean DoAOCEToSMTPAddress(OCEPackedRecipient *packedRecip,

char *unixRecip)

{

#define kMySMTPAddrType'SMTP'

OCERecipient recip;

RecordID entitySpecifier;

OSType recipType;

RString recipRString;

OCEUnpackDSSpec((PackedDSSpec*)packedRecip, &recip, &entitySpecifier);

recipType = recip.extensionType;

switch (recipType) {

case kMySMTPAddrType:

BlockMove(recip.extensionValue, &recipRString, recip.extensionSize);

DoRToCString(&recipRString, unixRecip);

break;

default: /* if not SMTP address, don't convert it */

return false;

break;

}

return true;

}

only SMTP addresses. When the messaging system receives a letter, it tries to route the

letter to all of the addresses in the letter header. If it cannot do this, it generates an error

reply to the sender. Suppose an AOCE user sends a letter to a fax address and sends a

copy to a recipient with an SMTP address. Our sample MSAM is responsible for this

SMTP address and must deliver the letter to the SMTP recipient. How should the MSAM

handle the fax address? It cannot add the fax address as the To recipient because the

SMTP messaging system will complain. Yet, it should provide the SMTP recipient with a

letter that shows that the letter’s primary recipient was a fax address.

The solution to this dilemma is up to the MSAM and its messaging system. For instance,

the MSAM can copy the displayable strings from the recordName and recordType

fields of an address into a display area in the letter header. A messaging system does not

interpret information in the header’s display area. If no such display area exists, the

MSAM can append the displayable strings to the body of the letter and note that the

letter was also sent to that address.

An MSAM can add an actual address for which it is not responsible instead of the

displayable strings from the recordName and recordType fields of the address. To do

this, it must know the address format specified by a given extension type and how an

C H A P T E R 2

Messaging Service Access Modules

2-88 Using the MSAM API

address of that type is stored in an OCERecipient structure. Knowing this, the MSAM

can translate the extension value into an actual address. (Apple does not define the

syntax and semantics for non-AOCE address extension types. MSAM developers must

work together to define agreed-upon extension types, and the associated address syntax

and semantics.)

Suppose, for example, an AppleLink MSAM knows how an SMTP address is stored in

an OCERecipient structure. If an AOCE user sends a letter to an AppleLink address

and to an SMTP address, the AppleLink MSAM can translate the SMTP address to its

proper SMTP form and add it to the letter header as a display address.

Remember that an MSAM only delivers a letter to those recipients for which it is

responsible. All other recipient information with the letter is for display purposes only,

regardless of whether the other recipient information is included in actual address

format or as displayable strings, and regardless of where the information is stored (a

display area in the letter header or the body of the letter).

Note

Given that an MSAM routes a letter only to those recipients for which it
is responsible, a recipient on the MSAM’s messaging system cannot
necessarily reply to all other recipients. An MSAM must consider what
to do when a recipient wants to reply to addresses that the MSAM
cannot reach. Regardless of how it handles this situation, the MSAM
should avoid sending the AOCE user a reply that looks as if it went to
all recipients of the original message if in fact it did not. ◆

Although an MSAM is limited by the characteristics of the messaging system to which it

is connected, it should always attempt to represent all recipients of an outgoing letter

that it translates and transmits.

Translating to an AOCE Address

When an MSAM receives a message from its external messaging system, it must

translate the addresses associated with the message before it can deliver the message

to an AOCE system.

The function DoConvertToAOCEAddress in Listing 2-15 on page 2-90 provides an

example of building an AOCE OCERecipient address structure from a non-AOCE

address. The DoConvertToAOCEAddress function takes an address from a letter it

received from its SMTP system and puts that address into AOCE format. The

DoConvertToAOCEAddress function calls several AOCE utility routines to facilitate

the process of constructing an AOCE address; the utility routines are described in the

chapter “AOCE Utilities” in Inside Macintosh: AOCE Application Interfaces.

Listing 2-15 picks up at the point where DoConvertToAOCEAddress begins assembling

the pieces of an OCERecipient structure. The DoConvertToAOCEAddress function

begins by constructing the record ID part of the OCERecipient. A record ID, in turn,

consists of a local record ID and record location information. It makes an RLI structure

that contains the record location information by calling the AOCE utility routine

OCENewRLI and providing it with an RLI structure’s component parts: a catalog name,

a discriminator, a dNode number, and a path. The OCENewRLI function returns

C H A P T E R 2

Messaging Service Access Modules

Using the MSAM API 2-89

the RLI structure. The MSAM retrieves the catalog name from the private slot

specification structure (type MySlotSpec) that the MSAM builds when it is

launched. Because dNode numbers and paths are not used with non-AOCE

addresses, DoConvertToAOCEAddress passes OCENewRLI a null dNode number

and a nil pointer to a path. After OCENewRLI returns the RLI structure,

DoConvertToAOCEAddress calls the AOCE utility routine OCEValidRLI to check

its validity.

Next, DoConvertToAOCEAddress calls the OCEPackRLI utility routine to convert the

RLI structure into packed form and calls the OCEValidPackedRLI utility routine to

check the validity of the packed form.

Having prepared the record location information, DoConvertToAOCEAddress next

prepares the local record ID, which consists of a creation ID, a record name, and a record

type. A creation ID is not used in a non-AOCE address, so DoConvertToAOCEAddress

calls the OCESetCreationIDtoNull utility routine to set the CreationID structure to

0. The buffer pointed to by the local variable realName contains a displayable form of

the sender or receiver’s name in C string format. The DoConvertToAOCEAddress

function converts the C string into an RString and stores the RString in the local

variable recordName. It tells the OCECToRString utility routine what character set the

string uses and how many bytes, at maximum, it should place in the data portion of

the RString, which in this example is the maximum number of bytes. Then

DoConvertToAOCEAddress calls the OCECToRString utility routine again to get an

RString that contains the sender or receiver’s type. In this example, the type is always

set to the constant kUserRecTypeBody, indicating a user.

At this point, DoConvertToAOCEAddress calls the OCENewLocalRecordID utility

routine to build a local record ID from the creation ID, record name, and record type. The

DoConvertToAOCEAddress function then calls the OCENewRecordID utility routine

to build a record ID from its packed RLI and local record ID.

At last, DoConvertToAOCEAddress is ready to build the OCERecipient itself. It sets

the entitySpecifier field to point to the record ID it has just constructed. Then it sets

the extension fields. It specifies its extension type in the extensionType field. The

buffer pointed to by the local variable startAddr contains the SMTP address in C

string format. The DoConvertToAOCEAddress function converts the C string into

an RString and stores the RString in the local variable xtnValueRString. (The

DoConvertToAOCEAddress function converts the extension value from C string to

RString format so that the mailer can correctly display the SMTP address to the user.)

Then, DoConvertToAOCEAddress sets the extensionSize field to the number

of bytes in the body field of xtnValueRString plus 4 more to account for the

dataLength and charSet fields in an RString structure. This produces a count of

the total number of bytes in xtnValueRString. Last, DoConvertToAOCEAddress

sets the extensionValue field to point to xtnValueRString.

Before writing the address to a disk file, DoConvertToAOCEAddress converts the

address into packed form. It calls the OCEPackedDSSpecSize utility routine, passing

it the unpacked structure. In response, OCEPackedDSSpecSize returns the size

of the packed structure into which the unpacked structure could be converted. Then

DoConvertToAOCEAddress calls the OCEPackDSSpec utility routine and passes the

C H A P T E R 2

Messaging Service Access Modules

2-90 Using the MSAM API

size value to it. Finally, DoConvertToAOCEAddress writes the packed structure to a

disk file.

Listing 2-15 Building an OCERecipient structure

OSErr DoConvertToAOCEAddress(FSSpec *myTempFileSpec, MySlotSpec *slotSpec)

{

#define kMySMTPAddrType 'SMTP'

#define kMyDirectoryType 'SMTP'

#define kMyDiscriminator {kMyDirectoryType,0L}

OSErr myErr;

char *startAddr, *realName;

RLI myRLI;

PackedRLI myPackedRLI;

DirDiscriminator discriminator = kMyDiscriminator;

CreationID cid;

RString recordName,recordType;

LocalRecordID localRID;

RecordID RID;

OCERecipient theRecipient;

char packedRecipient[kMaxRecipSize];

unsigned long packedRecipLength;

RString xtnValueRString;

/*

Not shown here -- parse the address information in the letter from the

external messaging system. Put the SMTP address into a buffer pointed

to by startAddr. Put the displayable string that identifies the sender

or receiver into a buffer pointed to by realName.

*/

/* make an RLI and check it for validity */

OCENewRLI(&myRLI, (DirectoryNamePtr)&slotSpec->directoryName,

&discriminator, kNULLDNodeNumber, nil);

if (!OCEValidRLI(&myRLI))

return kUnexpectedOCECondition;

/* pack the RLI and check it for validity */

myErr = OCEPackRLI(&myRLI, &myPackedRLI, kRLIMaxBytes);

C H A P T E R 2

Messaging Service Access Modules

Using the MSAM API 2-91

if (myErr != noErr)

return myErr;

if (!OCEValidPackedRLI(&myPackedRLI))

return kUnexpectedOCECondition;

/* prepare name and type rstrings and creation ID for local RID */

OCESetCreationIDtoNull(&cid); /* set cid to null */

OCECToRString(realName, smRoman, &recordName, kRStringMaxBytes);

OCECToRString(kUserRecTypeBody, smRoman, &recordType, kRStringMaxBytes);

/* the components have been prepared; make the local RID and the RID */

OCENewLocalRecordID (&recordName, &recordType, &cid, &localRID);

OCENewRecordID(&myPackedRLI, &localRID, &RID);

/* build the OCERecipient address structure */

theRecipient.entitySpecifier = &RID;

theRecipient.extensionType = kMySMTPAddrType;

OCECToRString(startAddr, smRoman, &xtnValueRString, kRStringMaxChars);

theRecipient.extensionSize = xtnValueRString.length+4;

theRecipient.extensionValue = (Ptr)&xtnValueRString;

/* pack the OCERecipient and write it to a disk file */

packedRecipLength = OCEPackedDSSpecSize(&theRecipient);

OCEPackDSSpec(&theRecipient, (PackedDSSpec *)&packedRecipient,

packedRecipLength);

myErr = DoWriteAddressToFile(myTempFileSpec, (Ptr)&packedRecipient,

packedRecipLength);

}

Note

If a personal MSAM receives an incoming letter that contains more than
one AOCE recipient, the MSAM translates all of the addresses. However,
a personal MSAM cannot forward letters from the user’s Macintosh to
other AOCE users. A personal MSAM can deliver an incoming letter
only to the owner of the local Macintosh computer, even if the letter
contains the addresses of other AOCE users. ◆

Logging Personal MSAM Operational Errors
When an operational error occurs, such as a modem not functioning properly or an

access number being out of service, the personal MSAM should log the error by calling

the PMSAMLogError function.

You can log four general classes of information: informational messages, warnings,

errors that are not correctable by the user, and errors that are correctable by the user.

C H A P T E R 2

Messaging Service Access Modules

2-92 Using the MSAM API

These classes are referred to as error types; they are represented by four enumerated

constants. You use one of these constants in the errorType field of the

MailErrorLogEntryInfo structure when you log an error:

enum {

kMailELECorrectable = 0, /* error correctable by user */

kMailELEError = 1, /* error not correctable by user */

kMailELEWarning = 2, /* warning requiring no user intervention */

kMailELEInformational = 3 /* informational message */

};

For example, you would log an error of type kMailELEInformational if you wanted

to inform the user that it took 12 connection attempts before a connection with the

external messaging system was actually achieved. If you wanted to warn the user that

his or her password on the external messaging system was about to expire, you would

log an error of type kMailELEWarning. You use the kMailELEError error type to log

an error that cannot be fixed by the user, for example, a missing resource in the personal

MSAM. If an error occurs that requires user intervention, you log an error of type

kMailELECorrectable.

In general, you should log all errors that require user intervention, but you should be

selective about logging other types of errors. Logging many warnings and informational

messages can fill the error log and cause problems at the user interface.

An error may apply to a specific slot or to the personal MSAM as a whole. When you log

an error, you set the msamSlotID field of the MailErrorLogEntryInfo structure to 0

if the error applies to the personal MSAM as a whole. Otherwise, you set it to the slot ID

of the affected slot.

When you log an error of type kMailELECorrectable, the IPM Manager considers

either the personal MSAM or the affected slot to be suspended. While a personal MSAM

is suspended, the IPM Manager does not send it any high-level events or restart it at

scheduled times if it quits. While a slot is suspended, the user cannot modify or delete it.

Moreover, if you specify the suspended slot in a call to the PMSAMOpenQueues function,

the function returns the kMailSlotSuspended result code. Other than these

exceptions, a personal MSAM can continue whatever activity it deems appropriate

while it or one of its slots is suspended.

For example, suppose a user configures an SMTP personal MSAM to start up every night

at midnight. At midnight, the IPM Manager launches the MSAM, and the MSAM fails to

connect to its external messaging system because MacTCP, which is required for this

MSAM, is not installed. The MSAM should log an error of type kMailELECorrectable.

The IPM Manager will not try to launch the SMTP personal MSAM again until the user

has installed MacTCP.

Because logging an error of type kMailELECorrectable implies that the problem is

not transient in nature, the PMSAMLogError function does not provide you with a

mechanism for canceling these errors or accessing logged entries. Correctable errors,

by their definition, require a user’s attention, and you should not log them unless

absolutely necessary.

C H A P T E R 2

Messaging Service Access Modules

Messaging Service Access Module Reference 2-93

AOCE software defines the following error codes:

enum { /* predefined values of MailLogErrorCode */

kMailMSAMErrorCode = 0, /* MSAM-defined error */

kMailMiscError = -1, /* miscellaneous error */

kMailNoModem = -2 /* modem required, but missing */

};

Because a personal MSAM is a background application, it has no user interface and

therefore cannot notify the user of runtime errors. Because each MSAM can potentially

encounter errors specific to its implementation, the Finder cannot adequately notify the

user of these errors without help from the MSAM. To solve this problem, an MSAM

needs to provide two 'STR#' string list resources. The first 'STR#' resource contains a

list of the MSAM’s error messages, each describing a problem that may occur. This

resource must have a resource ID of kMailMSAMErrorStringListID. The second

'STR#' resource contains a list of strings specifying the action that the user can take to

fix a specific error. It must have a resource ID of kMailMSAMActionStringListID.

To cause the Finder to display one of your error messages, you must set the errorCode

field of the MailErrorLogEntryInfo structure to kMailMSAMErrorCode and set the

errorResource field. The errorResource field is an index into the list of your error

messages in the 'STR#' resource. The index of the first message in the string list is 1.

When you log an error that requires user intervention (kMailELECorrectable), you

must specify an action that the user should take to correct the error. You provide the action

messages in a 'STR#' resource (resource ID = kMailMSAMActionStringListID). You

set the actionResource field to an index into the list of your action messages in the

'STR#' resource. The index of the first message in the string list is 1.

The Finder displays all errors to the user, regardless of the error type. A user reports that

an error is corrected by clicking the Resolve button on a problem report in his or her In

Tray. (See the PowerTalk User’s Guide for a description of the PowerTalk user interface.)

The IPM Manager reinstates a suspended personal MSAM or slot when the user reports

that the error is corrected or when the computer on which the personal MSAM is

running is restarted. If the personal MSAM is not running when the user reports that the

problem has been corrected, the IPM Manager launches it. If the personal MSAM is

running, it gets a kMailEPPCContinue high-level event.

Messaging Service Access Module Reference

This section describes the structures and functions that constitute the messaging

service access module API. It also includes descriptions of the high-level events an

MSAM might receive.

C H A P T E R 2

Messaging Service Access Modules

2-94 Messaging Service Access Module Reference

Data Types and Constants

This section describes the data structures in the MSAM API. The chapters “AOCE

Utilities” and “Interprogram Messaging Manager” in Inside Macintosh: AOCE Application
Interfaces contain descriptions of other structures that you use.

The MSAM Parameter Block

Every function in the MSAM API takes a pointer to an MSAMParam parameter block as

input. The parameter block has a standard header followed by function-specific fields.

Each function description in the section “MSAM Functions” describes the fields of that

function’s parameter block.

MailParamBlockHeader

The parameter block header for an MSAMParam structure has the following definition:

define MailParamBlockHeader

Ptr qLink; /* reserved */\

long reservedH1; /* reserved */\

long reservedH2; /* reserved */\

ProcPtr ioCompletion; /* your completion routine */\

OSErr ioResult; /* result code */\

long saveA5; /* location of app global variables */\

short reqCode; /* reserved */

Field descriptions

qLink Reserved.

reservedH1 Reserved.

reservedH2 Reserved.

ioCompletion Pointer to a completion routine that you can provide. When a
function that you called asynchronously completes execution, it
calls your completion routine. See page 2-219 for a description of
the completion routine. Set this field to nil if you do not wish to
provide a completion routine. This field is ignored if you call a
function synchronously.

ioResult The result of a function. You can poll the ioResult field to
determine when a function has finished executing. When you
execute the function asynchronously, the function sets this field
to 1 as soon as the function has been queued for execution. When
the function completes execution, it sets this field to the actual
result code.

saveA5 The contents of your application’s A5 register.

reqCode Reserved.

C H A P T E R 2

Messaging Service Access Modules

Messaging Service Access Module Reference 2-95

MSAMParam

The MSAMParam structure is a union of function-specific substructures, each of which

contains standard header fields.

union MSAMParam {

struct {MailParamBlockHeader} header;

PMSAMGetMSAMRecordPB pmsamGetMSAMRecord;

PMSAMOpenQueuesPB pmsamOpenQueues;

PMSAMSetStatusPB pmsamSetStatus;

PMSAMLogErrorPB pmsamLogError;

SMSAMSetupPB smsamSetup;

SMSAMStartupPB smsamStartup;

SMSAMShutdownPB smsamShutdown;

MSAMEnumeratePB msamEnumerate;

MSAMDeletePB msamDelete;

MSAMOpenPB msamOpen;

MSAMOpenNestedPB msamOpenNested;

MSAMClosePB msamClose;

MSAMGetMsgHeaderPB msamGetMsgHeader;

MSAMGetAttributesPB msamGetAttributes;

MSAMGetRecipientsPB msamGetRecipients;

MSAMGetContentPB msamGetContent;

MSAMGetEnclosurePB msamGetEnclosure;

MSAMEnumerateBlocksPB msamEnumerateBlocks;

MSAMGetBlockPB msamGetBlock;

MSAMMarkRecipientsPB msamMarkRecipients;

MSAMnMarkRecipientsPB msamnMarkRecipients;

MSAMCreatePB msamCreate;

MSAMBeginNestedPB msamBeginNested;

MSAMEndNestedPB msamEndNested;

MSAMSubmitPB msamSubmit;

MSAMPutMsgHeaderPB msamPutMsgHeader;

MSAMPutAttributePB msamPutAttribute;

MSAMPutRecipientPB msamPutRecipient;

MSAMPutContentPB msamPutContent;

MSAMPutEnclosurePB msamPutEnclosure;

MSAMPutBlockPB msamPutBlock;

MSAMCreateReportPB msamCreateReport;

MSAMPutRecipientReportPB msamPutRecipientReport;

PMSAMCreateMsgSummaryPB pmsamCreateMsgSummary;

PMSAMPutMsgSummaryPB pmsamPutMsgSummary;

PMSAMGetMsgSummaryPB pmsamGetMsgSummary;

C H A P T E R 2

Messaging Service Access Modules

2-96 Messaging Service Access Module Reference

MailWakeupPMSAMPB wakeupPMSAM;

MailCreateMailSlotPB createMailSlot;

MailModifyMailSlotPB modifyMailSlot;

};

typedef union MSAMParam MSAMParam;

The Mail Buffer

You use the MailBuffer structure to pass data between your MSAM and the

IPM Manager.

MailBuffer

The mail buffer structure is defined by the MailBuffer data type.

struct MailBuffer {

long bufferSize; /* size of your buffer */

Ptr buffer; /* pointer to your buffer */

long dataSize; /* amount of data returned in or read out

of your buffer */

};

typedef struct MailBuffer MailBuffer;

Field descriptions

bufferSize When reading, you set this field to the size of your buffer in bytes.
When writing, you set this field to the number of bytes that you
want to write.

buffer A pointer to your buffer. You allocate a buffer of whatever size
you need.

dataSize When it successfully completes execution, the function sets this
field to the actual number of bytes that it read or wrote.

The Mail Reply Structure

A MailReply structure is a model. Many functions in the MSAM API format the data

they place in a MailBuffer structure according to the MailReply model format.

C H A P T E R 2

Messaging Service Access Modules

Messaging Service Access Module Reference 2-97

MailReply

A structure of type MailReply consists of a single field, tupleCount, that contains

a count. It is followed immediately by tupleCount occurrences of a data item or

structure. The format of the data item or structure depends on the particular

function that returns the data in the MailReply structure format. For instance, the

MSAMEnumerate function returns MSAMEnumerateOutQReply or

MSAMEnumerateInQReply structures.

struct MailReply {

unsigned short tupleCount;

/* tuple[tupleCount] */

};

typedef struct MailReply MailReply;

The Enumeration Structures

The enumeration structures, MSAMEnumerateOutQReply and

MSAMEnumerateInQReply, return information about messages in an outgoing or

incoming queue, respectively. The MSAMEnumerate function returns a list of one

or the other of these structures. Each structure gives enough information about a

message for you to know what to do next with the message.

MSAMEnumerateOutQReply

When a personal or server MSAM calls the MSAMEnumerate function to enumerate an

outgoing queue, the function returns information about the messages in the outgoing

queue in a list of MSAMEnumerateOutQReply structures, one for each message.

struct MSAMEnumerateOutQReply {

long seqNum; /* sequence number of message */

Boolean done; /* resolution of message */

IPMPriority priority; /* priority of message */

OSType msgFamily; /* message family */

long approxSize; /* size of message */

Boolean tunnelForm; /* reserved */

Byte padByte; /* pad to even byte boundary */

NetworkSpec nextHop; /* reserved */

OCECreatorType msgType; /* message creator and type */

};

typedef struct MSAMEnumerateOutQReply MSAMEnumerateOutQReply;

C H A P T E R 2

Messaging Service Access Modules

2-98 Messaging Service Access Module Reference

Field descriptions

seqNum A sequence number that identifies a specific message in the
outgoing queue. It is valid until you delete the message. You
pass this value to the MSAMOpen function to identify a message
you want to open.

done A Boolean value that indicates if you have sent—or completed your
attempts to send—the message to each of the recipients for which
you are responsible. The IPM Manager sets this field to true when
you have finished sending or attempting to send the message to all
of the recipients for which you are responsible. You tell the IPM
Manager which recipients you have processed by calling the
MSAMnMarkRecipients function.

priority A value that indicates the priority with which the message was sent.
Possible values are: kIPMNormalPriority, kIPMLowPriority,
and kIPMHighPriority.

msgFamily A value that indicates the message family to which the message
belongs. The AOCE-defined message families are kMailFamily,
kMailFamilyFile, and kIPMFamilyUnspecified. Developers
can define other message families.

approxSize The size of the message itself, not including some overhead bytes
associated with the message when it resides in the outgoing queue.

tunnelForm Reserved.

nextHop Reserved.

msgType A structure that specifies the creator and type of the message. The
creator field indicates the creator of the message. The type field
identifies the type of message.

MSAMEnumerateInQReply

When a personal MSAM calls the MSAMEnumerate function to enumerate an incoming

queue, the function returns information about the letters in the queue in a list of

MSAMEnumerateInQReply structures, one for each letter.

struct MSAMEnumerateInQReply {

long seqNum; /* letter sequence number */

Boolean msgDeleted; /* should letter be deleted? */

Boolean msgUpdated; /* was message summary updated? */

Boolean msgCached; /* is letter in the incoming queue? */

Byte padByte; /* pad to even byte boundary */

};

typedef struct MSAMEnumerateInQReply MSAMEnumerateInQReply;

C H A P T E R 2

Messaging Service Access Modules

Messaging Service Access Module Reference 2-99

Field descriptions

seqNum A sequence number for a specific letter in the incoming queue. It is
valid until you delete the letter.

msgDeleted A Boolean value that indicates whether you should delete the letter.
Only the IPM Manager sets and clears this field. If this field is set to
true, you should delete the letter.

msgUpdated A Boolean value that indicates if the IPM Manager has updated the
message summary associated with the letter. Only the IPM Manager
sets and clears this field. This field is set to true if the IPM
Manager has updated the message summary.

msgCached A Boolean value that indicates if the letter is attached to its message
summary. Only the IPM Manager sets and clears this field. This
field is set to true if you wrote the letter into the incoming queue.

The Mail Time Structure

The MailTime structure appears in the sendTimeStamp attribute in a letter’s header

and in the sendTime field of a letter’s message summary.

MailTime

The MailTime structure is the standard structure for reporting time in an AOCE system.

struct MailTime {

UTCTime time; /* current UTC(GMT) */

UTCOffset offset; /* offset from UTC */

};

typedef struct MailTime MailTime;

Field descriptions

time Current time expressed as universal coordinated time (UTC) in
seconds since 00:00 hours, January 1, 1904. (The UTCTime data type
is unsigned long.)

offset Offset from UTC in seconds. The offset is a signed value added to
the time value. (The UTCOffset data type is long.)

The Letter Attribute Structures

Letter attributes identify a letter and indicate who wrote it, when it was sent, what its

priority for delivery is, who the recipients are, and so forth. Most attributes are stored in

the letter header; a few are stored in the message summary.

C H A P T E R 2

Messaging Service Access Modules

2-100 Messaging Service Access Module Reference

MailAttributeID

When calling the MSAMPutAttribute or MSAMPutRecipient function, you use the

MailAttributeID data type to indicate the letter attribute whose value you are

passing to the function. When calling the MSAMGetRecipients function, you use it

to indicate the recipient type about which you want information.

typedef unsigned short MailAttributeID;

A variable of type MailAttributeID may have any of the following values:

enum {

kMailLetterFlagsBit = 1, /* letter flags bit */

kMailIndicationsBit = 3, /* indications bit */

kMailMsgTypeBit = 4, /* letter creator & type bit */

kMailLetterIDBit = 5, /* letter ID bit */

kMailSendTimeStampBit = 6, /* send timestamp bit */

kMailNestingLevelBit = 7, /* nesting level bit */

kMailMsgFamilyBit = 8, /* message family bit */

kMailReplyIDBit = 9, /* reply ID bit */

kMailConversationIDBit = 10, /* conversation ID bit */

kMailSubjectBit = 11, /* subject bit */

kMailFromBit = 12, /* From recipient bit */

kMailToBit = 13, /* To recipient bit */

kMailCcBit = 14, /* cc recipient bit */

kMailBccBit = 15 /* bcc recipient bit */

};

MailAttributeBitmap

When calling the MSAMGetAttributes function, you use a MailAttributeBitmap

structure to indicate the letter attributes about which you want information. Each

defined bit in the attribute bitmap represents a letter attribute. This structure is also a

component part of the MSAMMsgSummary structure.

struct MailAttributeBitmap {

unsigned int /* 32 bits */

reservedA:16, /* bits 17 to 32--reserved */

reservedB:1, /* bit 16--reserved */

bcc:1, /* bit 15--blind carbon copy recipients */

cc:1, /* bit 14--carbon copy recipients */

to:1, /* bit 13--To recipients */

from:1, /* bit 12--sender of letter */

C H A P T E R 2

Messaging Service Access Modules

Messaging Service Access Module Reference 2-101

subject:1, /* bit 11--subject of letter */

conversationID:1, /* bit 10--ID of conversation thread */

replyID:1, /* bit 09--ID of letter being replied to */

msgFamily:1, /* bit 08--message family */

nestingLevel:1, /* bit 07--nesting level of letter */

sendTimeStamp:1, /* bit 06--time letter was sent */

letterID:1; /* bit 05--letter's unique ID number */

msgType:1, /* bit 04--letter's creator and type */

indications:1, /* bit 03--indications */

reservedC:1, /* bit 02--reserved */

letterFlags:1 /* bit 01--letter flags */

};

typedef struct MailAttributeBitmap MailAttributeBitmap;

Field descriptions

bcc Secondary recipients whose addresses do not appear on the letter as
received by the To and cc recipients and other bcc recipients.

cc Recipients who are being sent a courtesy copy of the letter.

to Primary recipients of the letter.

from The sender of the letter.

subject The subject of the letter.

conversationID The letter ID number of the original letter that began a sequence of
replies or forwards that resulted in the current letter.

replyID The letter ID number of the letter to which the current letter is
a reply.

msgFamily A value that indicates the message family to which the message
belongs.

nestingLevel The nesting level of the letter. A letter that is newly created (that is,
not a reply to or forward of an existing letter) has a nesting level of
0. A reply to or forward of a letter whose nesting level is 0 has a
nesting level of 1. A reply to or forward of a letter whose nesting
level is 1 has a nesting level of 2, and so on. See the section “Letters”
beginning on page 2-17 for information on nested letters.

sendTimeStamp The time the letter was sent.

letterID The letter ID number for the letter. This number is generated by the
IPM Manager.

msgType The creator and type of the letter. Each letter has a creator and type.

indications Indications of the properties of the letter, such as whether the letter
contains a digital signature, whether the originator requested
non-delivery reports, and so on. The MailIndications structure
is described on page 2-102.

letterFlags Flags that indicate the status of the letter, such as whether it has
been opened by the user. The MailLetterFlags structure is
described on page 2-123. Server MSAMs should ignore this attribute.

C H A P T E R 2

Messaging Service Access Modules

2-102 Messaging Service Access Module Reference

The following table summarizes letter attributes. In the column headed “O/M”, an M

indicates mandatory—that is, this attribute must always be present. An O means optional—
the attribute may or may not be present in a letter. In the column headed “F/V”, an F

indicates fixed—that is, this attribute has a fixed size—while a V means variable—the

attribute size is variable.

An MSAM should allocate the largest possible buffer for attributes whose size is variable.

Note

All letter attributes except the letterFlags attribute are stored in the
letter header. Both personal and server MSAMs read or set all letter
attributes in the letter header. The letterFlags attribute is stored in a
letter’s message summary. Server MSAMs do not create message
summaries and therefore do not set or read a letterFlags attribute
for letters they handle. The letterFlags attribute applies only to
letters submitted by a personal MSAM. ◆

MailIndications

The MailIndications structure further defines the letter attribute called

indications. It is a bit field structure that contains information about several

characteristics of the letter, such as what priority level the originator set for the

letter, whether it has been sent, what type of reports the originator wants, and so

on. An MSAM sets many of these bits for an incoming letter and reads the bits

for an outgoing letter.

Constant Value Attribute data type O/M F/V

kMailLetterFlagsBit 1 MailLetterFlags M F

kMailIndicationsBit 3 MailIndications M F

kMailMsgTypeBit 4 OCECreatorType M F

kMailLetterIDBit 5 MailLetterID M F

kMailSendTimeStampBit 6 MailTime M F

kMailNestingLevelBit 7 MailNestingLevel M F

kMailMsgFamilyBit 8 OSType M F

kMailReplyIDBit 9 MailLetterID O F

kMailConversationIDBit 10 MailLetterID O F

kMailSubjectBit 11 RString O V

kMailFromBit 12 OCERecipient M V

kMailToBit 13 OCERecipient M V

kMailCcBit 14 OCERecipient O V

kMailBccBit 15 OCERecipient O V

C H A P T E R 2

Messaging Service Access Modules

Messaging Service Access Module Reference 2-103

The following constants define bits in the MailIndications structure:

enum {

kMailOriginalInReportBit = 1,

kMailNonReceiptReportsBit = 3,

kMailReceiptReportsBit = 4,

kMailForwardedBit = 5,

kMailPriorityBit = 6,

kMailIsReportWithOriginalBit = 8,

kMailIsReportBit = 9,

kMailHasContentBit = 10,

kMailHasSignatureBit = 11,

kMailAuthenticatedBit = 12,

kMailSentBit = 13

};

Note

Constants for the hasStandardContent, hasImageContent, and
hasNativeContent bit fields are not defined. ◆

struct MailIndications {

unsigned int

reservedB:16,

hasStandardContent:1,/* letter has a content block */

hasImageContent:1, /* letter has an image block */

hasNativeContent:1, /* letter has a content enclosure */

sent:1, /* letter sent, not just composed */

authenticated:1, /* letter was created and transported with

authentication */

hasSignature:1, /* letter was signed with a digital signature */

hasContent:1, /* this letter or a nested letter has content */

isReport:1, /* not a letter, is really a report */

isReportWithOriginal:1,/* report contains the original letter */

priority:2, /* letter has normal, low, or high priority */

forwarded:1, /* letter contains a forwarded letter */

receiptReports:1, /* originator requests delivery indications */

nonReceiptReports:1, /* originator requests non-delivery indications */

originalInReport:2, /* originator wants original letter enclosed in

 reports */

};

typedef struct MailIndications MailIndications;

C H A P T E R 2

Messaging Service Access Modules

2-104 Messaging Service Access Module Reference

Field descriptions

hasStandardContent
If this bit is set, this letter has a block of type kMailContentType
that contains data in standard interchange format.

hasImageContent
If this bit is set, this letter has a block of type kMailImageBodyType
that contains data in standard image format.

hasNativeContent
If this bit is set, this letter contains content in the form of a
content enclosure.

sent If this bit is set, this letter was sent, not just composed. This bit is
clear for nested letters and those that exist on disk and have not yet
been submitted.

authenticated If this bit is set, this letter was created by an authenticated user and
transported over a secure path using the Apple Secure Data Stream
Protocol. In release 1, a letter entering an AOCE system via an
MSAM is not authenticated. This bit will always be set to 0 on
letters read by a personal MSAM. On letters read by a server
MSAM, the bit may be set or clear. In either case, it is for
the MSAM’s information only.

hasSignature If this bit is set, the sender signed the letter with a digital signature.
The signature applies to the letter as a whole. If a portion of the
letter is signed, the bit is not set. See the chapter “Digital Signature
Manager” in Inside Macintosh: AOCE Application Interfaces for
information about digital signatures. The AOCE software sets this
bit to 0 for letters submitted by an MSAM. If this bit is set for an
outgoing letter, the MSAM can ignore it or add a note to the letter
indicating that the letter was originally signed with a digital
signature.

hasContent If this bit is set, this letter, or a letter nested within it, contains
content. The content can be a content block, an image block,
or a content enclosure. Although this bit doesn’t indicate the
type of content or the nesting level at which the content exists,
it provides useful information to AOCE letter applications that
display letter content by indicating if a letter has some type of
content at some nesting level.

isReport If this bit is set, this is an IPM report. Because an IPM report is not a
report that an MSAM creates or receives, you never set this bit for a
report that you create, nor will it be set on a report that you receive.
For more information about reports, see the section “Reports” on
page 2-23. IPM reports are discussed in the chapter “Interprogram
Messaging Manager” in Inside Macintosh: AOCE Application
Interfaces.

C H A P T E R 2

Messaging Service Access Modules

Messaging Service Access Module Reference 2-105

isReportWithOriginal
If this bit is set, this is an IPM report that contains the original letter
to which the report pertains. Because an IPM report is not a report
that an MSAM creates or receives, you never set this bit for a report
that you create, nor will it be set on a report that you receive. For
more information about reports, see the section “Reports” on
page 2-23. IPM reports are discussed in the chapter “Interprogram
Messaging Manager” in Inside Macintosh: AOCE Application
Interfaces.

priority The priority of the letter, as set by the sender. This 2-bit field can be
set to any of the following values: kIPMNormalPriority,
kIPMLowPriority, or kIPMHighPriority.

enum {

kIPMAnyPriority = 0,/* not used by MSAM */

kIPMNormalPriority = 1,

kIPMLowPriority,

kIPMHighPriority

};

It is up to the recipient to decide how to handle letters of
different priorities.

forwarded If this bit is set, this letter is a forwarded letter.

receiptReports If this bit is set, the originator of this letter has requested a report
containing delivery indications.

nonReceiptReports
If this bit is set, the originator of this letter has requested a report
containing non-delivery indications.

originalInReport
This 2-bit field can be set to either of the following values:

enum {

kMailNoOriginal = 0,

kMailEncloseOnNonReceipt= 3

};

If this field is set to kMailNoOriginal, the originator of this letter
specified that the original letter not be enclosed in reports. If this
field is set to kMailEnclosedOnNonReceipt, the originator of
this letter specified that the original letter be enclosed in reports
containing non-delivery indications. An MSAM ignores this field
and never includes a copy of the original letter in a report it creates.
The AOCE toolbox is responsible for including originals when
appropriate.

C H A P T E R 2

Messaging Service Access Modules

2-106 Messaging Service Access Module Reference

The following table indicates who sets the bits in the MailIndications structure for

an incoming letter. In the column labeled “Responsible for setting,” MSAM refers to both

personal and server MSAMs.

The Recipient Structures

The structures in this section define the sender or receiver of a message. You use these

structures when you get recipient information from a message that you have opened or

when you put recipient information into a message that you are creating. The chapter

“Interprogram Messaging Manager” in Inside Macintosh: AOCE Application Interfaces also

describes the OCERecipient and OCEPackedRecipient structures. The structures are

described here from the perspective of an MSAM’s use of them.

OCERecipient

The OCERecipient structure completely specifies an address. It should contain

whatever information is needed to deliver a message to that address.

You use an OCERecipient structure to specify a reply address when you call the

MSAMPutMsgHeader function.

An OCERecipient structure is the unpacked form of the OCEPackedRecipient

structure (described next). The utility routines OCEPackRecipient and

OCEUnpackRecipient allow you to transform the address information from one

format to the other. The routines are described in the chapter “Interprogram

Messaging Manager” in Inside Macintosh: AOCE Application Interfaces.

MailIndications bit field Responsible for setting

hasStandardContent MSAM

hasImageContent MSAM

hasNativeContent MSAM

sent IPM Manager

authenticated IPM Manager

hasSignature IPM Manager

hasContent MSAM

isReport Not applicable

isReportWithOriginal Not applicable

priority MSAM

forwarded MSAM

receiptReports MSAM

nonReceiptReports MSAM

originalInReport MSAM

C H A P T E R 2

Messaging Service Access Modules

Messaging Service Access Module Reference 2-107

struct OCERecipient {

RecordID* entitySpecifier;

OSType extensionType;

unsigned short extensionSize;

Ptr extensionValue;

};

Field descriptions

entitySpecifier
Pointer to a RecordID structure. The record ID contains part of the
address. The section “AOCE Addresses” beginning on page 2-23
explains what each field of the RecordID structure should contain
when it holds either an AOCE address or an external address.

extensionType Identifies the type of messaging system with which this recipient is
associated. It determines the format and the meaning of the data
pointed to by the extensionValue field. You must provide an
extension type.

extensionSize The number of bytes in the extensionValue field.

extensionValue A pointer to the part of the address that is specific to the messaging
system. You should provide the address extension information in an
RString structure. This allows the information to be displayed
properly to the user and allows the user to create new addresses of
this type using the type-in addressing feature. (Type-in addressing
is a feature of PowerTalk software’s human interface.)

Table 2-5 on page 2-30 and Table 2-4 on page 2-29 list the contents of each field in an

OCERecipient structure for an AOCE address and an external address, respectively.

typedef OCERecipient MailRecipient;

The MailRecipient structure is defined as an OCERecipient data type. You use it

in exactly the same way as you would an OCERecipient structure. You provide a

MailRecipient structure to specify a recipient of a letter or a report when you call

the MSAMPutRecipient or MSAMCreateReport function, respectively.

OCEPackedRecipient

An OCEPackedRecipient structure is the packed form of the OCERecipient

structure (described in the previous section).

You cannot read the packed address directly. Before you can read it, you must

convert it to the unpacked format using the OCEUnpackRecipient utility routine.

The utility routines OCESizePackedRecipient, OCEGetRecipientType, and

OCESetRecipientType allow you to manipulate an OCEPackedRecipient structure.

They are described in the chapter “Interprogram Messaging Manager” in Inside
Macintosh: AOCE Application Interfaces.

C H A P T E R 2

Messaging Service Access Modules

2-108 Messaging Service Access Module Reference

A structure of type OCEPackedRecipient is a minimum-sized structure and should

not be allocated on the stack. Instead, use the NewPtr or NewHandle routine to allocate

the structure.

struct OCEPackedRecipient {

unsigned short dataLength; /* length of recipient data */

Byte data[kOCEPackedRecipientMaxBytes];

};

Field descriptions

dataLength Length of the packed recipient address that immediately follows
this field.

data Packed recipient address.

MailOriginalRecipient

The MailOriginalRecipient structure consists of a single field, index, that contains

an index value for a given recipient. The MailOriginalRecipient structure is a

model of how address information is stored in a buffer. It is always followed immedi-

ately by an OCEPackedRecipient structure that contains the address information of

that recipient. The MSAMGetRecipients function returns recipient information in

MailOriginalRecipient format when you call the function requesting information

about recipients of a particular type (From, To, cc, or bcc).

struct MailOriginalRecipient {

short index; /* index for recipient */

/* followed by OCEPackedRecipient structure */

};

typedef struct MailOriginalRecipient MailOriginalRecipient;

Field descriptions

index An absolute index value associated with the recipient.

MailResolvedRecipient

The MailResolvedRecipient structure contains an index value for the recipient,

an indication of whether the recipient is a bcc recipient, and a Boolean value that

indicates whether you are responsible for delivering the message to this recipient.

The MailResolvedRecipient structure is a model of how address information is

stored in a buffer. The fields of the structure are always followed immediately by an

C H A P T E R 2

Messaging Service Access Modules

Messaging Service Access Module Reference 2-109

OCEPackedRecipient structure that contains the address information of the

recipient. The MSAMGetRecipients function returns recipient information in

MailResolvedRecipient format when you call the function requesting informa-

tion about resolved recipients.

struct MailResolvedRecipient {

short index; /* index for recipient */

short recipientFlags;/* recipient information */

Boolean responsible; /* responsible for delivery? */

Byte padByte;

/* followed by OCEPackedRecipient structure */

};

typedef struct MailResolvedRecipient MailResolvedRecipient;

Field descriptions

index An absolute index value associated with the recipient. You need this
value when you call the MSAMPutRecipientReport function to
identify the recipient to whom the report pertains. The index is also
useful if you want to match an original recipient with a resolved
recipient.

recipientFlags A value that tells you if this recipient is a bcc recipient. Use
the mask kIPMBCCRecMask to determine if this recipient is
a bcc recipient.

responsible A Boolean value that is set to true if you are responsible for
sending the message to this recipient.

The Segment Types

A content block (type kMailContentType) contains the body or main content of a letter

in standard interchange format (see the section “Letters” beginning on page 2-17 for more

information about interchange format). A content block consists of segments of data in

plain text, styled text, picture, sound, or movie format. The MailSegmentType data

type identifies one of the five standard data segment types. The MailSegmentMask data

type specifies one or more of these segment types. You read and write content blocks with

the MSAMGetContent (page 2-150) and MSAMPutContent functions (page 2-186).

MailSegmentType

A variable of the MailSegmentType data type specifies the format of data in a

data segment.

typedef unsigned short MailSegmentType;

C H A P T E R 2

Messaging Service Access Modules

2-110 Messaging Service Access Module Reference

A variable of type MailSegmentType can contain one of the following values:

enum { /* values of MailSegmentType */

kMailInvalidSegmentType = 0,

kMailTextSegmentType = 1,

kMailPictSegmentType = 2,

kMailSoundSegmentType = 3,

kMailStyledTextSegmentType = 4,

kMailMovieSegmentType = 5

};

Constant descriptions

kMailInvalidSegmentType
This value is included as a convenience. An MSAM can initialize a
variable of type MailSegmentType to this known value before
calling the MSAMGetContent function.

kMailTextSegmentType
The segment contains plain text in one or more character sets. The
text data must consist of 1-byte or 2-byte character codes,
depending on the character set (Roman, Arabic, Kanji, and so on).

kMailPictSegmentType
The segment contains picture data in PICT format. For more
information about PICT format, see Inside Macintosh: Imaging With
QuickDraw.

kMailSoundSegmentType
The segment contains data in Audio Interchange File Format
(AIFF). For more information about AIFF format, see Inside
Macintosh: More Macintosh Toolbox.

kMailStyledTextSegmentType
The segment contains text and a StScrpRec structure containing
the style information corresponding to that text. The text data
consists of 1-byte or 2-byte character codes, depending on the
character set (Roman, Arabic, Kanji, and so on). For more
information on the StScrpRec structure, the style record, and the
style table, see Inside Macintosh: Text.

kMailMovieSegmentType
The segment contains QuickTime movie data in QuickTime movie
file format ('MooV'). For more information about the 'MooV' file
format, see Inside Macintosh: QuickTime.

MailSegmentMask

You use the MailSegmentMask data type to indicate the kinds of data segments that

you want to read when you call the MSAMGetContent function.

typedef unsigned short MailSegmentMask;

C H A P T E R 2

Messaging Service Access Modules

Messaging Service Access Module Reference 2-111

The bits in the segment mask are defined as follows:

enum {

kMailTextSegmentBit,

kMailPictSegmentBit,

kMailSoundSegmentBit,

kMailStyledTextSegmentBit,

kMailMovieSegmentBit

};

You can use a combination of the following values to set bits in the segment mask:

enum { /* values of MailSegmentMask */

kMailTextSegmentMask = 1L<<kMailTextSegmentBit,

kMailPictSegmentMask = 1L<<kMailPictSegmentBit,

kMailSoundSegmentMask = 1L<<kMailSoundSegmentBit,

kMailStyledTextSegmentMask = 1L<<kMailStyledTextSegmentBit,

kMailMovieSegmentMask = 1L<<kMailMovieSegmentBit

};

The Enclosure Information Structure

You add an enclosure to a letter by calling the MSAMPutEnclosure function. The

function takes a MailEnclosureInfo structure as input. This structure describes the

enclosure being added to the letter.

MailEnclosureInfo

You pass a MailEnclosureInfo structure to the MSAMPutEnclosure function when

you enclose a file that resides in memory.

struct MailEnclosureInfo {

StringPtr enclosureName;

/* name of the enclosure */

CInfoPBPtr catInfo; /* HFS catalog info about enclosure*/

StringPtr comment; /* comment for Get Info window */

Ptr icon /* icon for enclosure file */

};

typedef struct MailEnclosureInfo MailEnclosureInfo;

C H A P T E R 2

Messaging Service Access Modules

2-112 Messaging Service Access Module Reference

Field descriptions

enclosureName A pointer to the name of the file that you want to enclose. Format
the filename as a Pascal-style string—that is, add a leading length
byte. The name must be 1 to 31 bytes long, excluding the length
byte, and must not contain colons (:).

catInfo A pointer to a fully specified CInfoPBRec structure (defined in
Inside Macintosh: Files), which is returned by the PBGetCatInfo
function. Set the fields for which you cannot obtain appropriate
values to 0, with the exception of the ioNamePtr and
ioFlFndrInfo fields. Ignore the ioNamePtr field because you
pass the filename in the enclosureName field. The first 8 bytes of
the ioFlFndrInfo field contain values for the file’s type and
creator. Because the type and creator determine the application
associated with the file and the icon that the Finder displays for that
file, omitting a value for the ioFlFndrInfo field renders the file
unusable. Therefore, you should make every attempt to provide
meaningful values for the file’s creator and type. If you do not
know the application associated with the file, set the creator field
to four question marks ('????'). If you do not know the file’s type,
set the type field to ('????') as well.

comment A pointer to a Pascal-style string containing the file’s comment; it is
the information that the Get Info command in the Finder displays
for the file. The string cannot be longer than 199 characters,
excluding the length byte. The Finder truncates a longer string
when it places the file on an HFS volume. If the file has no
comment, set the comment field to nil.

icon A pointer to the file’s icon: the standard black-and-white icon (32 by
32 bits) consisting of 128 bytes of bitmap followed by 128 bytes of
mask. Enclosures in a letter are stored in AppleSingle format.
AppleSingle format typically provides a single black-and-white
icon so that non-Macintosh file systems can easily read an icon
without needing to know how to get at the icon resources stored
in AppleSingle format. This field preserves compatibility with
AppleSingle format. It is not used by AOCE software. You can set
this field to nil.

The Image Block Information Structure

You use the TPfPgDir structure when reading or writing an image block.

C H A P T E R 2

Messaging Service Access Modules

Messaging Service Access Module Reference 2-113

TPfPgDir

An image block starts with an image block information structure (the TPfPgDir data

type defined by the Printing Manager), followed by a series of PICT elements.

struct TPfPgDir{

short iPages; /* number of pages in image block */

long iPgPos[129]; /* array [0..iPfMaxPgs] of offsets */

};

Field descriptions

iPages The number of pages in the image. The image block contains one
PICT for each page.

iPgPos An array of offsets from the start of the block to the picture elements
that follow the TPfPgDir structure.

The iPgPos array contains offsets to the picture elements that follow the TPfPgDir

structure. The offset from the start of the image block to the image of page n + 1 is

iPgPos[n] (because page numbers start at 1 and the array elements start at 0). The array

contains iPgPos[n + 1] elements for a document of n pages. The last element is the offset

of the end of the last page from the beginning of the block. You can determine the size of

a page by subtracting the offset of the current page from the offset of the next page, that

is, the size of page n is iPgPos[n] – iPgPos[n – 1].

The High-Level Event Structures

The MailEPPCMsg, SMCA, OCESetupLocation, MailLocationFlags, and

MailLocationInfo structures are used in conjunction with high-level events.

MailEPPCMsg

When you call the AcceptHighLevelEvent function after receiving an AOCE

high-level event, the function returns a buffer that contains a MailEPPCMsg structure.

struct MailEPPCMsg {

short version; /* message version */

union {

SMCA * theSMCA; /* pointer to SMCA */

long sequenceNumber; /* letter sequence number */

MailLocationInfo locationInfo;/* location information */

} u;

};

typedef struct MailEPPCMsg MailEPPCMsg;

C H A P T E R 2

Messaging Service Access Modules

2-114 Messaging Service Access Module Reference

Field descriptions

version The version number of the AOCE high-level event. You should
verify that this version number matches the value of the
kMailEPPCMsgVersion constant in the PowerTalk interface files
you used when you built your MSAM.

u.theSMCA A pointer to an SMCA structure that contains additional information
relevant to the event. The IPM Manager uses this field when it
sends any of the following events: kMailEPPCCreateSlot,
kMailEPPCModifySlot, kMailEPPCDeleteSlot,
kMailEPPCMsgOpened, kMailEPPCSendImmediate,
kMailEPPCAdmin.

u.sequenceNumber
The sequence number of the letter to which the event applies.
The IPM Manager uses this field when it sends either the
kMailEPPCInQUpdate or kMailEPPCDeleteOutQMsg event.

u.locationInfo A MailLocationInfo structure. The IPM Manager uses this field
when it sends the kMailEPPCLocationChanged event.

SMCA

The shared memory communication area, defined by the SMCA structure, is used to pass

information between the IPM Manager and an MSAM, in addition to the data passed in

the EventRecord structure.

struct SMCA {

unsigned short smcaLength; /* length of entire SMCA
(including the length field) */

OSErr result; /* result code */
long userBytes; /* event-specific data */

union{
CreationID slotCID; /* creation ID of record

containing slot information */
long msgHint; /* message reference value */

} u;
};

typedef struct SMCA SMCA;

Field descriptions

smcaLength The total length of the SMCA structure, including the 2 bytes for the
smcaLength field itself. The IPM Manager sets this field.

result You set this field to acknowledge receipt of the event to the IPM
Manager or to indicate that you have handled the event. Set it to the
noErr result code to acknowledge receipt of the event or to report
success. Otherwise, set it to an MSAM-defined error code. See the
individual event descriptions for details.

C H A P T E R 2

Messaging Service Access Modules

Messaging Service Access Module Reference 2-115

userBytes The interpretation of this field is dependent on the particular event
that is being processed. See the individual event descriptions for
information on how this field is used for that event.

u.slotCID If the event applies to a particular slot, this field contains the
creation ID of the slot’s record in the Setup catalog. If the event
applies to the MSAM as a whole, this field contains 0. The IPM
Manager sets this field. It is irrelevant to server MSAMs.

u.msgHint A reference value associated with a specific letter. The IPM Manager
sets this field.

OCESetupLocation

The OCESetupLocation data type defines the current system location.

typedef char OCESetupLocation;

The values 0–8 are valid values for a variable of type OCESetupLocation. Values 1–8

refer to an actual location. The value 0 is a special case that indicates the offline or

disconnected state. When the current system location is 0, a personal MSAM should not

be executing.

The following enumeration defines constants for two of the valid values of type

OCESetupLocation:

enum {

kOCESetupLocationNone = 0, /* disconnect state */

kOCESetupLocationMax = 8 /* maximum location value */

};

MailLocationFlags

The MailLocationFlags data type defines a bit array. Each bit corresponds to a

system location. If the bit is set, the slot to which the location flags apply is active at that

location. The MailLocationFlags data type is used in the MailLocationInfo and

MailStandardSlotInfoAttribute structures.

typedef unsigned char MailLocationFlags;

A system location is identified by a value ranging from 1 to 8. To test a bit in a variable of

type MailLocationFlags, the following mask is defined:

#define MailLocationMask(locationNumber) (1<<((locationNumber)-1))

C H A P T E R 2

Messaging Service Access Modules

2-116 Messaging Service Access Module Reference

Note that for the special location value 0, which corresponds to the disconnected or

offline state, the mask value is 0. The slot is inactive at all locations when the current

system location is 0.

MailLocationInfo

The MailLocationInfo structure contains the current system location and a bit

array defining the locations at which a given slot is active. The MailLocationInfo

structure is part of the MailEPPCMsg structure. A personal MSAM receives a

MailLocationInfo structure when it receives a kMailEPPCLocationChanged event.

struct MailLocationInfo {

OCESetupLocation location; /* the current location */
MailLocationFlags active; /* slot's location flags */

};

typedef struct MailLocationInfo MailLocationInfo;

Field descriptions

location A value that identifies the current system location. It may contain
any integer value between 0–8.

active A bit array that defines whether or not a given slot is active at each
system location.

The Server MSAM Administrative Event Structures

The IPM Manager provides a server MSAM with administrative information by means

of the kMailEPPCAdmin high-level event (page 2-235).

SMSAMAdminCode

The SMSAMAdminCode data type defines a set of codes for server MSAM administrative

actions.

typedef unsigned short SMSAMAdminCode;

A variable of type SMSAMAdminCode can have any of the following values:

enum {
kSMSAMNotifyFwdrSetupChange= 1,

kSMSAMNotifyFwdrNameChange = 2,
kSMSAMNotifyFwdrPwdChange = 3,

kSMSAMGetDynamicFwdrParams = 4
};

C H A P T E R 2

Messaging Service Access Modules

Messaging Service Access Module Reference 2-117

SMSAMAdminEPPCRequest

The userBytes field of the SMCA structure associated with a kMailEPPCAdmin

high-level event provides a pointer to an SMSAMAdminEPPCRequest structure. The

SMSAMAdminEPPCRequest structure contains an administrative code followed by

data whose type is determined by the code.

struct SMSAMAdminEPPCRequest {

SMSAMAdminCode adminCode; /* admin code */

union {

SMSAMSetupChange setupChange; /* setup change */

SMSAMNameChange nameChange; /* reserved */

SMSAMPasswordChange passwordChange; /* reserved */

SMSAMDynamicParams dynamicParams; /* reserved */

} u;

};

typedef struct SMSAMAdminEPPCRequest SMSAMAdminEPPCRequest;

Field descriptions

adminCode A value that indicates the type of administrative action requested
by the kMailEPPCAdmin high-level event. The value in this field
determines the type of structure contained in the u field. In release 1
of PowerTalk system software, this should always be the
kSMSAMNotifyFwdrSetupChange code.

u Contains a structure that varies depending on the value of the
adminCode field. In release 1 of PowerTalk system software, this
should always be an SMSAMSetupChange structure.

SMSAMSetupChange

The SMSAMSetupChange structure contains connectivity information about a

server MSAM.

struct SMSAMSetupChange {

SMSAMSlotChanges whatChanged; /* what parameters changed */

AddrBlock serverHint; /* AOCE server address */

};

typedef struct SMSAMSetupChange SMSAMSetupChange;

Field descriptions

whatChanged A value that indicates the connectivity information that
has changed.

C H A P T E R 2

Messaging Service Access Modules

2-118 Messaging Service Access Module Reference

serverHint The AppleTalk address of the PowerShare catalog server that the
MSAM should use to read its Forwarder record containing the
changed connectivity information. Because an AOCE system is a
distributed system, the changed data may not have propagated to
other servers yet.

SMSAMSlotChanges

The SMSAMSlotChanges data type defines a bit array that indicates the kind of

connectivity information that has changed.

typedef unsigned long SMSAMSlotChanges;

The bits in the SMSAMSlotChanges data type are defined as follows:

enum {

kSMSAMFwdrHomeInternetChangedBit,

kSMSAMFwdrConnectedToChangedBit,

kSMSAMFwdrForeignRLIsChangedBit,

kSMSAMFwdrMnMServerChangedBit

};

You can use the following values to test the bits in a variable of type

SMSAMSlotChanges:

enum { /* values of SMSAMSlotChanges */

kSMSAMFwdrEverythingChangedMask = -1,

kSMSAMFwdrHomeInternetChangedMask= 1L<<kSMSAMFwdrHomeInternetChangedBit,

kSMSAMFwdrConnectedToChangedMask = 1L<<kSMSAMFwdrConnectedToChangedBit,

kSMSAMFwdrForeignRLIsChangedMask = 1L<<kSMSAMFwdrForeignRLIsChangedBit,

kSMSAMFwdrMnMServerChangedMask = 1L<<kSMSAMFwdrMnMServerChangedBit

};

Constant descriptions

kSMSAMFwdrEverythingChangedMask
In release 1 of the AOCE software, this constant has the same
definition as that of the kSMSAMFwdrForeignRLIsChangedMask
constant.

kSMSAMFwdrHomeInternetChangedMask
Reserved.

kSMSAMFwdrConnectedToChangedMask
Reserved.

C H A P T E R 2

Messaging Service Access Modules

Messaging Service Access Module Reference 2-119

kSMSAMFwdrForeignRLIsChangedMask
The record location information that points to a catalog associated
with the MSAM’s external messaging system has changed. The
information changes when the PowerShare system administrator
adds or deletes a catalog for a messaging system served by the
MSAM.

kSMSAMFwdrMnMServerChangedMask
Reserved.

The Personal MSAM Setup Structures

The MailTimer and MailTimerKind data types and the MailTimers and

MailStandardSlotInfoAttribute structures contain the user’s send and receive

requirements for a given slot and location information for that slot.

MailTimer

A variable of type MailTimer specifies a number of seconds. The value is interpreted as

a frequency interval or a specific time, depending on which union field is used.

union MailTimer {

long frequency; /* how often to connect */

long connectTime; /* time since midnight */

};

typedef union MailTimer MailTimer;

Field descriptions

frequency A value that tells a personal MSAM how often it should connect to
its messaging system to send or retrieve mail. The frequency
interval is specified in seconds.

connectTime A value that tells a personal MSAM at what time it should connect
to its messaging system to send or retrieve mail. The time is
specified as the number of seconds since midnight. The midnight
used is that of the internal time on the Macintosh as set by the user.

MailTimerKind

A variable of type MailTimerKind specifies the type of timer that a user wants to use

with a given mail slot.

typedef Byte MailTimerKind;

C H A P T E R 2

Messaging Service Access Modules

2-120 Messaging Service Access Module Reference

A variable of type MailTimerKind can have any of the following values:

enum {

kMailTimerOff = 0, /* no timer specified */

kMailTimerTime = 1, /* timer relative to midnight */

kMailTimerFrequency = 2 /* frequency timer*/

};

Constant descriptions

kMailTimerOff Specifies that the user has not requested a timer.

kMailTimerTime Specifies that a personal MSAM should send or retrieve messages at
a particular time.

kMailTimerFrequency
Specifies that a personal MSAM should send or retrieve messages at
regular intervals.

MailTimers

The MailTimers structure indicates how frequently a personal MSAM connects to its

external messaging system. A personal MSAM’s setup template sets the fields of the

MailTimers structure in response to user actions. The user can express the frequency as

a particular clock time at which the personal MSAM automatically connects every day

(for example, connect at 3:00 A.M. to send and receive letters) or as a periodic occurrence

(for example, connect every two hours). The IPM Manager uses the information in this

structure to determine when it should send a kMailEPPCSchedule event to the

personal MSAM.

struct MailTimers {

MailTimerKind sendTimeKind; /* timer kind for sending */

MailTimerKind receiveTimeKind; /* timer kind for receiving */

MailTimer send; /* connect time or frequency

for sending letters */

MailTimer receive; /* connect time or frequency

for receiving letters */

};

typedef struct MailTimers MailTimers;

Field descriptions

sendTimeKind A constant that indicates what type of timer the user wants the
personal MSAM to use for sending messages for a particular slot.
The setup template sets this field to one of the following values:
kMailTimerTime, kMailTimerFrequency, or kMailTimerOff.

C H A P T E R 2

Messaging Service Access Modules

Messaging Service Access Module Reference 2-121

receiveTimeKind
A constant that indicates what type of timer the user wants the
personal MSAM to use for retrieving messages for a particular slot.
The setup template sets this field to one of the following values:
kMailTimerTime, kMailTimerFrequency, or kMailTimerOff.

send A value that specifies either the time interval that elapses before the
personal MSAM sends messages to its external messaging system
or a specific time at which the MSAM sends these messages.
The MSAM interprets this field according to the value in the
sendTimeKind field. If that value is kMailTimerOff, the MSAM
ignores this field.

receive A value that specifies either the time interval that elapses before the
personal MSAM retrieves messages from its external messaging
system or a specific time at which the MSAM retrieves these
messages. The MSAM interprets this field according to the value in
the receiveTimeKind field. If that value is kMailTimerOff, the
MSAM ignores this field.

MailStandardSlotInfoAttribute

The personal MSAM’s setup template obtains location and timing information from the

user to set the active and sendReceiveTimer fields of this structure appropriately.

Then it adds the structure to the slot’s Combined or Mail Service record in the Setup

catalog, where the information is available to the IPM Manager.

struct MailStandardSlotInfoAttribute {

short version; /* version of this slot structure */
MailLocationFlags active; /* active at location i if

MailLocationMask(i) is set */
Byte padByte;

MailTimers sendReceiveTimer;
};

typedef struct MailStandardSlotInfoAttribute MailStandardSlotInfoAttribute;

Field descriptions

version The version of the MailStandardSlotInfoAttribute structure.
You should set this field to 1. There is no constant defined for it.

active A bit array that defines whether or not the slot is active at a given
location. If the bit is set, the slot is active at the corresponding loca-
tion. A slot is active if a personal MSAM is able to send and receive
messages for the slot.

sendReceiveTimer
The frequency at which the IPM Manager should schedule the
personal MSAM to send and receive messages for the user account
represented by this slot. (The IPM Manager does this by sending the
MSAM a kMailEPPCSchedule event.)

C H A P T E R 2

Messaging Service Access Modules

2-122 Messaging Service Access Module Reference

The Personal MSAM Letter Flag Structures

The letter flags provide information about a letter in an incoming queue. Only personal

MSAMs use the structures in this section.

MailLetterSystemFlags

The IPM Manager sets the letter system flags.

typedef unsigned short MailLetterSystemFlags;

The bit in the system flags bytes that you can test is defined as follows:

enum {

kMailIsLocalBit = 2

};

You can use the following value to test the bit flag in the MailLetterSystemFlags

data type.

enum {

kMailIsLocalMask = 1L<<kMailIsLocalBit

};

Constant descriptions

kMailIsLocalMask
The letter exists in an incoming queue on the local computer. If the
kMailIsLocalBit bit is not set, the letter is stored on an external
messaging system, and only its message summary is currently
available locally.

MailLetterUserFlags

The IPM Manager and a personal MSAM can set letter user flags in response to a

user action.

typedef unsigned short MailLetterUserFlags;

The bits in the user flags bytes are defined as follows:

enum {

kMailReadBit,

kMailDontArchiveBit,

kMailInTrashBit

};

C H A P T E R 2

Messaging Service Access Modules

Messaging Service Access Module Reference 2-123

You can use the following values to test the flags in the MailLetterUserFlags

data type.

enum {

kMailReadMask = 1L<<kMailReadBit,

kMailDontArchiveMask = 1L<<kMailDontArchiveBit,

kMailInTrashMask = 1L<<kMailInTrashBit

};

Constant descriptions

kMailReadMask The user has opened this letter. A personal MSAM sets the letter
user flags to 0 when it creates the letter’s message summary. The
IPM Manager sets the kMailReadBit bit to 1 when the user opens
the letter. A personal MSAM can also modify this bit by calling the
PMSAMPutMsgSummary function.

kMailDontArchiveMask
Reserved.

kMailInTrashMask
Reserved.

MailLetterFlags

The MailLetterFlags structure contains both system and user letter flags to indicate

the status of a letter.

struct MailLetterFlags {

MailLetterSystemFlags sysFlags; /* system flags */

MailLetterUserFlags userFlags; /* user flags */

};

typedef struct MailLetterFlags MailLetterFlags;

Field descriptions

sysFlags A set of bit flags managed by the IPM Manager. You can test the
kMailIsLocalBit bit to determine if a given letter is actually
stored on the local computer.

userFlags A set of bit flags that indicate state changes that are controlled by
the user. The only bit flag that is relevant to an MSAM is the
kMailReadBit bit, which indicates whether the user has opened
the letter. You can test this bit with the kMailReadMask constant.

C H A P T E R 2

Messaging Service Access Modules

2-124 Messaging Service Access Module Reference

MailMaskedLetterFlags

Use the MailMaskedLetterFlags structure to set the letter flags attribute in a letter.

This structure is used by the MSAMPutMsgSummary function.

struct MailMaskedLetterFlags {

MailLetterFlags flagMask; /* flags that are to be set */

MailLetterFlags flagValues; /* their values */

};

typedef struct MailMaskedLetterFlags MailMaskedLetterFlags;

Field descriptions

flagMask The flags that are to be set.

flagValues The values of the flags that you want to set.

The Personal MSAM Message Summary Structures

A personal MSAM creates a message summary to store summary information about a

letter. The Finder uses message summary information to display incoming letters to the

user. The MSAMMsgSummary structure defines a message summary. A message summary

consists of a few individual fields and two groups of letter attributes. The two groups of

letter attributes are defined by the MailMasterData and MailCoreData structures,

described in this section.

MailMasterData

The attributes specified in the MailMasterData structure are not critical to the Finder

when it displays information about the letter to which the message summary belongs.

struct MailMasterData {

MailAttributeBitmap attrMask; /* indicates attributes present in

letter */

MailLetterID messageID; /* ID of this letter *

MailLetterID replyID; /* ID of letter this is a reply to */

MailLetterID conversationID;/* ID of letter that started this

 conversation */

};

typedef struct MailMasterData MailMasterData;

C H A P T E R 2

Messaging Service Access Modules

Messaging Service Access Module Reference 2-125

Field descriptions

attrMask A bit array that indicates letter attributes. You must set the bits that
correspond to the attributes that are present in the letter. See the
description of the MailAttributeBitmap structure on page 2-100
for a description of the bits in the attribute bitmap.

messageID The letter ID of this letter. The letter ID is a value that uniquely
identifies the letter. The letter ID is provided by the IPM Manager.

replyID The letter ID of the letter to which this letter is a reply. You provide
this value if it exists in the letter.

conversationID The letter ID of the original letter that began a sequence of replies or
forwards that resulted in this letter. You provide this value if it
exists in the letter.

MailCoreData

The Finder uses the attributes specified in the MailCoreData structure when it displays

information about the letter to which the message summary belongs. You provide values

for the fields of the structure, except where otherwise noted in the field descriptions.

/* defines for the addressedToMe field */

#define kAddressedAs_TO 0x1

#define kAddressedAs_CC 0x2

#define kAddressedAs_BCC 0x4

struct MailCoreData {

MailLetterFlags letterFlags; /* letter status flags */

unsigned long messageSize /* size of letter */

MailIndications letterIndications;

/* indications for this letter */

OCECreatorType messageType; /* message creator and type of this

letter */

MailTime sendTime; /* time this letter was sent */

OSType messageFamily; /* message family */

unsigned char reserved;

unsigned char addressedToMe; /* user is To, cc, or bcc recipient */

char agentInfo[6]; /* reserved (set to 0) */

/* these are variable length and even padded */

RString32 sender; /* sender of this letter */

RString32 subject; /* subject of this letter */

};

typedef struct MailCoreData MailCoreData;

C H A P T E R 2

Messaging Service Access Modules

2-126 Messaging Service Access Module Reference

Field descriptions

letterFlags A set of bit flags that indicate the status of the letter, such as
whether it has been opened by the user. Set this field to 0. See the
description of the MailLetterFlags structure on page 2-123 for
more information on these bit flags. You can modify the user
portion of the letter flags when you call the PMSAMPutMsgSummary
function.

messageSize The size of the letter in bytes. You provide this value.

letterIndications
Indications of additional properties of the letter, such as whether
the letter contains a digital signature, whether or not the originator
requested non-delivery indications, and so on. See the description
of the MailIndications structure on page 2-102. You provide
this value.

messageType The creator and type of the letter. Every letter has a creator and
type. You must provide this value.

sendTime The time the letter was sent. You provide this value.

messageFamily A value that indicates the message family to which the message
belongs. Set this field to kMailFamily.

reserved Reserved.

addressedToMe Indicates how the letter was sent to the addressee: as a To address, a
cc address, or a bcc address; possible values are kAddressedAs_TO,
kAddressedAs_CC, and kAddressedAs_BCC. You must set this
field appropriately. You can set more than one bit.

agentInfo Reserved. Set this field to 0.

sender The sender of the letter. You must provide a value for this field.
If your sender information consists of an odd number of bytes,
add a pad byte so that it ends on an even byte boundary. The IPM
Manager treats this field and the subject field that follows as a
single common buffer that contains variable-length sender and
subject information. See the section “Creating a Letter’s Message
Summary” beginning on page 2-64 for information on how to
correctly assign a value to this field.

subject The subject of the letter. You must provide this value. If your subject
information consists of an odd number of bytes, add a pad byte so
that it ends on an even byte boundary. The IPM Manager treats this
field and the sender field before it as a single common buffer that
contains variable-length sender and subject information. You add
the subject on the first even-byte boundary following the sender
information, which is not necessarily the same as the beginning of
this field. See the section “Creating a Letter’s Message Summary”
beginning on page 2-64 for information on how to correctly assign a
value to this field.

C H A P T E R 2

Messaging Service Access Modules

Messaging Service Access Module Reference 2-127

MSAMMsgSummary

An MSAMMsgSummary structure provides summary information about an incoming

letter. You must create one of these structures for each incoming letter. (In addition

to the fields defined in the message summary structure, the IPM Manager stores up

to kMailMaxPMSAMMsgSummaryData bytes of MSAM-specific private data with a

message summary.)

struct MSAMMsgSummary {

short version; /* version of the MSAMMsgSummary

structure */

Boolean msgDeleted; /* should letter be deleted? */

Boolean msgUpdated; /* was message summary updated? */

Boolean msgCached; /* is letter in the incoming queue? */

Byte padByte;

MailMasterData masterData; /* attributes not essential to

display */

MailCoreData coreData; /* attributes critical to display *

};

typedef struct MSAMMsgSummary MSAMMsgSummary;

Field descriptions

version The version of the message summary structure. You must set this
field to the constant kMailMsgSummaryVersion.

msgDeleted A Boolean value indicating whether you should delete this letter.
You do not provide a value for this field. The IPM Manager initially
sets this field to false. It sets this field to true when the user
deletes a letter. If this field is true, you should delete the letter on
your external messaging system and delete the letter’s message
summary.

msgUpdated A Boolean value indicating whether the IPM Manager updated
information in the message summary. You do not provide an
initial value for this field. The IPM Manager initially sets this
field to false. It sets this field to true when it updates any
of the following fields in the message summary: msgDeleted,
msgStoreFlags, finderInfo. You read this field to determine
if the message summary has changed. If it has, you should
reexamine the message summary and take appropriate action,
if any, based on the changed information. After taking the action,
you should reset this field to false.

msgCached A Boolean value indicating whether the letter associated with the
message summary exists in an incoming queue. You do not provide
a value for this field. The IPM Manager initially sets this field
to false. It sets this field to true when you write the letter
corresponding to this message summary into the incoming queue.

C H A P T E R 2

Messaging Service Access Modules

2-128 Messaging Service Access Module Reference

masterData A MailMasterData structure that contains letter attributes not
essential to the ability of the Finder to display the letter. See the
structure description on page 2-124 for an explanation of the
information that you must provide.

coreData A MailCoreData structure that contains the attributes crucial to
the Finder’s ability to display the letter. See the structure
description on page 2-125 for an explanation of the information that
you must provide.

The Personal MSAM Error Log Entry Structure

The error log is where a personal MSAM can report errors that require a user’s

intervention to correct. The personal MSAM reports errors using the PMSAMLogError

function. The function takes a pointer to a MailErrorLogEntryInfo structure

as input.

MailErrorLogEntryInfo

You provide a MailErrorLogEntryInfo structure to the PMSAMLogError function

when you want to report an operational error to the IPM Manager and ultimately to

the user.

typedef unsigned short MailLogErrorType;

/* values of MailLogErrorType */

enum {

kMailELECorrectable = 0, /* error correctable by user */
kMailELEError = 1, /* error not correctable by user */

kMailELEWarning = 2, /* warning requiring no user intervention */

kMailELEInformational= 3 /* informational message */

};

typedef short MailLogErrorCode;

/* predefined values of MailLogErrorCode */

enum {

kMailMSAMErrorCode = 0, /* MSAM-defined error */
kMailMiscError = -1, /* miscellaneous error */

kMailNoModem = -2 /* modem required, but missing */

};

struct MailErrorLogEntryInfo {
short version; /* log entry version */

UTCTime timeOccurred; /* time of error */

Str31 reportingPMSAM; /* MSAM reporting the error */

Str31 reportingMSAMSlot; /* slot having the error */

C H A P T E R 2

Messaging Service Access Modules

Messaging Service Access Module Reference 2-129

MailLogErrorType errorType; /* level of error */
MailLogErrorCode errorCode; /* error code */

short errorResource; /* error string resource index */

short actionResource; /* action string resource index */

unsigned long filler; /* reserved */
unsigned short filler2; /* reserved */

};

typedef struct MailErrorLogEntryInfo MailErrorLogEntryInfo;

Field descriptions

version The version of the error log entry. Set this field to
kMailErrorLogEntryVersion.

timeOccurred The time that the error occurred. This is filled in by the
IPM Manager.

reportingPMSAM
A string identifying the personal MSAM that is logging the error.
This is filled in by the IPM Manager.

reportingMSAMSlot
A string identifying the slot that is experiencing the error, if the
error is associated with a specific slot. This is filled in by the IPM
Manager.

errorType A value that indicates the type of error that you are logging. Set this
field to one of the following constants: kMailELECorrectable,
kMailELEError, kMailELEWarning,
kMailELEInformational.

errorCode A value that indicates the error you are logging. There are three
predefined errors; you can define others. If you want to log an error
that you define, set this field to kMailMSAMErrorCode and set the
errorResource field to the index into your string list ('STR#')
resource for the string that describes the error. The constants for the
predefined errors are kMailMSAMErrorCode, kMailMiscError,
and kMailNoModem.

errorResource An index into your list of error messages. An error message
describes the problem that has occurred. The resource ID of the
'STR#' resource containing the list of error messages must be
kMailMSAMErrorStringListID. If you are logging an
AOCE-defined error, the IPM Manager ignores this field.

actionResource The index into your list of action messages. An action message is
always associated with an error of type kMailELECorrectable.
The action message recommends the action that the user should
take to correct the error. The resource ID of the 'STR#' resource
containing the list of action messages must be
kMailMSAMActionStringListID. If you are logging an
AOCE-defined error, the IPM Manager ignores this field.

See the section “Logging Personal MSAM Operational Errors” on page 2-91 for more

information about operational errors.

2-130 Messaging Service Access Module Reference

C H A P T E R 2

Messaging Service Access Modules

MSAM Functions

This section describes the functions that you use to retrieve messages from and submit

messages to the IPM Manager. Most functions handle messages of all types, but certain

functions in the API are specific to letters or reports. Unless the function description

refers to a specific message type, you should assume that the function handles all types

of messages.

Functions whose names begin with MSAMPut apply to incoming messages; functions

whose names begin with MSAMGet apply to outgoing messages. Functions whose

names begin with PMSAM apply only to personal MSAMs; those whose names begin

with SMSAM apply only to server MSAMs.

You must completely specify any structure that you provide to a function unless the

description states otherwise.

All of the functions take a pointer to an MSAMParam parameter block as input.

Each function description includes a list of the fields in the parameter block that

are used by the function.

Most functions in the MSAM API have the following form:

pascal OSErr function (MSAMParam *paramBlock, Boolean asyncFlag);

You should call those functions asynchronously so that you can receive and process an

AOCE high-level event at any time.

Some functions can be called only synchronously or asynchronously; therefore, they do

not have the asyncFlag parameter. The form of those functions is:

pascal OSErr function (MSAMParam *paramBlock);

You can call a function from assembly language. Listing 2-16 illustrates one way to do

this for a function that takes both the parameter block pointer and the Boolean value

asyncFlag as parameters. (If a function can be called only synchronously or

asynchronously, the assembly code would not manipulate the asyncFlag value.)

Listing 2-16 Calling an MSAM function from assembly language

_oceTBDispatch OPWORD $aa5e

subq #2,a7 ; make room for function result

movea paramBlock,-(sp) ; push the param block pointer

onto stack

move.q asyncFlag, d0 ; move async flag into D0

move.b d0,-(sp) ; push the flag (byte) onto stack

moveq #opCode, d0 ; move op code into D0

move.w d0,-(sp) ; place the op code on the stack

_oceTBDispatch ; trap call

move.w (sp)+, d0 ; get result code

C H A P T E R 2

Messaging Service Access Modules

Messaging Service Access Module Reference 2-131

The function returns its result code in the ioResult field of the parameter block.

When you call a function synchronously, the function returns its result both as the

function result and in the ioResult field of the MailParamBlockHeader structure.

Note that the function also clears the ioCompletion field.

When you call a function asynchronously and the function has successfully queued the

request, it returns noErr and sets the ioResult field to 1. After the call completes, the

function sets the ioResult field to the actual result and calls the completion routine,

if one is specified. There is one exception to this behavior: if the IPM Manager is not

currently ready to accept a request, it may return corErr as the function result. In

this case, the ioResult field has an indeterminate value and the completion routine

is not called.

IMPORTANT

If you choose to poll the ioResult field to determine if the request has
completed, it is safest to check that it has changed from 1 to some other
value. While the IPM Manager does not return positive error codes,
system utilities may return positive error codes, and these may be
passed through without being caught. Nominally, this would be due to
an IPM Manager bug; however, you can and should attempt to protect
against this. ▲

Initializing an MSAM

You use the routines in this section to initialize an MSAM. A personal MSAM begins by

calling the PMSAMGetMSAMRecord function to obtain the creation ID of its record in the

Setup catalog. Then it calls the PMSAMOpenQueues function for each of its slots to obtain

the queue references for each slot. A server MSAM calls the SMSAMSetup function to

obtain identifying information about itself and then calls the SMSAMStartup function

to obtain its outgoing queue reference.

PMSAMGetMSAMRecord

The PMSAMGetMSAMRecord function provides you with the record creation ID of the

record that represents your personal MSAM in the Setup catalog.

pascal OSErr PMSAMGetMSAMRecord (MSAMParam *paramBlock);

paramBlock Pointer to a parameter block.

Parameter block

See “The MSAM Parameter Block” on page 2-94 for a description of the ioResult field.

← ioResult OSErr Result code
← msamCID CreationID Creation ID of personal MSAM record

C H A P T E R 2

Messaging Service Access Modules

2-132 Messaging Service Access Module Reference

Field descriptions

msamCID The creation ID of the record in the Setup catalog that represents
your personal MSAM.

DESCRIPTION

You call the PMSAMGetMSAMRecord function to obtain the record creation ID of your

personal MSAM’s MSAM record in the Setup catalog.

The MSAM record contains a list of all the slots associated with the MSAM. In addition,

your MSAM and its associated setup template may store private data that is global to the

MSAM in the MSAM record.

The IPM Manager knows that a personal MSAM exists by its MSAM record in the

Setup catalog.

IMPORTANT

The PMSAMGetMSAMRecord function is intended to be called
only by a personal MSAM. Calling it from anywhere else yields
indeterminate results. ▲

SPECIAL CONSIDERATIONS

This function is always executed synchronously.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The CreationID structure is described in the chapter “AOCE Utilities” in Inside
Macintosh: AOCE Application Interfaces.

See the chapter “Service Access Module Setup” in this book for more information on the

MSAM record in the Setup catalog.

Trap macro Selector

_oceTBDispatch $0506

noErr 0 No error
kOCEToolboxNotOpen –1500 Collaboration toolbox is shutting down
kOCEInvalidRef –1502 Invalid message reference number
kOCERefIsClosing –1516 IPM Manager is shutting down the

personal MSAM
kMailNoMSAMErr –15056 No such MSAM

C H A P T E R 2

Messaging Service Access Modules

Messaging Service Access Module Reference 2-133

PMSAMOpenQueues

The PMSAMOpenQueues function obtains the queue references for a slot that you specify.

pascal OSErr PMSAMOpenQueues (MSAMParam *paramBlock);

paramBlock Pointer to a parameter block.

Parameter block

See “The MSAM Parameter Block” on page 2-94 for a description of the ioResult field.

Field descriptions

inQueueRef If the slot you specify in the msamSlotID field is a mail slot, this
value is the queue reference for the slot’s incoming queue. If the slot
you specify in the msamSlotID field is a messaging slot, this value
identifies the slot itself. (The MSAMQueueRef data type is long.)

outQueueRef The queue reference for the outgoing queue of the slot you specify
in the msamSlotID field. (The MSAMQueueRef data type is long.)

msamSlotID The identification number of the slot for which you are requesting
queue references. This number is the slot ID that you generated and
stored in the slot’s record in the Setup catalog after receiving a
kMailEPPCCreateSlot high-level event.

DESCRIPTION

A personal MSAM calls the PMSAMOpenQueues function to get the queue references

associated with a slot. You need to provide the appropriate queue reference in

subsequent operations.

Only mail slots have an incoming queue into which an MSAM places letters coming

from an external messaging system that are addressed to the user. In the case of a

messaging slot, the value in the inQueueRef field is a reference to the slot itself.

Typically, you call the function when starting up or after you respond to an

kMailEPPCCreateSlot high-level event. On startup, you should call this function

for every slot that you manage.

If you specify a suspended slot, the function returns a kMailSlotSuspended result

code, but the queue references are still valid. (A slot is suspended when a personal

MSAM calls the PMSAMLogError function to indicate a serious operational error

associated with the slot.) In general, you should not attempt operations on a

suspended slot.

← ioResult OSErr Result code
← inQueueRef MSAMQueueRef Incoming queue reference
← outQueueRef MSAMQueueRef Outgoing queue reference
→ msamSlotID MSAMSlotID Address slot identification number

C H A P T E R 2

Messaging Service Access Modules

2-134 Messaging Service Access Module Reference

If you specify an inactive slot (if the active field in the

MailStandardSlotInfoAttribute structure is set to false), the queue references

are valid. However, in general, you should not attempt operations on an inactive slot.

After you respond with a noErr result to the kMailEPPCCreateSlot high-level event,

it is possible that the IPM Manager will encounter an error instantiating the new slot. If

this happens, when you call the PMSAMOpenQueues function to obtain the new slot’s

queue references, the function returns a kMailNoSuchSlot result code.

Queue references remain valid as long as the slot is not deleted and the Macintosh

remains running. The conservative approach is to call the function each time your

personal MSAM starts up.

IMPORTANT

The PMSAMOpenQueues function is intended to be called
only by a personal MSAM. Calling it from anywhere else
yields indeterminate results. ▲

SPECIAL CONSIDERATIONS

There is a very small period immediately after you respond to a kMailEPPCCreateSlot

high-level event during which the PMSAMOpenQueues function returns a

kMailNoSuchSlot result code even if no error occurred. You should call the

function periodically until it completes successfully.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

See the description of the kMailEPPCCreateSlot high-level event on page 2-221 for

more information about slot IDs.

Trap macro Selector

_oceTBDispatch $0500

noErr 0 No error
kOCEToolboxNotOpen –1500 Collaboration toolbox is shutting

down
kOCEInvalidRef –1502 Invalid message reference number
kOCEInternalErr –1506 Serious internal error
kOCERefIsClosing –1516 IPM Manager is shutting down the

personal MSAM
kMailNoMSAMErr –15056 No such personal MSAM
kMailNoSuchSlot –15062 No such slot
kMailBadMSAM –15066 MSAM unusable for unspecified

reason

C H A P T E R 2

Messaging Service Access Modules

Messaging Service Access Module Reference 2-135

SMSAMSetup

The SMSAMSetup function creates the MSAM’s Forwarder record.

pascal OSErr SMSAMSetup (MSAMParam *paramBlock);

paramBlock Pointer to a parameter block.

Parameter block

See “The MSAM Parameter Block” on page 2-94 for a description of the ioResult field.

Field descriptions

serverMSAM A pointer to the record ID of the server MSAM’s Forwarder record.
Set the recordName field to the name of the server MSAM and the
recordType field to the constant kMnMForwarderRecTypeNum.
The function returns the Forwarder record’s creation ID in the cid
field and the record location information.

password A pointer to the server MSAM’s password string.

gatewayType The MSAM’s 4-character extension type.

gatewayTypeDescription
A pointer to an RString containing a user-readable description of
the MSAM type. For example, an AppleLink MSAM whose type is
'ALNK' might provide the string “AppleLink”.

catalogServerHint
The AppleTalk address of the PowerShare catalog server that
created the MSAM’s Forwarder record. The MSAM can later pass
this value to a Catalog Manager function (in the serverHint field
of the function’s parameter block) if it wants to direct the request to
that particular catalog server.

DESCRIPTION

You call the SMSAMSetup function as part of a server MSAM’s initialization process.

The function creates the MSAM’s Forwarder record. Before calling the function, you need

to obtain from the system administrator the server MSAM’s name and password, its

extension type, and a string describing the extension type. (A server MSAM may also

have built-in knowledge of its extension type.) When the function completes successfully,

you should save knowledge of the fact that the function completed successfully in your

preferences file in the Preferences folder so that you do not call the function again after a

subsequent launch.

← ioResult OSErr Result code
↔ serverMSAM RecordIDPtr Server MSAM’s record ID pointer
→ password RStringPtr Pointer to server MSAM’s password
→ gatewayType OSType Server MSAM’s extension type
→ gatewayTypeDescription

RStringPtr Description of extension type
← catalogServerHint

AddrBlock Catalog server address

C H A P T E R 2

Messaging Service Access Modules

2-136 Messaging Service Access Module Reference

SPECIAL CONSIDERATIONS

After calling the SMSAMSetup function, call the SMSAMStartup function to get the

server MSAM’s queue reference.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

For a description of the server MSAM initialization process, see “Initializing a Server

MSAM” beginning on page 2-40.

The SMSAMStartup function is described next.

SMSAMStartup

The SMSAMStartup function informs a PowerShare mail server that the server MSAM

that you specify has started up.

pascal OSErr SMSAMStartup (MSAMParam *paramBlock);

paramBlock Pointer to a parameter block.

Parameter block

See “The MSAM Parameter Block” on page 2-94 for a description of the ioResult field.

Field descriptions

msamIdentity The server MSAM’s authentication identity. You obtain this identity
from the AuthBindSpecificIdentity function.

queueRef A value that identifies the outgoing queue for the server MSAM
that you specify.

Trap macro Selector

_oceTBDispatch $0523

noErr 0 No error
dskFulErr –34 All allocation blocks on the volume are full
kOCEParamErr –50 Invalid parameter
kOCEWriteAccessDenied –1541 Identity lacks write access privileges
kOCETargetDirectoryInaccessible

–1613 Target catalog is not currently available
kOCENoSuchDNode –1615 Can’t find specified dNode
kOCENoDupAllowed –1641 Duplicate name and type

← ioResult OSErr Result code
→ msamIdentity AuthIdentity Server MSAM identifier
← queueRef MSAMQueueRef Queue reference

C H A P T E R 2

Messaging Service Access Modules

Messaging Service Access Module Reference 2-137

DESCRIPTION

You call the SMSAMStartup function to inform the PowerShare mail server that a server

MSAM is active and that the PowerShare mail server can send the MSAM high-level

events and request status information. You must call this function every time your server

MSAM starts up.

The function returns a queue reference for the server MSAM’s outgoing queue. You

provide the queue reference to the MSAMOpen function when you want to open an

outgoing message. In addition, you provide the queue reference to the MSAMCreate

function when you want to create an incoming message. In that situation, the queue

reference identifies the MSAM itself.

You must have successfully called the SMSAMSetup function to create the MSAM’s

Forwarder record before you call the SMSAMStartup function. Otherwise,

SMSAMStartup returns the kMailNoSuchSlot result code.

The queue reference is valid until the server MSAM’s PowerShare mail server quits. You

know that the PowerShare mail server is not running when any of the MSAM API

functions return the corErr result code. When the PowerShare mail server starts up

again, you need to call the SMSAMStartup function again to get a new queue reference.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The AuthBindSpecificIdentity function and authentication identities are

discussed in the chapter “Authentication Manager” in Inside Macintosh: AOCE
Application Interfaces.

The SMSAMSetup function is described on page 2-135.

The AppleTalk Transition Queue is described in the chapter “Link-Access Protocol (LAP)

Manager” in Inside Macintosh: Networking.

A server MSAM’s initialization process is described in the section “Initializing a Server

MSAM” beginning on page 2-40.

Trap macro Selector

_oceTBDispatch $0501

noErr 0 No error
corErr –3 PowerShare mail server not running
memFullErr –108 Not enough memory
kOCEToolboxNotOpen –1500 Collaboration toolbox is shutting down
kMailNoSuchSlot –15062 Unknown server MSAM

C H A P T E R 2

Messaging Service Access Modules

2-138 Messaging Service Access Module Reference

Enumerating Messages in a Queue

Both personal and server MSAMs can use the MSAMEnumerate function to list messages

in an outgoing queue. Personal MSAMs can also use the function to list letters in an

incoming queue.

MSAMEnumerate

The MSAMEnumerate function returns information about the messages in a queue that

you specify.

pascal OSErr MSAMEnumerate (MSAMParam *paramBlock,

Boolean asyncFlag);

paramBlock Pointer to a parameter block.

asyncFlag A Boolean value that specifies whether the function is to be
executed asynchronously. Set this to true if you want the function
to be executed asynchronously.

Parameter block

See “The MSAM Parameter Block” on page 2-94 for descriptions of the ioCompletion

and ioResult fields.

Field descriptions

queueRef The value that identifies the queue about which you want
information. A personal MSAM specifies either the outgoing queue
reference or the incoming queue reference that it obtained from
the PMSAMOpenQueues function, depending on which queue it
wants to enumerate. A server MSAM specifies the outgoing queue
reference that it obtained from the SMSAMStartup function.

startSeqNum The sequence number of the message in the queue at which you
want the MSAMEnumerate function to start the enumeration. Set
this field to 1 to begin the enumeration with the first message in the
queue. When you call the function and there is insufficient space in
your buffer to hold information about all of the remaining messages
in the queue, the function returns in the nextSeqNum field the
sequence number of the next message. Use that number in the
startSeqNum field the next time you call the function.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ queueRef MSAMQueueRef Queue reference number
→ startSeqNum long Starting message
← nextSeqNum long Message to continue next enumeration
↔ buffer MailBuffer Your buffer structure

C H A P T E R 2

Messaging Service Access Modules

Messaging Service Access Module Reference 2-139

nextSeqNum The sequence number of the first message in the queue whose
information did not fit into your buffer. The function sets this field
when your buffer is too small to hold all the information you
requested. To continue the enumeration, call the MSAMEnumerate
function again and set the startSeqNum field to the current value
of the nextSeqNum field. The MSAMEnumerate function sets the
nextSeqNum field to 0 when it has returned information about all
of the messages in the queue.

buffer A MailBuffer structure. You set the value of the bufferSize
field in the MailBuffer structure to the number of bytes in
your buffer. Because the number of messages in the queue
varies, use your best estimate to choose the size of the buffer.
The MSAMEnumerate function retrieves information about the
messages in the queue that you specify and writes it into your
buffer, the buffer field. It sets the value of the dataSize field to
the number of bytes of data it placed in the buffer.

DESCRIPTION

You call the MSAMEnumerate function to obtain information about messages in a queue

that you specify. The function stores this information in a buffer that you provide. If your

buffer is not large enough to hold all of the information, you can call this function

repeatedly. When the function sets the nextSeqNum field to 0, you have retrieved

information on all of the messages in the queue.

Both personal and server MSAMs can enumerate an outgoing queue. When an MSAM

enumerates an outgoing queue, the function returns information about all of the

messages in the queue, including letters and non-letter messages.

Only a personal MSAM can enumerate an incoming queue to get information about the

letters in the queue because incoming queues are specific to personal MSAMs.

No matter which type of queue you enumerate, the function places the data in your

buffer in the form of a MailReply structure. The first 2 bytes contain a count of the

total number of structures that follow it in the buffer. The structures that follow

are either MSAMEnumerateOutQReply (if you enumerate an outgoing queue) or

MSAMEnumerateInQReply structures (if you enumerate an incoming queue). See

the descriptions of the MSAMEnumerateInQReply and MSAMEnumerateOutQReply

structures, respectively, for information on what specific data you retrieve when you

enumerate an incoming or an outgoing queue.

ASSEMBLY-LANGUAGE INFORMATION

Trap macro Selector

_oceTBDispatch $0503

C H A P T E R 2

Messaging Service Access Modules

2-140 Messaging Service Access Module Reference

RESULT CODES

SEE ALSO

The MSAMEnumerateOutQReply structure is described on page 2-97.

The MSAMEnumerateInQReply structure is described on page 2-98.

The MailReply structure is described on page 2-97.

The MailBuffer structure is described on page 2-96.

Opening an Outgoing Message

Call the MSAMOpen function to open a message in an outgoing queue. Once a message is

open, you can read its contents.

MSAMOpen

The MSAMOpen function opens a message in an outgoing queue.

pascal OSErr MSAMOpen (MSAMParam *paramBlock

Boolean asyncFlag);

paramBlock Pointer to a parameter block.

asyncFlag A Boolean value that specifies whether the function is to be
executed asynchronously. Set this to true if you want the function
to be executed asynchronously.

Parameter block

See “The MSAM Parameter Block” on page 2-94 for descriptions of the ioResult and

ioCompletion fields.

noErr 0 No error
kOCEToolboxNotOpen –1500 Collaboration toolbox is shutting down
kOCEInvalidRef –1502 Invalid queue reference
kOCEBufferTooSmall –1503 Buffer is too small
kOCERefIsClosing –1516 IPM Manager is shutting down the personal

MSAM, or server MSAM’s mail server is
shutting down

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ queueRef MSAMQueueRef Queue reference number
→ seqNum long Sequence number of message in queue
← mailMsgRef MailMsgRef Message reference number

C H A P T E R 2

Messaging Service Access Modules

Messaging Service Access Module Reference 2-141

Field descriptions

queueRef The queue reference of the queue that contains the message you
want to open. For a personal MSAM, specify the outgoing queue
reference you obtained from the PMSAMOpenQueues function. For a
server MSAM, specify the queue reference you obtained from the
SMSAMStartup function.

seqNum The sequence number that identifies the message you want
to open. You get this number from the seqNum field in the
MSAMEnumerateOutQReply structure returned by the
MSAMEnumerate function.

mailMsgRef A message reference number that identifies the opened message.
The MSAMOpen function returns a reference number for the message
that you use in subsequent function calls to read the message.

DESCRIPTION

You call the MSAMOpen function to open a message in the outgoing queue you specify in

the queueRef field.

The MSAMOpen function provides a unique message reference number to each MSAM

that opens a given message. Once you close the message by calling the MSAMClose

function, the message reference number becomes invalid and you cannot use it in

subsequent function calls. (In contrast, the value of the seqNum field is a reference to the

message that remains valid until you delete the message by calling the MSAMDelete

function.)

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The MSAMEnumerateOutQReply structure is described on page 2-97.

The PMSAMOpenQueues function is described on page 2-133.

The SMSAMStartup function is described on page 2-136.

The MSAMClose function is described on page 2-167.

The MSAMDelete function is described on page 2-202.

Trap macro Selector

_oceTBDispatch $0508

noErr 0 No error
kOCEToolboxNotOpen –1500 Collaboration toolbox is shutting down
kOCEInvalidRef –1502 Invalid queue reference
kOCEDoesntExist –1511 No such letter
kOCERefIsClosing –1516 IPM Manager is shutting down the personal

MSAM, or server MSAM’s mail server is
shutting down

C H A P T E R 2

Messaging Service Access Modules

2-142 Messaging Service Access Module Reference

Reading Header Information

To read letter attributes from an open letter, use the MSAMGetAttributes function. You

can read the recipients of a message with the MSAMGetRecipients function. To read

the header of a non-letter message, use the MSAMGetMsgHeader function.

MSAMGetAttributes

The MSAMGetAttributes function reads attributes from the header of an open letter

that you specify.

pascal OSErr MSAMGetAttributes (MSAMParam *paramBlock,

 Boolean asyncFlag);

paramBlock Pointer to a parameter block.

asyncFlag A Boolean value that specifies whether the function is to be
executed asynchronously. Set this to true if you want the function
to be executed asynchronously.

Parameter block

See “The MSAM Parameter Block” on page 2-94 for descriptions of the ioCompletion

and ioResult fields.

Field descriptions

mailMsgRef A reference number that identifies the letter whose attributes you
want to read. You obtain the reference number when you call the
MSAMOpen function.

requestMask A bit field structure that specifies which attributes in the letter’s
header you want to read. The attributes whose values you may
retrieve with this function are listed below. Set the bit for each
attribute that you want to read. Clear the remaining bits.

buffer A MailBuffer structure. You set the value of the bufferSize
field in the MailBuffer structure to the number of bytes in
your buffer. The MSAMGetAttributes function writes attribute
values into your buffer (the buffer field) and sets the value
of the dataSize field to the number of bytes of data it placed in
the buffer.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ mailMsgRef MailMsgRef Letter reference number
→ requestMask MailAttributeBitmap Attribute types requested
↔ buffer MailBuffer Your buffer structure
← responseMask MailAttributeBitmap Attribute types returned
← more Boolean Is there more data?

C H A P T E R 2

Messaging Service Access Modules

Messaging Service Access Module Reference 2-143

responseMask A bit field structure that specifies the attributes for which the
MSAMGetAttributes function returned values in the buffer. If the
function did not return an attribute because either a requested
attribute does not exist in the letter or you did not request the
attribute, the function sets the corresponding bit in the structure to 0.

more A Boolean value that indicates whether there are more attribute
values than can fit in your buffer. If your buffer is too small
to hold all of the attribute values that you requested, the
MSAMGetAttributes function sets this field to true; otherwise,
it sets this field to false. If the value of the more field is true,
you can call the MSAMGetAttributes function again, setting the
bits in the request mask for the attributes you did not yet receive.

DESCRIPTION

You call the MSAMGetAttributes function to read letter attributes by setting the

appropriate bits in the requestMask field. You can request any combination of the

following attributes:

The MSAMGetAttributes function reads the attribute values you requested from the

letter header and writes them into your buffer, starting with the attribute specified by the

least significant bit in the requestMask field and continuing in ascending order. If the

length of an attribute value is odd, it adds a pad byte so that each attribute value starts

on an even boundary.

You can request attributes for any letter you have previously opened.

You cannot read a letter’s to, from, cc, or bcc attributes by calling the

MSAMGetAttributes function. Call the MSAMGetRecipients function for this

purpose. The MSAMGetAttributes function ignores the bits in the request mask

that correspond to recipient attributes and sets the equivalent bits in the response

mask to 0 to indicate that it is not returning the values for these attributes. The

MSAMGetAttributes function does not return an error in this case.

Letter attribute Bit constant Mask constant

Indications kMailIndicationsBit kMailIndicationsMask

Letter creator & type kMailMsgTypeBit kMailMsgTypeMask

Letter ID kMailLetterIDBit kMailLetterIDMask

Send timestamp kMailSendTimeStampBit kMailSendTimeStampMask

Nesting level kMailNestingLevelBit kMailNestingLevelBMask

Message family kMailMsgFamilyBit kMailMsgFamilyMask

Reply ID kMailReplyIDBit kMailReplyIDMask

Conversation ID kMailConversationIDBit kMailConversationIDMask

Subject kMailSubjectBit kMailSubjectMask

C H A P T E R 2

Messaging Service Access Modules

2-144 Messaging Service Access Module Reference

SPECIAL CONSIDERATIONS

Because the MailAttributeBitmap data type is defined as a bit field structure, you

cannot use the predefined masks such as kMailSubjectMask, kMailMsgTypeMask,

and so forth to set or test the value of a bit field in the requestMask or responseMask

field. The masks operate on variables of type long.

You cannot read a letter’s letterFlags attribute by calling the MSAMGetAttributes

function. Only incoming letters have that attribute.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The MailAttributeBitmap structure, including the complete list of letter attributes, is

described on page 2-100.

The MailBuffer structure is described on page 2-96.

The MSAMGetRecipients function is described next.

See the section “Reading Letter Attributes” beginning on page 2-47 for an example of

reading attributes from a letter header.

MSAMGetRecipients

The MSAMGetRecipients function returns recipient information from the header of an

open message that you specify.

pascal OSErr MSAMGetRecipients (MSAMParam *paramBlock,

 Boolean asyncFlag);

paramBlock Pointer to a parameter block.

asyncFlag A Boolean value that specifies whether the function is to be
executed asynchronously. Set this to true if you want the function
to be executed asynchronously.

Trap macro Selector

_oceTBDispatch $050B

noErr 0 No error
kOCEToolboxNotOpen –1500 Collaboration toolbox is shutting down
kOCEInvalidRef –1502 Invalid queue reference

C H A P T E R 2

Messaging Service Access Modules

Messaging Service Access Module Reference 2-145

Parameter block

See “The MSAM Parameter Block” on page 2-94 for descriptions of the ioCompletion

and ioResult fields.

Field descriptions

mailMsgRef A reference number that identifies the message about which you
want recipient information. You obtain the reference number when
you call the MSAMOpen function.

attrID A constant that identifies the type of recipient about which you
want information. Specify kMailResolvedList if you want
information about resolved recipients. If you want information
about an original recipient type, specify kMailFromBit,
kMailToBit, kMailCcBit, or kMailBccBit.You can specify one
type of recipient each time you call the MSAMGetRecipients
function.

startIndex The position in the recipient list at which you want the
MSAMGetRecipients function to begin extracting information
to store in your buffer. Set this field to 1 to start with the first
recipient of the type specified by the attrID field.

buffer A MailBuffer structure. You set the value of the bufferSize
field in the MailBuffer structure to the number of bytes in your
buffer. The MSAMGetRecipients function writes recipient
information into your buffer (the buffer field) and sets the value
of the dataSize field to the number of bytes of data it placed in the
buffer. The function places the data in your buffer in the form of a
MailReply structure. The first 2 bytes contain a count of the
number of recipient structures that follow in your buffer. If you
request information about an original recipient type (to, cc, bcc,
from), the MSAMGetRecipients function returns the recipient
information as one or more MailOriginalRecipient structures.
If you request information about resolved recipients, the function
returns the information as one or more MailResolvedRecipient
structures. If a recipient structure has an odd length, the function
adds a pad byte so that the next structure can start on a word
boundary.

nextIndex If the value of the more field is true, the nextIndex field
indicates the position in the recipient list of the first attribute that
did not fit into your buffer. If the value of the more field is false,
the nextIndex field is undefined.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ mailMsgRef MailMsgRef Message reference number
→ attrID MailAttributeID Recipient type requested
→ startIndex unsigned short Recipient to start from
↔ buffer MailBuffer Your buffer structure
← nextIndex unsigned short Recipient to continue from

next time
← more Boolean Is there more data?

C H A P T E R 2

Messaging Service Access Modules

2-146 Messaging Service Access Module Reference

more A Boolean value that indicates whether there is more recipient
information than can fit in your buffer. If your buffer is too small
to hold all of the recipient information that you requested, the
MSAMGetRecipients function sets this field to true; otherwise,
it sets this field to false. If the function sets this field to true,
you can call it again to retrieve additional information by setting
the startIndex field for the next call to the value of the
nextIndex field.

DESCRIPTION

You call the MSAMGetRecipients function to get a list of original or resolved recipients

for the message that you specify in the mailMsgRef field. You need to get original

recipients so that you can properly display them as From, To, cc, or bcc recipients in the

message you send to an external messaging system. You need to get a list of resolved

recipients so that you know to which recipients you must send the message.

By setting the attrID field appropriately, you can specify either a resolved recipient or

one type of original recipient each time you call the MSAMGetRecipients function.

If you specify an original recipient type in the attrID field, the function returns data in

the form of one or more MailOriginalRecipient structures. Each of these structures

contains the absolute index of the recipient followed immediately by information about

one recipient. The absolute index is useful if you need to match an original recipient with

the corresponding resolved recipient.

If you specify a resolved recipient in the attrID field, the function returns data in the

form of one or more MailResolvedRecipient structures. Each of these structures

contains the absolute index of the recipient, the Boolean variable responsible, and

recipient flags, followed immediately by information about one recipient. If the value of

the responsible field is true, you are responsible for delivering the message to that

recipient and submitting delivery and non-delivery reports to the sender if those are

requested. Naturally, you should not attempt to deliver a message to a recipient for

which the responsible field is set to false. If the kIPMBCCRecBit bit in the

recipientFlags field is set, the recipient is a bcc recipient.

Note

A From recipient may appear in the resolved list, but in
that case the responsible field is always set to false. ◆

As you read MailResolvedRecipient structures from your buffer, you must save the

ordinal-position value for each resolved recipient. The first recipient’s ordinal-position

value is 1; the second recipient’s ordinal-position value is 2; the nth recipient’s ordinal-

position value is n, and so forth. The MSAMnMarkRecipients function requires you to

provide the ordinal-position value to identify a recipient you want to mark. If you need

to call MSAMGetRecipients more than once to get all of the resolved recipients, do not

set the ordinal-position value back to 0 on successive calls to the function. Rather,

increment the ordinal-position value continuously across multiple calls to the

MSAMGetRecipients function for a given letter so that each resolved recipient is

associated with a unique ordinal-position value.

C H A P T E R 2

Messaging Service Access Modules

Messaging Service Access Module Reference 2-147

Personal MSAMs will find a one-to-one correspondence between their resolved

recipients and their displayable (original) recipients because all group addresses are

expanded into individual recipients before the MSAMGetRecipients function returns

recipient information to the personal MSAM.

Server MSAMs may find they have more resolved recipients than original recipients.

This is because the PowerShare mail server expands PowerShare group addresses into

individual addresses when you ask for resolved recipients. However, it does not

necessarily expand PowerShare group addresses when you ask for original recipients.

The MSAMGetRecipients function does not expand any external group addresses.

Server MSAMs may also find that there are resolved recipients that are not exactly the

same as the corresponding original recipients. These have been resolved by the AOCE

software to a more specific form.

The PowerShare mail server does not suppress duplicate external addresses. Sometimes

it suppresses duplicate addresses resulting from the expansion of a PowerShare group

address. However, you are not guaranteed that the MSAMGetRecipients function will

not return duplicate addresses.

SPECIAL CONSIDERATIONS

For non-letter messages, the From recipient is a reply queue address, a return address

that is not necessarily the same as the sender’s address.

This function does not apply to delivery and non-delivery reports. You cannot read the

recipient attribute of a report.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The MailOriginalRecipient structure is described on page 2-108.

The MailResolvedRecipient structure is described on page 2-108.

Original and resolved recipients are discussed in the section “Reading Addresses”

beginning on page 2-51.

The MailBuffer structure is described on page 2-96.

Trap macro Selector

_oceTBDispatch $050C

noErr 0 No error
kOCEToolboxNotOpen –1500 Collaboration toolbox is shutting

down
kOCEInvalidRef –1502 Invalid message reference number
kOCEBufferTooSmall –1503 Buffer is too small

C H A P T E R 2

Messaging Service Access Modules

2-148 Messaging Service Access Module Reference

The MailReply structure is described on page 2-97.

Reply queues are discussed with the MSAMPutMsgHeader function on page 2-183.

The MSAMnMarkRecipients function is described on page 2-163.

MSAMGetMsgHeader

The MSAMGetMsgHeader function reads data from the header of a non-letter message

that you specify.

pascal OSErr MSAMGetMsgHeader (MSAMParam *paramBlock,

Boolean asyncFlag);

paramBlock Pointer to a parameter block.

asyncFlag A Boolean value that specifies whether the function is to be
executed asynchronously. Set this to true if you want the function
to be executed asynchronously.

Parameter block

See “The MSAM Parameter Block” on page 2-94 for descriptions of the ioCompletion

and ioResult fields.

Field descriptions

mailMsgRef A reference number that identifies the message for which you want
header information. You obtain the reference number when you call
the MSAMOpen function.

selector A constant that indicates the type of header information that you
are requesting. The possible values are defined below. You cannot
add or combine constant values in the selector field.

offset The byte position, relative to the beginning of the header
information specified in the selector field, from which you want
the MSAMGetMsgHeader function to begin reading. To read from
the beginning of the header information field, set this field to 0. If
your buffer is too small to hold all of the data you requested, you
can call the MSAMGetMsgHeader function again and compute a
new value for the offset field using the dataSize value that the
function returns in the MailBuffer structure.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ mailMsgRef MailMsgRef Message reference number
→ selector IPMHeaderSelector Type of header data requested
→ offset unsigned long Begin reading from here
↔ buffer MailBuffer Your buffer
← remaining unsigned long Number of bytes still to read

C H A P T E R 2

Messaging Service Access Modules

Messaging Service Access Module Reference 2-149

buffer A MailBuffer structure. You set the value of the bufferSize
field in the MailBuffer structure to the number of bytes in
your buffer. The MSAMGetMsgHeader function writes header
information into your buffer and sets the value of the dataSize
field to the number of bytes of data it placed in the buffer.

remaining The number of bytes of data remaining to be read. The
MSAMGetMsgHeader function sets this field to 0 when it has
returned all of the information that you requested.

DESCRIPTION

You call the MSAMGetMsgHeader function to obtain information from the header of a

non-letter message. Do not call this function to read headers of letters or reports.

If the buffer you provide is not large enough to hold the information requested, you

must make additional calls to the MSAMGetMsgHeader function to obtain it.

The format of the information that the MSAMGetMsgHeader function places in your

buffer varies according to the value of the selector field. You may use any of the

following constants in the selector field:

ASSEMBLY-LANGUAGE INFORMATION

Selector value Description

kIPMTOC The function returns an array of TOC structures, one for each
block in the message. Each entry in the array contains the
block’s size, creator, type, offset, and up to 4 bytes of private
data that the application that created the block may have
added for its own purposes when it created the block. The
array of TOC structures is ordered; the sequential position of a
block entry in the table of contents is a message block’s index.
The index of the first block is 1. You can identify a message
block by its index number.

kIPMSender The function returns the identity of the sender of the message
in an IPMSender structure.

kIPMProcessHint The function returns a Pascal string of up to 32 characters. The
application that created the message may add a string for its
own purposes when it creates the message.

kIPMMessageTitle The function returns the title of the message in an
RString structure.

kIPMMessageType The function returns the creator and type of the message
in an IPMMsgType structure.

kIPMFixedInfo The function returns selected header information in an
IPMFixedHdrInfo structure.

Trap macro Selector

_oceTBDispatch $0511

C H A P T E R 2

Messaging Service Access Modules

2-150 Messaging Service Access Module Reference

RESULT CODES

SEE ALSO

The TOC, IPMSender, IPMFixedHdrInfo, and IPMMsgType structures are described

in the chapter “Interprogram Messaging Manager” in Inside Macintosh: AOCE
Application Interfaces.

The MSAMGetMsgHeader function is virtually identical to the IPMReadMsgHeader

function. An application creating a message adds the process hint Pascal string when

it calls the IPMNewMsg function and the private data in a message block when it

calls the IPMNewBlock function. All of these functions are described in the chapter

“Interprogram Messaging Manager” in Inside Macintosh: AOCE Application Interfaces.

The RString structure is described in the chapter “AOCE Utilities” in Inside Macintosh:
AOCE Application Interfaces.

The MailBuffer structure is described on page 2-96.

Reading a Message

The MSAM API provides a number of functions to read outgoing messages that have

been opened. The functions MSAMGetContent and MSAMGetEnclosure apply only to

letters. The MSAMEnumerateBlocks, MSAMGetBlock, and MSAMOpenNested

functions apply to any type of message.

MSAMGetContent

The MSAMGetContent function returns information about (and if requested, data from)

a single segment in a letter’s content block.

pascal OSErr MSAMGetContent (MSAMParam *paramBlock,

 Boolean asyncFlag);

paramBlock Pointer to a parameter block.

asyncFlag A Boolean value that specifies whether the function is to be
executed asynchronously. Set this to true if you want the function
to be executed asynchronously.

noErr 0 No error
kOCEToolboxNotOpen –1500 Collaboration toolbox is shutting down
kOCEInvalidRef –1502 Invalid message reference number
kOCEBufferTooSmall –1503 Buffer is too small

C H A P T E R 2

Messaging Service Access Modules

Messaging Service Access Module Reference 2-151

Parameter block

See “The MSAM Parameter Block” on page 2-94 for descriptions of the ioCompletion

and ioResult fields.

Field descriptions

mailMsgRef A reference number that identifies the letter whose content you
want to read. You obtain the reference number when you call the
MSAMOpen function.

segmentMask The types of segments that you want to read. The content of a letter
consists of text, pictures, sound, QuickTime movies, and styled text
segments. The constants that you use to specify the segment types
you want are described on page 2-110.

You can request any combination of segment types in the same
request except text and styled text segments. If you request styled
text segments, the function returns both plain text and styled text
segments. If you request plain text segments, it returns any plain
text segments that are in the letter and also converts styled text
segments to plain text segments and returns them to you.

buffer A MailBuffer structure. You set the value of the bufferSize
field in the MailBuffer structure to the number of bytes in your
buffer. If the current segment is one of the types that you specified
in the segment mask, the MSAMGetContent function writes the
segment into your buffer and sets the value of the dataSize field
to the number of bytes of data it placed in the buffer.

textScrap A pointer to a style scrap structure (StScrpRec). If you request
styled text segments, you can choose to allocate the structure,
depending on which of two methods you want to use to read styled
text. Both methods are described in the discussion below.

If you choose to allocate the style scrap structure, set its
scrpNStyles field to the number of styles your buffer can hold.
When the function writes styled text to your buffer, it returns style
information in the style scrap structure and sets the scrpNStyles
field to the actual number of styles returned.

If you are not requesting styled text segments, the function ignores
this field.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ mailMsgRef MailMsgRef Letter reference number
→ segmentMask MailSegmentMask Segment type you want to read
↔ buffer MailBuffer Your buffer structure
↔ textScrap StScrpRec* Pointer to style scrap structure
← script ScriptCode Character set
← segmentType MailSegmentType Segment type returned
← endOfScript Boolean End of data of one character set?
← endOfSegment Boolean End of segment data?
← endOfContent Boolean End of letter content?
← segmentLength long Length of segment
↔ segmentID long Segment identifier

C H A P T E R 2

Messaging Service Access Modules

2-152 Messaging Service Access Module Reference

script A value that indicates the character set (Roman, Arabic, Kanji, etc.) of
the text that the function placed in your buffer. The function sets this
field only when it returns text data (it sets the segmentType field to
kMailTextSegmentType or kMailStyledTextSegmentType).

segmentType A constant that indicates the type of the current data segment. A
segment can contain text, pictures, sound, QuickTime movies, or
styled text. The constants that the function may return in this field
are described on page 2-109. (If you are reading data from the
segment and you need to call the MSAMGetContent function more
than once to retrieve all of the data from the segment, the function
returns a value in this field only the first time you call it for that
segment.)

endOfScript A Boolean value that indicates whether the text in your buffer is the
end of a script run. The function sets this flag only when it returns
data from a plain text or styled text segment. If there is more text in
the current script run, it sets this field to false.

endOfSegment A Boolean value that indicates whether the MSAMGetContent
function has reached the end of a segment. If you did not request
the current segment type in your segment mask, the function
always sets this field to true. If you requested the current segment
type in your segment mask, the function sets this field to true if it
has returned all of the data in the current segment and to false if
there is more data in the current segment.

endOfContent A Boolean value that indicates whether the MSAMGetContent
function has reached the end of the letter’s content block. The
MSAMGetContent function sets the endOfContent field to true
when it reaches the end of the last segment in the content block;
otherwise it sets this field to false.

segmentLength The number of bytes in the current segment. The MSAMGetContent
function returns a value in this field the first time you call it for a
given segment.

segmentID A segment identifier. This is both an input and an output. Set this
field to 0 the first time you call it for a given letter. The function
returns a value in this field the first time it reads each segment in a
letter. On subsequent calls to the function, you set it to 0 or to a
known segment ID. If you set it to 0, the function continues reading
sequentially the current segment (or if endOfSegment is set to
true, the next segment). If you set it to a segment ID, the function
reads the segment specified by the segment ID.

DESCRIPTION

The MSAMGetContent function returns information about a single segment in a letter’s

content block each time you call it. If the current segment type is one that you specified

in your segment mask, the function also returns actual segment data from the segment.

You must previously have opened the letter by calling either the MSAMOpen or

MSAMOpenNested function.

C H A P T E R 2

Messaging Service Access Modules

Messaging Service Access Module Reference 2-153

A content block contains a series of segments in standard interchange format; that is,

each segment consists of either text, pictures, sound, styled text, or QuickTime movies.

You tell the MSAMGetContent function what types of segments you want to read by

setting the segmentMask field appropriately. The function examines the value of the

segmentMask field the first time you call it for a given letter and at the beginning of

each segment in the letter to determine whether it should write the segment data into the

buffer that you provide.

At the beginning of each segment, the MSAMGetContent function sets the

segmentType, segmentLength, segmentID, endOfSegment, and endOfContent

fields. You can detect a new segment by examining the endOfSegment flag: if its

value is true you know that you will get information on a new segment the

next time you call the MSAMGetContent function.

You can read the segments in a letter’s content block in sequential order or in any order

you wish, depending on the value you specify for the segment ID. To read segments in

the order they are stored in the content block, specify 0 in the segmentID field. The first

time it reads a given segment, the function returns the segment ID. Because it is both an

input and output value, be sure to clear the segmentID field after the start of a new

segment to continue reading segments sequentially. If you do not set the segmentID

field to 0, you will read the same segment over and over again.

To read segments in random order, you must know the segment’s segment ID. Provide

the ID in the segmentID field to access the segment randomly. When you specify a

segment ID other than 0, the function repositions the offset at which it begins reading to

the start of the segment you identify.

Note

To build a table of contents of segments, their segment types, their
lengths, and their segment IDs, set the segmentMask field to 0 and call
the MSAMGetContent function repeatedly until the endOfContent
field returns true. ◆

There are two types of text data: plain text and styled text. If you request styled text

segments, the function returns both plain text and styled text segments. If you request

plain text segments, it returns any plain text segments that are in the letter and also

converts styled text segments to plain text segments and returns them to you.

A text segment contains one or more script runs. A script run is a string of text

in the same character set. When the function returns text data (that is, when

the function sets the segmentType field to kMailTextSegmentType or

kMailStyledTextSegmentType), the script field indicates the character set. The

function identifies the end of a script run by setting the endOfScript field to true.

When you request plain text (that is, when you specify kMailTextSegmentMask in

your segment mask), the MSAMGetContent function retrieves styled text as plain text.

You lose all style information when you do this (except for the character set specified in

the script field).

A styled text segment consists not of a stream of bytes but rather of a series of “style

runs” akin to style runs in TextEdit.

C H A P T E R 2

Messaging Service Access Modules

2-154 Messaging Service Access Module Reference

To read a styled text segment, you allocate a style scrap structure and set the textScrap
field to point to it. You should allocate a StScrpRec structure of a size appropriate to

your MSAM. The function places the text into your buffer and the style information into

the style scrap structure. It sets the scrpStartChar field in each ScrpSTElement

structure in the style scrap structure to the offset of the text to which it applies, relative to
the start of your buffer. The function completes when it has returned all the styled text or

when it runs out of room for either the style information or text. If additional styled text

exists, it sets endOfSegment to false.

If the function completes because it runs out of room for either the style information or

the text, then the next time you call the function, it continues writing text from the same

segment into your buffer and putting text styles in your style scrap structure. In this
case, the offsets in the scrpStartChar field of the ScrpSTElement structure in your

style scrap structure apply only to the data currently in your buffer, not to the offsets in

the original segment in the letter.

For example, suppose that the next segment in the letter to be read is a styled text

segment 120 bytes in length containing 12 different styles. The eleventh style starts at an

offset of 90 (that is, at the 91st byte of the segment). Suppose further that your text buffer
is 200 bytes but your style scrap structure can hold only 10 styles. In this case, the

MSAMGetContent function stops writing data to your buffer after it has placed 10 styles

in your style scrap structure. Because these 10 styles applied to the first 90 bytes of text,

the dataSize field of your MailBuffer structure indicates that 90 bytes of data were
written to your buffer, and the value of the endOfSegment field is false.

The next time you call the function, it writes the last 30 bytes of text into your buffer
and puts the last two styles into your style scrap structure. It returns a value of 2 in

the scrpNStyles field of your style scrap structure and sets the endOfSegment field

to true. In this case, the first offset in the scrpStartChar field of the script table in

the style scrap structure is 0, indicating that the first style in the text scrap starts with
the first byte of text currently in your buffer. (The offset is not 90, as it would have been

for this portion of text had your style scrap structure been able to hold all of the styles

at once.)

You cannot specify kMailTextSegmentMask and kMailStyledTextSegmentMask

at the same time.

SPECIAL CONSIDERATIONS

Different Macintosh computers may use the same font number for different fonts. That
is, font numbers may vary from computer to computer, but font names are supposed to

be unique. The SMPAddContent function in the Standard Mail Package creates a block

containing a table that maps font numbers to font names. To ensure that you apply the

right fonts to styled text, you need to read this font block. Its block creator is 'fish'
and its block type is 'font'.

You can use the following format information to read the font block. The first word in
the block contains the number of font information elements in the block, followed by a

packed array of font information elements. Each element consists of a word containing a

font number followed by a Pascal string containing the font name and, if necessary, a

pad byte for word alignment.

Constants are not defined for the 'fish' and 'font' block creator and type.

C H A P T E R 2

Messaging Service Access Modules

Messaging Service Access Module Reference 2-155

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The MailBuffer structure is described on page 2-96.

The values that you can use in the segmentType and segmentMask fields are

described in the section “The Segment Types” beginning on page 2-109.

A script run is a sequence of text in a single character set. For more information about

script runs, see Inside Macintosh: Text.

The ScrpSTElement and the StScrpRec structures are described in Inside
Macintosh: Text.

MSAMGetEnclosure

The MSAMGetEnclosure function reads file enclosures from a letter that you specify.

pascal OSErr MSAMGetEnclosure (MSAMParam *paramBlock,

Boolean asyncFlag);

paramBlock Pointer to a parameter block.

asyncFlag A Boolean value that specifies whether the function is to be
executed asynchronously. Set this to true if you want the function
to be executed asynchronously.

Parameter block

Trap macro Selector

_oceTBDispatch $050D

noErr 0 No error
kOCEParamErr –50 Requested both plain and styled text

segments
kOCEToolboxNotOpen –1500 Collaboration toolbox is shutting down
kOCEInvalidRef –1502 Invalid message reference number
kMailInvalidRequest –15045 Message reference number does not

refer to a letter
kMailMalformedContent –15061 Content data malformed

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ mailMsgRef MailMsgRef Letter reference number
← contentEnclosure Boolean Is enclosure main letter content?
↔ buffer MailBuffer Your buffer structure
← endOfFile Boolean End of file?
← endOfEnclosures Boolean All enclosures read?

C H A P T E R 2

Messaging Service Access Modules

2-156 Messaging Service Access Module Reference

See “The MSAM Parameter Block” on page 2-94 for descriptions of the ioCompletion

and ioResult fields.

Field descriptions

mailMsgRef A reference number that identifies the letter whose enclosures you
want to read. You obtain the reference number when you call the
MSAMOpen function.

contentEnclosure
A Boolean value that indicates whether the enclosure is the content
enclosure for the letter. A content enclosure contains the content of a
letter. It is typically a file in an application’s native format. When
you call the MSAMGetEnclosure function the first time, it sets this
field to true if the enclosure is a content enclosure or to false if it
is not. The function also sets the value of this field the first time you
call it after the function sets the endOfFile flag to true. At other
times, consider the value of this field invalid.

buffer A MailBuffer structure. You set the value of the bufferSize
field in the MailBuffer structure to the number of bytes in
your buffer. The MSAMGetEnclosure function writes the
information that you request into your buffer and sets the value
of the dataSize field to the number of bytes of data it placed
in the buffer.

endOfFile A Boolean value that indicates whether an entire enclosure file has
been read. If your buffer is not large enough to hold the entire
enclosure file, the MSAMGetEnclosure function sets the
endOfFile field to false. You can call the function repeatedly
until it sets the endOfFile field to true, at which point an entire
enclosure file has been read. The MSAMGetEnclosure function
does not put data belonging to more than one enclosure file into
your buffer at the same time, even when the end of file is reached
on one enclosure file, there are additional enclosure files to read,
and your buffer is not full.

When a letter has no enclosures, the function sets this field to
false. To detect the no-enclosure condition, test only the
endOfEnclosures field.

endOfEnclosuresA Boolean value that indicates whether the MSAMGetEnclosure
function has reached the end of all of the enclosures for the letter
that you specify. When the MSAMGetEnclosure function has
retrieved all enclosures for the current nesting level, it sets the
endOfEnclosures field to true.

DESCRIPTION

You call the MSAMGetEnclosure function to retrieve all file enclosures for a letter that

you specify. To get all of the enclosures in a letter, you should call the function repeatedly

until the value of the endOfEnclosures field is true.

A letter’s enclosures can be folders or Macintosh files in AppleSingle stream format. The

MSAMGetEnclosure function returns all of the files to you; it does not return any folder

C H A P T E R 2

Messaging Service Access Modules

Messaging Service Access Module Reference 2-157

information.That is, you do not know how the files might have been organized and

stored in the letter.

Because the PowerTalk system software works with the hierarchical file system, it is

possible for an outgoing letter to contain more than one enclosed file with the same

name, so long as the files are in different enclosed folders. You may need to adjust the

filenames of identically named enclosed files so that each one is unique. Otherwise, it is

possible that only one of such files will be retained by the external messaging system.

Note

An enclosure is not a nested letter. A nested letter is a letter that a
recipient has forwarded or replied to. Enclosures are files or folders
that the sender has enclosed with a letter. ◆

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The MailBuffer structure is described on page 2-96.

 For more information on AppleSingle stream format, see the APDA document

AppleSingle/AppleDouble Formats for Foreign Files Developer Note.

MSAMEnumerateBlocks

The MSAMEnumerateBlocks function returns an array of message block descriptors for

the blocks in a message.

pascal OSErr MSAMEnumerateBlocks (MSAMParam *paramBlock,

Boolean asyncFlag);

paramBlock Pointer to a parameter block.

asyncFlag A Boolean value that specifies whether the function is to be
executed asynchronously. Set this to true if you want the function
to be executed asynchronously.

Trap macro Selector

_oceTBDispatch $050E

noErr 0 No error
kOCEToolboxNotOpen –1500 Collaboration toolbox is shutting down
kOCEInvalidRef –1502 Invalid message reference number
kMailInvalidRequest –15045 Nested letter already created for this letter

C H A P T E R 2

Messaging Service Access Modules

2-158 Messaging Service Access Module Reference

Parameter block

See “The MSAM Parameter Block” on page 2-94 for descriptions of the ioCompletion

and ioResult fields.

Field descriptions

mailMsgRef A reference number that identifies the message whose message
blocks you want to enumerate. You obtain the reference number
when you call the MSAMOpen function.

startIndex The sequence number of the block about which you want informa-
tion. Set this field to 1 to start with the first message block. When
you call the function and there is insufficient space in your buffer to
hold information about all of the remaining blocks, the function
returns in the nextIndex field the sequence number of the next
block. Use that number in the startIndex field the next time you
call the function.

buffer A MailBuffer structure. You set the value of the bufferSize
field in the MailBuffer structure to the number of bytes in your
buffer. The MSAMEnumerateBlocks function places data in your
buffer in the form of a MailReply structure. The first 2 bytes in
the MailReply structure are a count of the number of
MailBlockInfo structures, followed immediately by the
structures. The function sets the value of the dataSize field to
the number of bytes of data it placed in the buffer.

nextIndex The sequence number of the first block whose information did not
fit into your buffer. The function sets this field when your buffer is
too small to hold all the information you requested. If there is no
more information to return, the value of the nextIndex field is
undefined. You must check the value of the more field before
interpreting the value in the nextIndex field. The nextIndex
field contains meaningful data only when the value of the more
field is true.

more A Boolean value that indicates whether there is more message
block information than can fit in your buffer. If your buffer is too
small to hold all of the block information that you requested,
the MSAMEnumerateBlocks function sets this field to true;
otherwise, it sets this field to false. If the function sets this field
to true, you can call it again to retrieve additional information
by setting the startIndex field for the next call to the value of the
nextIndex field.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ mailMsgRef MailMsgRef Message reference number
→ startIndex unsigned short Message block to start from
↔ buffer MailBuffer Your buffer structure
← nextIndex unsigned short Message block to continue

from next time
← more Boolean Is there more data?

C H A P T E R 2

Messaging Service Access Modules

Messaging Service Access Module Reference 2-159

DESCRIPTION

You call the MSAMEnumerateBlocks function to get information about all of the blocks

in a message. For each block, the function returns a MailBlockInfo structure that

specifies the block’s creator and type, its offset in bytes from the beginning of the

message (the offset is zero-based), and its length in bytes. You can use this information to

read specific blocks in the message.

struct MailBlockInfo {

OCECreatorType blockType; /* block creator and type */

unsigned long offset; /* offset from start of msg */

unsigned long blockLength;/* number of bytes in block */

};

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The MailBuffer structure is described on page 2-96.

The MailReply structure is described on page 2-97.

MSAMGetBlock

The MSAMGetBlock function reads a block from a message that you specify.

pascal OSErr MSAMGetBlock (MSAMParam *paramBlock,

 Boolean asyncFlag);

paramBlock Pointer to a parameter block.

asyncFlag A Boolean value that specifies whether the function is to be
executed asynchronously. Set this to true if you want the function
to be executed asynchronously.

Trap macro Selector

_oceTBDispatch $050F

noErr 0 No error
kOCEToolboxNotOpen –1500 Collaboration toolbox is shutting down
kOCEInvalidRef –1502 Invalid message reference number
kOCEBufferTooSmall –1503 Buffer is too small

C H A P T E R 2

Messaging Service Access Modules

2-160 Messaging Service Access Module Reference

Parameter block

See “The MSAM Parameter Block” on page 2-94 for descriptions of the ioCompletion

and ioResult fields.

Field descriptions

mailMsgRef A reference number that identifies the message whose blocks you
want to read. You obtain the reference number when you call the
MSAMOpen function.

blockType A structure that specifies the creator and the type of the block that
you want to read. You cannot specify a wildcard value for either the
creator or block type.

blockIndex A value that indicates the relative position of the block of type
blockType that you want to read. To read all blocks of a specific
block type, set this field to 1 the first time you call the
MSAMGetBlock function and increment it by 1 in subsequent calls
to the function until you have read all blocks of that type in the
message. (Note that the value you supply here is distinct from
the index used in the MSAMEnumerateBlocks function.)

buffer A MailBuffer structure. You set the value of the bufferSize
field in the MailBuffer structure to the number of bytes in your
buffer. The MSAMGetBlock function writes the information that
you request into your buffer and sets the value of the dataSize
field to the number of bytes of data it placed in the buffer.

dataOffset The byte position relative to the beginning of the block at which you
want the MSAMGetBlock function to begin reading. Set this field to
0 to read from the beginning of the block.

endOfBlock A Boolean value that indicates whether the MSAMGetBlock
function has returned the entire block. If the buffer that you provide
is not large enough to contain an entire block, the MSAMGetBlock
function sets this field to false. You can call the function again
with an updated value in the dataOffset field to retrieve
additional data. When the MSAMGetBlock function has returned
the entire block, it sets the value of the endOfBlock field to true.

remaining The number of bytes of data remaining in the block that the
MSAMGetBlock function has not returned to you. If the
endOfBlock field is set to true, the value of this field is 0.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ mailMsgRef MailMsgRef Message reference number
→ blockType OCECreatorType Block creator and type
→ blockIndex unsigned short Sequential position of block
↔ buffer MailBuffer Your buffer structure
→ dataOffset unsigned long Byte offset within block
← endOfBlock Boolean End of block?
← remaining unsigned long Number of bytes not read in block

C H A P T E R 2

Messaging Service Access Modules

Messaging Service Access Module Reference 2-161

DESCRIPTION

You call the MSAMGetBlock function to read data from a block in a message. You

identify the block that you want to read by the values of the blockType and

blockIndex fields. Use the dataOffset field to identify the point at which you

want to begin reading within your chosen block.

Typically, you call the MSAMGetBlock function to read report blocks, image blocks, and

private blocks because the MSAM API provides no other way to read these types of

blocks. Although it is possible to call the MSAMGetBlock function to read blocks that

contain letter content, attributes, enclosures, and so forth, the internal format of these

blocks is private. You should use the specific functions provided in the MSAM API for

reading these types of blocks.

There are no restrictions on the number of times that you may read a given block. You

may read the blocks in a message in any order.

To read a report block, in the blockType field, set the block creator to

kMailAppleMailCreator and set the block type to kMailReportType. Set the

blockIndex field to 1. The MSAMGetBlock function places a report block in your buffer.

The data in a report block consists of a header, IPMReportBlockHeader, followed by

an array of elements, each of type OCERecipientReport. (You can detect a report in

your outgoing queue when you call the MSAMEnumerate function. The message creator

is always kIPMSignature and the message type is kIPMReportNotify.)

To read an image block, in the blockType field, set the block creator to

kMailAppleMailCreator and set the block type to kMailImageBodyType. The

data that the MSAMGetBlock function places in your buffer is a structure of type

TPfPgDir, followed by the actual picture elements (PICTs).

Blocks of type kMailMSAMType contain data whose format and content are private to an

MSAM. To read a private block, in the blockType field, set the block creator to a value

that you define, and set the block type to kMailMSAMType.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The IPMReportBlockHeader, OCECreatorType, and OCERecipientReport

structures are described in the chapter “Interprogram Messaging Manager” in Inside
Macintosh: AOCE Application Interfaces.

Trap macro Selector

_oceTBDispatch $0510

noErr 0 No error
kOCEToolboxNotOpen –1500 Collaboration toolbox is shutting down
kOCEInvalidRef –1502 Invalid message reference number
kIPMBlkNotFound –15107 No such block

C H A P T E R 2

Messaging Service Access Modules

2-162 Messaging Service Access Module Reference

The MailBuffer structure is described on page 2-96.

The TPfPgDir structure is described on page 2-113.

For more information about PICT format, see Inside Macintosh: Imaging With QuickDraw.

The MailIndications structure is described beginning on page 2-102.

MSAMOpenNested

The MSAMOpenNested function opens a message that is nested within a message that

you specify.

pascal OSErr MSAMOpenNested (MSAMParam *paramBlock,

Boolean asyncFlag);

paramBlock Pointer to a parameter block.

asyncFlag A Boolean value that specifies whether the function is to be
executed asynchronously. Set this to true if you want the function
to be executed asynchronously.

Parameter block

See “The MSAM Parameter Block” on page 2-94 for descriptions of the ioCompletion

and ioResult fields.

Field descriptions

mailMsgRef A reference number that identifies the message that contains a
nested message that you want to open. You obtain the reference
number when you call the MSAMOpen function.

nestedRef A reference number that identifies the nested message opened by
the MSAMOpenNested function.

DESCRIPTION

Call MSAMOpenNested to open a message that is nested within a message. You can open

only one message nested within a message at a given nesting level. A nested message

itself may contain a nested message.

The MSAMOpenNested function returns a reference number to the opened nested

message. The nested message reference number is analogous to the message reference

number of the parent message. Use the nested message reference number when calling

functions to read or close the nested message.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ mailMsgRef MailMsgRef Message reference number
← nestedRef MailMsgRef Reference number of the nested message

C H A P T E R 2

Messaging Service Access Modules

Messaging Service Access Module Reference 2-163

You can call the MSAMClose function to close the nested message explicitly. Alternately,

you can close a nested message by closing its parent message. The MSAMClose function

always closes the message you specify and all messages nested within it.

SPECIAL CONSIDERATIONS

Although a letter, by definition, can have only one nested letter per nesting level, a

non-letter message may actually have more than one nested message per nesting level.

The IPM Manager API allows applications to create such messages. However, you can

open only the first message nested within a message at a given nesting level.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Nested messages are described in the section “Letters” beginning on page 2-17.

The MSAMClose function is described on page 2-167.

Marking a Recipient

When you have completed your attempts to deliver a message to a recipient, you should

mark the recipient, indicating that you have completed your delivery attempts. The

MSAMnMarkRecipients function allows you to do that. If you need to mark a recipient

of a message you have closed, you can use the MSAMMarkRecipients function.

MSAMnMarkRecipients

The MSAMnMarkRecipients function allows you to indicate that you have completed

your attempts to deliver a given open message to the recipients that you specify.

pascal OSErr MSAMnMarkRecipients (MSAMParam *paramBlock,

Boolean asyncFlag);

paramBlock Pointer to a parameter block.

Trap macro Selector

_oceTBDispatch $0509

noErr 0 No error
kOCEToolboxNotOpen –1500 Collaboration toolbox is shutting down
kOCEInvalidRef –1502 Invalid message reference number
kOCEVersionErr –1504 Wrong version of nested message

C H A P T E R 2

Messaging Service Access Modules

2-164 Messaging Service Access Module Reference

asyncFlag A Boolean value that specifies whether the function is to be
executed asynchronously. Set this to true if you want the function
to be executed asynchronously.

Parameter block

See “The MSAM Parameter Block” on page 2-94 for descriptions of the ioCompletion

and ioResult fields.

Field descriptions

mailMsgRef A message reference number that identifies an open message whose
recipients you want to mark. You obtain this reference number from
the MSAMOpen function. It is valid if you have not yet closed the
message by calling the MSAMClose function.

buffer A MailBuffer structure. You set the value of the bufferSize
field in the MailBuffer structure to the number of bytes in your
buffer. You place data in your buffer in the form of a MailReply
structure. The first 2 bytes in the buffer contain the number of
identifying values that follow. Then you store a value that identifies
each recipient that you want to mark. Each identifying value is
2 bytes long. The dataSize field in the MailBuffer structure
is unused.

DESCRIPTION

Calling the MSAMnMarkRecipients function for one or more recipients indicates that

you have delivered the specified message or have finished attempting to deliver the

message to those recipients. You may have delivered the message directly to a recipient

or to an agent within the non-AOCE system that has responsibility for delivery to the

final destination.

The value that identifies a recipient that you want to mark is its ordinal position

in the buffer returned by the MSAMGetRecipients function. When you call the

MSAMGetRecipients function to get resolved recipients, MSAMGetRecipients places

some number of MailResolvedRecipient structures in your buffer. You must save

the ordinal-position value of each resolved recipient as you retrieve these structures. The

first recipient’s ordinal-position value is 1; the second recipient’s ordinal-position value

is 2 (the nth recipient’s ordinal-position value is n). Do not use the absolute index of the

recipient contained in a MailResolvedRecipient structure to identify a recipient. The

MSAMnMarkRecipients function will not work correctly if you do so.

The MSAMnMarkRecipients function clears the responsible flag for the

recipients you specify. If you call the MSAMGetRecipients function after calling

MSAMnMarkRecipients, the marked recipients have the responsible field of their

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ mailMsgRef MailMsgRef Message identifier
↔ buffer MailBuffer Your buffer structure

C H A P T E R 2

Messaging Service Access Modules

Messaging Service Access Module Reference 2-165

corresponding MailResolvedRecipient structures set to false. After you mark

all of the recipients for a message, the done field in the MSAMEnumerateOutQReply

structure is set to true for that message when you enumerate the outgoing queue.

You can call the MSAMnMarkRecipients function more than once for a given message,

specifying one or more recipients each time you call it.

Note

Calling the MSAMnMarkRecipients function for a given recipient does
not necessarily mean that you have successfully delivered the message.
You should use a report to indicate whether or not you have successfully
delivered a message. ◆

SPECIAL CONSIDERATIONS

If you must mark a recipient of a message you have closed, you can call the earlier

version of this function, the MSAMMarkRecipients function. Instead of a message

reference number, you provide the reference number of the outgoing queue that contains

the message and the message sequence number. The MSAMMarkRecipients function

produces the same result, but it executes much more slowly.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The MailResolvedRecipient structure is described on page 2-108.

The MailBuffer structure is described on page 2-96.

The MailReply structure is described on page 2-97.

The MSAMGetRecipients function is described beginning on page 2-144.

The MSAMMarkRecipients function is described next.

Trap macro Selector

_oceTBDispatch $0512

noErr 0 No error
kOCEParamErr –50 Incoming queue reference not allowed
kOCEToolboxNotOpen –1500 Collaboration toolbox is shutting down
kOCEInvalidRef –1502 Invalid queue reference
kOCEDoesntExist –1511 No such letter
kOCERefIsClosing –1516 IPM Manager is shutting down the

personal MSAM, or server MSAM’s
mail server is shutting down

C H A P T E R 2

Messaging Service Access Modules

2-166 Messaging Service Access Module Reference

MSAMMarkRecipients

The MSAMMarkRecipients function, like the MSAMnMarkRecipients function,

allows you to indicate that you have completed your attempts to deliver a particular

message to the recipients that you specify, but it executes much more slowly.

pascal OSErr MSAMMarkRecipients (MSAMParam *paramBlock,

Boolean asyncFlag);

paramBlock Pointer to a parameter block.

asyncFlag A Boolean value that specifies whether the function is to be
executed asynchronously. Set this to true if you want the function
to be executed asynchronously.

Parameter block

See “The MSAM Parameter Block” on page 2-94 for descriptions of the ioCompletion

and ioResult fields.

Field descriptions

queueRef The value that identifies the outgoing queue that contains the
message whose recipients you want to mark.

seqNum A value that identifies the message whose recipients you want to
mark. You obtain this value from the MSAMEnumerate function.

buffer A MailBuffer structure. You set the value of the bufferSize
field in the MailBuffer structure to the number of bytes in your
buffer. You place data in your buffer in the form of a MailReply
structure. The first 2 bytes in the buffer contain the number of
identifying values that follow. Then you store a value that identifies
each recipient that you want to mark. Each identifying value is 2
bytes long. The identifying value is described on page 2-164. The
dataSize field in the MailBuffer structure is unused.

DESCRIPTION

The MSAMMarkRecipients function produces the same result as the

MSAMnMarkRecipients function, described in the previous section.

SPECIAL CONSIDERATIONS

It is strongly recommended that you do not call this function unless you must mark a

recipient for a message that you have already closed. Instead, you should call the

MSAMnMarkRecipients function, which executes much more quickly.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ queueRef MSAMQueueRef Queue reference number
→ seqNum long Message sequence number
↔ buffer MailBuffer Your buffer structure

C H A P T E R 2

Messaging Service Access Modules

Messaging Service Access Module Reference 2-167

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The MailResolvedRecipient structure is described on page 2-108.

The MailBuffer structure is described on page 2-96.

The MSAMGetRecipients function is described on page 2-144.

The MSAMnMarkRecipients function is described on page 2-163.

Closing a Message

When you have finished reading a message, whether it is nested or not, use the function

MSAMClose to close the message.

MSAMClose

The MSAMClose function closes an open message that you specify.

pascal OSErr MSAMClose (MSAMParam *paramBlock, Boolean asyncFlag);

paramBlock Pointer to a parameter block.

asyncFlag A Boolean value that specifies whether the function is to be
executed asynchronously. Set this to true if you want the function
to be executed asynchronously.

Parameter block

See “The MSAM Parameter Block” on page 2-94 for descriptions of the ioCompletion

and ioResult fields.

Trap macro Selector

_oceTBDispatch $0505

noErr 0 No error
kOCEParamErr –50 Incoming queue reference not allowed
kOCEToolboxNotOpen –1500 Collaboration toolbox is shutting down
kOCEInvalidRef –1502 Invalid queue reference
kOCEDoesntExist –1511 No such letter
kOCERefIsClosing –1516 IPM Manager is shutting down the

personal MSAM, or server MSAM’s
mail server is shutting down

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ mailMsgRef MailMsgRef Message reference number

C H A P T E R 2

Messaging Service Access Modules

2-168 Messaging Service Access Module Reference

Field descriptions

mailMsgRef A reference number that identifies the message that you want to
close. You obtain the reference number when you call the
MSAMOpen function. When the MSAMClose function completes
successfully, this reference number is no longer valid.

DESCRIPTION

The MSAMClose function closes any message or nested message that you have

previously opened. Closing a letter automatically closes any open nested messages

within it.

You should close a message once you have read it and have marked the recipients for the

message. Closing a message releases system resources. You can reopen a message you

previously closed by calling the MSAMOpen function.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The MSAMOpen function is described on page 2-140.

Creating, Reading, and Writing Message Summaries

A personal MSAM must create a message summary for each letter it transfers from an

external messaging system to an AOCE system. Message summaries are stored in the

incoming queue for a slot and are used by the Finder to display information about the

letters to the user. You use the PMSAMCreateMsgSummary function to create a new

message summary. Once you have created a message summary, you can modify portions

of it. To do so, first call the PMSAMGetMsgSummary function to read the message

summary; then modify it; and, finally, call the PMSAMPutMsgSummary function to write

it again.

Note that a personal MSAM creates message summaries only for letters, not for other

types of messages.

Trap macro Selector

_oceTBDispatch $050A

noErr 0 No error
kOCEToolboxNotOpen –1500 Collaboration toolbox is shutting down
kOCEInvalidRef –1502 Invalid message reference number

C H A P T E R 2

Messaging Service Access Modules

Messaging Service Access Module Reference 2-169

PMSAMCreateMsgSummary

The PMSAMCreateMsgSummary function creates a message summary in an incoming

queue that you specify.

pascal OSErr PMSAMCreateMsgSummary (MSAMParam *paramBlock,

 Boolean asyncFlag);

paramBlock Pointer to a parameter block.

asyncFlag A Boolean value that specifies whether the function is to be
executed asynchronously. Set this to true if you want the function
to be executed asynchronously.

Parameter block

See “The MSAM Parameter Block” on page 2-94 for descriptions of the ioCompletion

and ioResult fields.

Field descriptions

inQueueRef The reference number that identifies the queue into which you want
to place the message summary. You obtain the queue reference from
the PMSAMOpenQueues function.

seqNum The sequence number of the new message summary. You use
the sequence number with the PMSAMGetMsgSummary and
PMSAMPutMsgSummary functions to identify the message summary.

msgSummary A pointer to an MSAMMsgSummary structure that you allocate. You
must provide values for some of the fields of the structure.

buffer A pointer to a MailBuffer structure. You set the value of the
bufferSize field in the MailBuffer structure to the number of
bytes in your buffer. Your buffer size may not exceed the number
of bytes specified by the kMailMaxPMSAMMsgSummaryData
constant. You provide a pointer to your buffer in the buffer field
of the structure and store in the buffer private data that you want to
add to the message summary. The function reads your data from
the buffer and sets the value of the dataSize field to the number
of bytes of data it wrote to the message summary. Set this field
to nil if you do not want to add any private data to the message
summary.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ inQueueRef MSAMQueueRef Incoming queue reference
← seqNum long Message summary sequence

number
→ msgSummary MSAMMsgSummary* Summary information for a letter
↔ buffer MailBuffer* Your private data

C H A P T E R 2

Messaging Service Access Modules

2-170 Messaging Service Access Module Reference

DESCRIPTION

You call the PMSAMCreateMsgSummary function to create a message summary for an

incoming letter. You must create a message summary for each incoming letter. The

Finder uses the message summary to display information about the letter to the user.

(Because only letters are displayed to the user, you do not create a message summary for

a message that is not a letter.)

Prior to assigning a particular value to any field of a new MSAMMsgSummary structure,

you should initialize all of its fields to 0. The section “The Personal MSAM Message

Summary Structures” beginning on page 2-124 describes all of the fields of the message

summary and indicates whether you or the IPM Manager is responsible for providing a

value for a given field. Note that when the IPM Manager adds a value in the message

summary, it updates the MSAMMsgSummary.MailMasterData.attrMask field if

appropriate.

With one exception, the values of the letter attributes that you provide when you create a

message summary must be exactly the same values as those you provide to the

MSAMPutAttribute function when you write the associated letter to the incoming

queue. If the attribute values do not match, the consequences are unpredictable. The

exception is the subject attribute. It may be truncated in the message summary due to

size limitations in the MSAMMsgSummary structure.

You can provide private data that the IPM Manager stores with the message summary. If

your private data exceeds kMailMaxPMSAMMsgSummaryData bytes, the function

returns the kOCEParamErr result code.

You can modify your private data. To do so, call the PMSAMGetMsgSummary function to

read your private data associated with the message summary; then modify your data;

and, finally, call the PMSAMPutMsgSummary function to write your modified private data.

The PMSAMCreateMsgSummary function returns a sequence number. You must provide

the sequence number to the MSAMCreate function when you create the letter for this

message summary. The sequence number correctly associates the letter and the message

summary.

SPECIAL CONSIDERATIONS

The private data area associated with a message summary is a sort of scratch pad,

intended for brief notations for MSAM-specific uses. Storing large amounts of data

degrades system performance and is strongly discouraged. For best results, you should

use no more than 8–16 bytes of private data.

The sender and subject fields of the MailCoreData structure in the message

summary require special handling. Be sure to read the information in the section

“Creating a Letter’s Message Summary” beginning on page 2-64 for an understanding

of how to manipulate these fields.

C H A P T E R 2

Messaging Service Access Modules

Messaging Service Access Module Reference 2-171

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The MSAMMsgSummary structure is described on page 2-127.

The MailCoreData structure is described on page 2-125.

The PMSAMGetMsgSummary function is described next.

The PMSAMPutMsgSummary function is described on page 2-173.

The MSAMPutAttribute function is described on page 2-179.

For more information on the use of message summaries and for sample code that shows

how to create a message summary, see the section “Creating a Letter’s Message

Summary” beginning on page 2-64.

PMSAMGetMsgSummary

The PMSAMGetMsgSummary function reads a message summary, an MSAM’s private

data associated with a message summary, or both.

pascal OSErr PMSAMGetMsgSummary (MSAMParam *paramBlock,

 Boolean asyncFlag);

paramBlock Pointer to a parameter block.

asyncFlag A Boolean value that specifies whether the function is to be
executed asynchronously. Set this to true if you want the function
to be executed asynchronously.

Trap macro Selector

_oceTBDispatch $0522

noErr 0 No error
dskFulErr –34 All allocation blocks on the

volume are full
kOCEParamErr –50 Private data too large
kOCEToolboxNotOpen –1500 Collaboration toolbox is shutting down
kOCEInvalidRef –1502 Invalid queue reference
kMailInvalidPostItVersion –15046 Message summary is wrong version
kMailNotASlotInQ –15047 Queue reference does not refer to an

incoming queue

C H A P T E R 2

Messaging Service Access Modules

2-172 Messaging Service Access Module Reference

Parameter block

See “The MSAM Parameter Block” on page 2-94 for descriptions of the ioCompletion

and ioResult fields.

Field descriptions

inQueueRef The value identifying the incoming queue that holds the message
summary you want to read. You obtain the queue reference from
the PMSAMOpenQueues function.

seqNum The sequence number that identifies the message summary in the
incoming queue. You obtain this value from the
PMSAMCreateMsgSummary function.

msgSummary A pointer to a buffer in which the function stores the
MSAMMsgSummary structure. You provide this buffer. Set this field
to nil if you do not want to read the message summary.

buffer A pointer to a MailBuffer structure. You set the value of the
bufferSize field in the MailBuffer structure to the number of
bytes in your buffer. The PMSAMGetMsgSummary function stores
your private data associated with the message summary into the
buffer and sets the value of the dataSize field to the number of
bytes of data it actually placed in your buffer. Set this field to nil if
you do not want to read your private data.

msgSummaryOffset
The offset from the beginning of your private data area identifying
the point at which you want to begin reading. If the buffer field is
set to nil, the function ignores this field.

DESCRIPTION

You call the PMSAMGetMsgSummary function to read an existing message summary, the

private data associated with the message summary, or both.

You can modify the letterFlags field of the MSAMMsgSummary structure or your

private data, or both.

If the msgUpdated flag in the message summary was set to true, the IPM Manager

resets it to false after the PMSAMGetMsgSummary function returns with no error.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ inQueueRef MSAMQueueRef Incoming queue reference
→ seqNum long Message summary

sequence number
↔ msgSummary MSAMMsgSummary* Message summary
↔ buffer MailBuffer* Buffer for private data
→ msgSummaryOffset

unsigned short Point at which to begin reading

C H A P T E R 2

Messaging Service Access Modules

Messaging Service Access Module Reference 2-173

SPECIAL CONSIDERATIONS

Reading your private data area is slower than reading the MSAMMsgSummary structure.

Each read request may result in two additional disk accesses. You should avoid reading

your private data whenever it is reasonable to do so.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

You use the PMSAMPutMsgSummary function to write the modified message summary,

private data, or both. The PMSAMPutMsgSummary function is described next.

The MSAMMsgSummary structure is described on page 2-127.

The MailBuffer structure is described on page 2-96.

PMSAMPutMsgSummary

The PMSAMPutMsgSummary function writes a modified message summary, private data

associated with the message summary, or both.

pascal OSErr PMSAMPutMsgSummary (MSAMParam *paramBlock,

 Boolean asyncFlag);

paramBlock Pointer to a parameter block.

asyncFlag A Boolean value that specifies whether the function is to be
executed asynchronously. Set this to true if you want the function
to be executed asynchronously.

Trap macro Selector

_oceTBDispatch $0526

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kOCEToolboxNotOpen –1500 Collaboration toolbox is

shutting down
kOCEInvalidRef –1502 Invalid queue reference
kOCEDoesntExist –1511 No such message summary
kMailNotASlotInQ –15047 Queue reference does not refer

to an incoming queue

C H A P T E R 2

Messaging Service Access Modules

2-174 Messaging Service Access Module Reference

Parameter block

See “The MSAM Parameter Block” on page 2-94 for descriptions of the ioCompletion

and ioResult fields.

Field descriptions

inQueueRef The value that identifies the queue in which the message summary
resides. You obtain this value from the PMSAMOpenQueues function.

seqNum The sequence number that identifies the message summary that
you want to modify or whose associated private data you want
to modify.

letterFlags A pointer to a MailMaskedLetterFlags structure, which
consists of a set of user and system flags and their values. The
flags indicate certain aspects of the status of your letter. You can
modify the kMailReadBit bit in the user flags portion of the
letter flags. Set this field to nil if you do not want to modify the
kMailReadBit bit.

buffer A pointer to a MailBuffer structure that contains your private
data associated with the message summary. You set the value of the
bufferSize field in the MailBuffer structure to the number of
bytes in your buffer. Your buffer size may not exceed the number
of bytes specified by kMailMaxPMSAMMsgSummaryData. The
PMSAMPutMsgSummary function stores your private data with the
message summary and sets the value of the dataSize field to the
number of bytes of data it actually wrote. Set this field to nil if you
do not want to modify your private data.

DESCRIPTION

You use the PMSAMPutMsgSummary function to overwrite your private data associated

with a message summary, to modify the user flags portion of the letter flags, or both.

You can modify the kMailReadBit bit in the user portion of letter flags in a letter’s

message summary. Typically, you do this to reflect, in the incoming queue, changes in a

letter’s status on the external messaging system. For example, when you write a letter to

an incoming queue, you initially set the kMailReadBit bit to 0 to indicate that the user

has not read the letter. Assume that the user logs onto the external account directly,

perhaps while travelling, and reads the letter. The next time you connect to the external

system, you note that the letter has been read. At this point, you can call the

PMSAMPutMsgSummary function to set the kMailReadBit bit to 1, indicating that the

user read the letter. Note that the kMailReadBit bit applies to the letter in general, not

simply a local copy of the letter.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ inQueueRef MSAMQueueRef Slot’s incoming queue reference
→ seqNum long Message summary’s

sequence number
→ letterFlags MailMaskedLetterFlags*

System and user flags
↔ buffer MailBuffer* Private data buffer

C H A P T E R 2

Messaging Service Access Modules

Messaging Service Access Module Reference 2-175

You manage your private data for your own purposes. If you provide more than the

maximum number of bytes (kMailMaxPMSAMMsgSummaryData) of private data in your

buffer, the function returns the kOCEParamErr result code.

SPECIAL CONSIDERATIONS

Writing your private data area is slower than writing the letter flags in a message

summary. Each write request may result in two additional disk accesses. You should

avoid writing your private data whenever it is reasonable to do so.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The MailMaskedLetterFlags structure is described on page 2-124. The user portion

of the letter flags is defined by the MailLetterUserFlags data type, described on

page 2-122.

The MSAMMsgSummary structure is described on page 2-127.

The PMSAMGetMsgSummary function is described on page 2-171.

The MailBuffer structure is described on page 2-96.

Trap macro Selector

_oceTBDispatch $0527

noErr 0 No error
dskFulErr –34 All allocation blocks on the

volume are full
kOCEParamErr –50 Invalid parameter
kOCEToolboxNotOpen –1500 Collaboration toolbox is shutting down
kOCEInvalidRef –1502 Invalid queue reference
kOCEDoesntExist –1511 No such message summary
kMailInvalidPostItVersion –15046 Message summary is wrong version
kMailNotASlotInQ –15047 Queue reference does not refer

to an incoming queue

C H A P T E R 2

Messaging Service Access Modules

2-176 Messaging Service Access Module Reference

Creating a Message

To create a new message going to an AOCE address, use the function MSAMCreate.

MSAMCreate

The MSAMCreate function begins the process of creating a message and returns a

reference number for the message.

pascal OSErr MSAMCreate (MSAMParam *paramBlock,

Boolean asyncFlag);

paramBlock Pointer to a parameter block.

asyncFlag A Boolean value that specifies whether the function is to be
executed asynchronously. Set this to true if you want the function
to be executed asynchronously.

Parameter block

See “The MSAM Parameter Block” on page 2-94 for descriptions of the ioResult and

ioCompletion fields.

Field descriptions

queueRef For a personal MSAM, specify the incoming queue reference that
you obtained from the PMSAMOpenQueues function. The queue
reference must belong to the slot to which the message is addressed.
For a mail slot, the queue reference identifies the slot’s actual
incoming queue in which you want to deposit a letter. For a
messaging slot, the queue reference identifies the slot itself. For a
server MSAM, specify the server MSAM’s queue reference that you
obtained from the SMSAMStartup function.

asLetter A Boolean value that indicates whether the message you are
creating is a letter.

msgType An IPMMsgType structure. If you are creating a letter, you
must set the format field of the IPMMsgType structure to
kIPMOSFormatType to indicate that the remainder of the
IPMMsgType structure consists of an OCECreatorType structure.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ queueRef MSAMQueueRef Queue reference number
→ asLetter Boolean Create a letter?
→ msgType IPMMsgType Message creator and type
→ refCon long Reserved for your use
→ seqNum long Sequence number of new message
→ tunnelForm Boolean Always false
→ bccRecipients Boolean Are there blind copy recipients?
← newRef MailMsgRef Message reference number

C H A P T E R 2

Messaging Service Access Modules

Messaging Service Access Module Reference 2-177

Then set the message creator and type appropriately. If you are
creating a non-letter message, you can set the IPMMsgType field
to either format type, kIPMOSFormatType or
kIPMStringFormatType.

refCon A value reserved for your private use when you create a non-letter
message. You may provide a value to be interpreted by the
recipient. This field is ignored when you create a letter. If you
provide a value in the refCon field, it is stored in the message
header. The recipient can retrieve the value by calling the
MSAMGetMsgHeader function and specifying kIPMFixedInfo in
the selector field of its parameter block.

seqNum This field applies only to personal MSAMs. If you are creating
a message that is not a letter, you do not provide a value for
this field. Otherwise, you provide the sequence number that
identifies the message summary associated with the letter that
you want to create. You obtain the sequence number from the
PMSAMCreateMsgSummary function.

tunnelForm You must always set this field to false.

bccRecipients This field applies only when you want to create a letter. You set this
field to true if you intend to specify blind copy recipients for the
letter when you call the MSAMPutRecipient function.

newRef A value that uniquely identifies the message that has just been
created. The MSAMCreate function returns a reference number
for the message that you use in subsequent function calls to write
the message.

DESCRIPTION

You call the MSAMCreate function to begin the process of writing a message from an

external messaging system to an AOCE system. The function returns a reference number

that you need to provide to the MSAMPut functions that write the various parts of

the message.

If you are creating a letter that contains data in standard interchange format, image

format, or a regular enclosure, you should set the message creator to 'lap2' and the

message type to kMailLtrMsgType. In this case, the AppleMail application opens the

letter. If the letter contains only a content enclosure, you can set the message creator to

the signature of the application that created the content enclosure. If the letter contains a

content enclosure or private block and if you set the message creator to the signature of

the application that created the enclosure or private block, then you can use a message

type that you define consistent with the message creator.

You set the message creator and message type in the msgCreator and msgType fields

of the OCECreatorType structure, part of theIPMMsgType structure.

If you are creating a non-letter message, use an application-defined creator and type. You

can set the format field of the IPMMsgType structure to either kIPMOSFormatType

(which specifies that the message creator and message type information is formatted as

type OCECreatorType) or kIPMStringFormatType (which specifies that the message

C H A P T E R 2

Messaging Service Access Modules

2-178 Messaging Service Access Module Reference

creator and message type information is formatted as type Str32). Typically, you use

type OCECreatorType; type Str32 is included for compatibility with the Program-to-

Program Communications (PPC) Toolbox.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The types of data that constitute standard letter content are described on page 2-109.

The IPMMsgType and the format types, kIPMOSFormatType and

kIPMStringFormatType, are described in the chapter “Interprogram Messaging

Manager” in Inside Macintosh: AOCE Application Interfaces.

The OCECreatorType structure is described in the chapter “Interprogram Messaging

Manager” in Inside Macintosh: AOCE Application Interfaces.

The PMSAMOpenQueues function is described on page 2-133.

The PMSAMGetMsgSummary function is described on page 2-171.

The MSAMPutRecipient function is described on page 2-180.

See the section “Choosing Creator and Type for Messages and Blocks” beginning on

page 2-64 for a discussion of message creators and types.

Writing Header Information

To write letter attributes into a newly created letter, use the MSAMPutAttribute

function. You can add recipients to a message with the MSAMPutRecipient function.

To write the header of a non-letter message, use the MSAMPutMsgHeader function.

Trap macro Selector

_oceTBDispatch $0514

noErr 0 No error
dskFulErr –34 All allocation blocks on the volume are full
memFullErr –108 Not enough memory
kOCEInvalidRef –1502 Invalid queue reference number
kOCERefIsClosing –1516 IPM Manager is shutting down the

personal MSAM, or server MSAM’s
mail server is shutting down

kMailNotASlotInQ –15047 Queue reference refers to a personal
MSAM’s outgoing queue

kIPMInvalidMsgType –15091 Only kIPMOSFormatType allowed when
creating a letter

C H A P T E R 2

Messaging Service Access Modules

Messaging Service Access Module Reference 2-179

MSAMPutAttribute

The MSAMPutAttribute function adds a letter attribute to a letter you are writing.

pascal OSErr MSAMPutAttribute (MSAMParam *paramBlock,

Boolean asyncFlag);

paramBlock Pointer to a parameter block.

asyncFlag A Boolean value that specifies whether the function is to be
executed asynchronously. Set this to true if you want the function
to be executed asynchronously.

Parameter block

See “The MSAM Parameter Block” on page 2-94 for descriptions of the ioCompletion

and ioResult fields.

Field descriptions

mailMsgRef A reference number that identifies the letter to which you want to
add an attribute. You obtain the reference number when you call the
MSAMCreate function.

attrID A value that identifies the type of attribute that you want to add to
the letter.

buffer A MailBuffer structure. You set the value of the bufferSize
field in the MailBuffer structure to the number of bytes in your
buffer. You store the value of the attribute that you want to add to
the letter in your buffer. The MSAMPutAttribute function writes
the information from the buffer to the letter and sets the value of the
dataSize field to the number of bytes of data it actually wrote.

DESCRIPTION

You call the MSAMPutAttribute function to add a letter attribute to a letter header. The

attrID field can have any of the following values:

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ mailMsgRef MailMsgRef Letter reference number
→ attrID MailAttributeID Type of letter attribute
↔ buffer MailBuffer Your buffer structure

Constant Value Description

kMailIndicationsBit 3 Indications and priority

kMailSendTimeStampBit 6 Send timestamp

kMailMsgFamilyMask 8 Message family

kMailReplyIDBit 9 Reply ID

kMailConversationIDBit 10 Conversation ID

kMailSubjectBit 11 Subject

C H A P T E R 2

Messaging Service Access Modules

2-180 Messaging Service Access Module Reference

You cannot use the MSAMPutAttribute function to add recipients to a letter. Use the

MSAMPutRecipient function to add the From, To, cc, and bcc attributes to a letter.

There are three attributes—the letter’s creator and type, its letter ID, and its nesting

level—that you can read from a letter header with the MSAMGetAttributes function

but cannot write to the letter header with MSAMPutAttribute. You set the letter’s

creator and type when you call the MSAMCreate function to create the letter, and the

IPM Manager sets the letter ID and nesting level of any letters that you create.

The letterFlags attribute is stored in a letter’s message summary rather than in

the letter header. Therefore, you add the letterFlags attribute when you call the

PMSAMCreateMsgSummary function.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The MailBuffer structure is described on page 2-96.

Letter attributes and their formats are defined in the section “The Letter Attribute

Structures” beginning on page 2-99.

The MSAMGetAttributes function is described on page 2-142.

The PMSAMCreateMsgSummary function is described on page 2-169.

The MSAMPutRecipient function is described next.

MSAMPutRecipient

The MSAMPutRecipient function adds a recipient to a message you are writing.

pascal OSErr MSAMPutRecipient (MSAMParam *paramBlock,

Boolean asyncFlag);

Trap macro Selector

_oceTBDispatch $0518

noErr 0 No error
dskFulErr –34 All allocation blocks on the volume are full
kOCEParamErr –50 Invalid parameter
kOCEInvalidRef –1502 Invalid message reference number
kOCEAlreadyExists –1510 Attribute already exists in the letter header
kOCERefIsClosing –1516 IPM Manager is shutting down the

personal MSAM, or server MSAM’s
mail server is shutting down

kMailInvalidRequest –15045 Cannot call function with this message
reference number

C H A P T E R 2

Messaging Service Access Modules

Messaging Service Access Module Reference 2-181

paramBlock Pointer to a parameter block.

asyncFlag A Boolean value that specifies whether the function is to be
executed asynchronously. Set this to true if you want the function
to be executed asynchronously.

Parameter block

See “The MSAM Parameter Block” on page 2-94 for descriptions of the ioCompletion

and ioResult fields.

Field descriptions

mailMsgRef A reference number that identifies the message to which you want
to add recipient information. You obtain the reference number from
the MSAMCreate function.

attrID A constant that indicates the type of recipient you want to add to
the message. If you are adding a recipient to a letter, you can use
any of the following constants; if you are adding a recipient to a
non-letter message, kMailToBit is the only valid value you can
specify in this field.

Constant Value Recipient type
kMailFromBit 12 From
kMailToBit 13 To
kMailCcBit 14 cc
kMailBccBit 15 bcc

recipient A pointer to a MailRecipient structure in which you provide
complete addressing information about the recipient.

responsible A Boolean value that indicates whether the IPM Manager is
responsible for delivering this message to the recipient identified
by the rcpt field.

DESCRIPTION

You call the MSAMPutRecipient function to add a recipient to a message that you

specify. You can add one recipient each time you call the function. To add a list of

recipients, you must call the function multiple times.

If you are adding a recipient to a letter, you can specify any type of recipient: From, To,

cc, or bcc. If you are adding a recipient to a non-letter message, you can specify only a To

recipient. To add a From recipient to a non-letter message, call the MSAMPutMsgHeader

function and specify the From recipient in the replyQueue field.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ mailMsgRef MailMsgRef Message reference number
→ attrID MailAttributeID Type of recipient
→ recipient MailRecipient* Recipient information
→ responsible Boolean Must server MSAM deliver message?

C H A P T E R 2

Messaging Service Access Modules

2-182 Messaging Service Access Module Reference

When you add the From address to a letter, you should set the recordName field in the

MailRecipient structure to the value you provided in the sender field when you

created the letter’s message summary.

You must add all recipients of a given recipient type in consecutive calls to the

MSAMPutRecipient function. If you attempt to intermingle calls to add different

recipient types, the function returns a kOCEAlreadyExists result code. For example,

if you call the function to add a To recipient, call it again to add a cc recipient, and call

it a third time to add a second To recipient, the function returns the error the third

time you call it.

A personal MSAM should check each recipient address to see if it maps to the owner

of the computer. If so, you need to set the recordName field in the MailRecipient

structure to the owner’s name, sometimes referred to as the Key Chain name or local
identity name. You can obtain the owner’s name by looking up the record attribute

indexed by the constant kLocalNameAttrTypeNum in the Setup record in the

Setup catalog.

Every time you add a recipient, you must indicate if the IPM Manager is responsible for

delivering the message to that recipient. If you are adding a From recipient, you should

always set the responsible field to false.

A personal MSAM should set the responsible field as follows. If you are adding

a recipient to a letter, always set the responsible field to false. If you are adding a

recipient to a non-letter message, set the responsible field to true for the recipients

that are local to the computer on which the MSAM is running. These are the ones for

which you want the AOCE system to be responsible for delivering the message. Take,

for example, an application that sends the same non-letter message to three other

applications, each of which is running on a separate computer. A personal MSAM

receiving this message would call the MSAMPutRecipient function three times, setting

the responsible field to true for the recipient that is local and to false for the other

two recipients.

To modify the example a bit, suppose an application sends the same non-letter message

to three other applications, all of which are running on the same computer. In this case,

the personal MSAM receiving the message would call the MSAMPutRecipient function

three times, setting the responsible field to true for all three of the recipients.

For incoming non-letter messages, it is the task of the personal MSAM and its external

messaging system to identify addresses that are local to the computer on which the

personal MSAM is running so that the personal MSAM can set the responsible field

appropriately. When a personal MSAM sets the responsible field to true, the AOCE

software attempts to deliver the message to the named queue on the local computer.

Server MSAMs should set the responsible field to true for any To, cc, or bcc recipient

to which they want the AOCE system to deliver a message, regardless of the type

of message.

Note that when you call the MSAMCreate function, you create a letter or a non-letter

message by setting the asLetter field to true or false, respectively.

C H A P T E R 2

Messaging Service Access Modules

Messaging Service Access Module Reference 2-183

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The MailRecipient structure is defined to be an OCERecipient structure, which is

described on page 2-106.

Recipient types are included in letter attributes. Letter attributes and their formats are

defined in the section “The Letter Attribute Structures” beginning on page 2-99.

The MSAMPutMsgHeader function is described next.

MSAMPutMsgHeader

The MSAMPutMsgHeader function writes information to the header of a non-letter

message that you specify.

pascal OSErr MSAMPutMsgHeader (MSAMParam *paramBlock,
Boolean asyncFlag);

paramBlock Pointer to a parameter block.

asyncFlag A Boolean value that specifies whether the function is to be
executed asynchronously. Set this to true if you want the function
to be executed asynchronously.

Parameter block

Trap macro Selector

_oceTBDispatch $0519

noErr 0 No error
dskFulErr –34 All allocation blocks on

the volume are full
kOCEParamErr –50 Invalid parameter
kOCEInvalidRef –1502 Invalid message reference number
kOCEAlreadyExists –1510 Duplicate recipient type
kOCEInvalidRecipient –1514 Bad recipient
kOCERefIsClosing –1516 IPM Manager is shutting down the

personal MSAM, or server MSAM’s
mail server is shutting down

kMailMalformedContent –15061 Content data malformed

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ mailMsgRef MailMsgRef Message reference number
→ replyQueue OCERecipient* Return address
→ sender IPMSender* Sender’s record ID
→ deliveryNotification

IPMNotificationType Delivery notification option
→ priority IPMPriority Delivery priority setting

C H A P T E R 2

Messaging Service Access Modules

2-184 Messaging Service Access Module Reference

See “The MSAM Parameter Block” on page 2-94 for descriptions of the ioCompletion

and ioResult fields.

Field descriptions

mailMsgRef A reference number that identifies the non-letter message whose
header you want to write. You obtain the reference number when
you call the MSAMCreate function.

replyQueue A pointer to an OCERecipient structure that specifies a reply
queue—that is, a return address. You allocate the structure and
completely specify it. The receiving application uses this address
when it replies to the message. The IPM Manager sends reports to
the reply queue address. You are free to specify that replies and
reports go to an alternate address, instead of to the sender.

sender A pointer to an IPMSender structure that contains the packed
record ID or string that identifies the sender of the message.

deliveryNotification
A bit array that indicates the type of information you want to
receive about the delivery of the message. Set the bit values
appropriately to request reports with delivery indications
(kIPMDeliveryNotificationMask), reports with non-delivery
indications (kIPMNonDeliveryNotificationMask), or no
reports (kIPMNoNotificationMask).

priority A value that specifies the priority for delivering the message. Set
this field to kIPMHighPriority to specify high priority. Set this
field to kIPMLowPriority to specify low priority. Set this field to
kIPMNormalPriority to specify normal priority.

DESCRIPTION

You call the MSAMPutMsgHeader function to write information to the header of the

non-letter message that you are creating. Do not use this function with messages that are

letters or reports. The information that you provide to the MSAMPutMsgHeader function

includes an address for replies, the sender, the type of report information you want, and

the priority for delivering the message.

You should understand the distinction between the use of the sender and the

replyQueue fields. The address that you provide in the replyQueue field shows up as

the From recipient when the message is delivered. It allows a sender to designate an

address to which replies should be sent. For example, cooperating applications can agree

to define reply queue addresses that are associated with specific message creators,

message types, and message families. In addition, the IPM Manager sends reports

to the reply queue address.

In contrast, the sender field simply identifies the originator of the message. A recipient

can retrieve the value of the sender field by calling the MSAMGetMsgHeader function.

The record ID portion of the return address need not be the same as that which you

provide in the sender field.

C H A P T E R 2

Messaging Service Access Modules

Messaging Service Access Module Reference 2-185

The IPM Manager defines several masks for delivery notification options. However, the

only valid values that you can use to set bits in the deliveryNotification field are

kIPMDeliveryNotificationMask, kIPMNonDeliveryNotificationMask, and

kIPMNoNotificationMask. The IPM Manager ignores the settings of all other bits

because the IPM Manager never includes a copy of the original message in an MSAM

report and the IPM Manager may include more than one indication (delivery,

non-delivery, or both) in a single report, depending on the number of recipients and

other factors.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The OCERecipient structure is described on page 2-106.

The IPMSender, IPMNotificationType, and IPMPriority structures are defined in

the chapter “Interprogram Messaging Manager” in Inside Macintosh: AOCE Application
Interfaces. The chapter also has a discussion of IPM queues.

All of the delivery notification constants are described in the chapter “Interprogram

Messaging Manager” in Inside Macintosh: AOCE Application Interfaces.

To add a To recipient attribute to your message header, call the MSAMPutRecipient

function, described on page 2-180.

Writing a Message

To write the various parts of a message, use the functions MSAMPutBlock,

MSAMBeginNested, and MSAMEndNested. The functions MSAMPutContent and

MSAMPutEnclosure are used for writing the main content and enclosure portions

of letters.

Trap macro Selector

_oceTBDispatch $051D

noErr 0 No error
dskFulErr –34 All allocation blocks on the

volume are full
kOCEParamErr –50 Invalid parameter
kOCEInvalidRef –1502 Invalid message reference number
kOCEInvalidRecipient –1514 Invalid recipient
kOCERefIsClosing –1516 IPM Manager is shutting down the

personal MSAM, or server MSAM’s
mail server is shutting down

kMailInvalidRequest –15045 Message reference number
refers to a letter

2-186 Messaging Service Access Module Reference

C H A P T E R 2

Messaging Service Access Modules

MSAMPutContent

The MSAMPutContent function writes the content block of a letter.

pascal OSErr MSAMPutContent (MSAMParam *paramBlock,

 Boolean asyncFlag);

paramBlock Pointer to a parameter block.

asyncFlag A Boolean value that specifies whether the function is to be
executed asynchronously. Set this to true if you want the function
to be executed asynchronously.

Parameter block

See “The MSAM Parameter Block” on page 2-94 for descriptions of the ioCompletion

and ioResult fields.

Field descriptions

mailMsgRef A reference number that identifies the letter to which you want to
add content segments. You obtain the reference number when you
call the MSAMCreate function.

segmentType A value that indicates the segment type of the data that you want
to write to the letter. Letter segments may be text, picture, sound,
QuickTime movies, or styled text. You can specify only one segment
type in this field each time you call the MSAMPutContent function.
The values that you can specify in this field are described on
page 2-109.

append A Boolean value that indicates whether you want the
MSAMPutContent function to write the data in your buffer to a new
segment or append it to an existing segment. Set this field to false
when you first call the MSAMPutContent function to begin writing
a new segment. On subsequent calls to the function, set this field to
false if you want to start a new segment. Set this field to true if
you want to append the data in your buffer to the segment currently
being written by the MSAMPutContent function.

buffer A MailBuffer structure. You set the value of the bufferSize
field in the MailBuffer structure to the number of bytes in your

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ mailMsgRef MailMsgRef Letter reference number
→ segmentType MailSegmentType Text, picture, sound, movie,

or styled text
→ append Boolean Append data to current

segment?
↔ buffer MailBuffer Your buffer structure
→ textScrap StScrpRec* Style scrap structure
→ startNewScript Boolean Start a new character set?
→ script ScriptCode Character set

C H A P T E R 2

Messaging Service Access Modules

Messaging Service Access Module Reference 2-187

buffer. You place the data that you want to write in your buffer. The
MSAMPutContent function writes the information from the buffer
to the letter and sets the value of the dataSize field to the number
of bytes of data it actually wrote.

textScrap A pointer to a style scrap structure (StScrpRec) that you may
provide when you are writing a styled text segment. It contains the
style information for the text data in your buffer. Set this field to
nil if you are not writing a styled text segment.

startNewScript A Boolean value that indicates whether the data in your buffer uses
a new character set. You set this field when you are writing either a
plain text segment or a styled text segment. Set this field to true
the first time you call the MSAMPutContent function to write the
text segment. After that, set this field to true only if the text data
in your buffer is in a different character set than that which you
previously provided to the function. The function ignores this field
when you set the segmentType field to any value other than
kMailTextSegmentType or kMailStyledTextSegmentType.

script A value that indicates the character set (Roman, Arabic, Kanji, and
so on) of the data in your buffer. If you set startNewScript to
true, set this field to the code for the text segment’s character set.
The MSAMPutContent function ignores this field when you set
startNewScript to false or the segmentType field to any
value other than kMailTextSegmentType or
kMailStyledTextSegmentType.

DESCRIPTION

You call the MSAMPutContent function to write data segments in standard interchange

format to a content block of a letter that you specify. You must have previously

created the letter by calling the MSAMCreate function. The first time you call the

MSAMPutContent function for a given letter, it creates a new block and puts the data

into the block. Each time you call the function to add content to the same letter, it adds

the data to that same block.

A content block consists of data segments, each of a specific type. You add one segment

or a portion of a segment of data each time you call the function. The function writes the

segments to the block in the order that you provide them. A single letter may contain

more than one segment of a given type.

The IPM Manager does not interpret the data that you write to a segment except when

you specify kMailTextSegmentType or kMailStyledTextSegmentType in the

segmentType field.

When you write a text segment, you are responsible for establishing the script code of

the text. You do this by setting the startNewScript field to true and the script field

to the proper script code. A text segment may contain one or more script runs. Therefore,

you need to call the MSAMPutContent function once for each script run in the segment,

setting the startNewScript field to true and the script field to the proper script

code for each script run.

C H A P T E R 2

Messaging Service Access Modules

2-188 Messaging Service Access Module Reference

The value that you provide in the script field must be a valid script in the range 0

to 64. You cannot specify the implicit script codes smSystemScript (the system script)

and smCurrentScript (the font script). If necessary, you can obtain the system

script by calling the GetScriptManagerVariable function with a selector constant

of smSysScript. The font script is considered to be the one returned by the

FontScript function.

When you write a plain text segment (segment type is kMailTextSegmentType), the

function writes a styled text segment, using the following default values in the

ScrpSTElement structure that it generates.

The first font family ID for a non-Roman script is calculated as follows:

■ Scripts with script codes in the range 1–32:

firstID = 16384 + 512 * (scriptCode — 1)

■ Scripts with script codes in the range 33–64:

firstID = —32768 + 512 * (scriptCode — 33)

To write styled text, you provide a pointer to a style scrap structure in the textScrap

field. The scrpNStyles field in a StScrpRec structure indicates the number of

ScrpSTElement elements that follow. You should allocate a StScrpRec structure of

a size appropriate to your MSAM. The style information in the style scrap structure

applies to the text in your buffer. The IPM Manager uses the text in your buffer and the

style information in the style scrap structure to create the segment. You can append

additional text to the segment in subsequent calls to the function by providing the text in

your buffer, placing the style information that applies to that text in the style scrap

structure, and setting the append field to true.

Specifying systemFont or applFont in the scrpFont field of the ScrpSTElement

structure is not recommended. If you want to specify the font family ID of the current

system font or the current application font, use the functions GetSysFont and

GetAppFont to obtain the appropriate font family ID.

Once you begin writing a letter’s content block, you must not call other MSAM func-

tions until you finish writing the block. Calling a function other than the

Field name Default value

scrpStartChar 0

scrpHeight 12

scrpAscent 10

scrpFont monaco if the script code is smRoman.
The default value for non-Roman scripts
is set to the font family ID of the “first”
font within the range for the script.

scrpFace 0

scrpSize 9

scrpColor {0, 0, 0}

C H A P T E R 2

Messaging Service Access Modules

Messaging Service Access Module Reference 2-189

MSAMPutContent function closes the content portion of the letter. If you then call

the MSAMPutContent function again, it returns the kMailInvalidOrder result code.

It is not necessary to call the MSAMPutAttribute and MSAMPutRecipient functions

prior to calling the MSAMPutContent function.

SPECIAL CONSIDERATIONS

Different Macintosh computers may use the same font number for different fonts. That

is, font numbers may vary from computer to computer, but font names are supposed to

be unique. To ensure that the right fonts can be applied to the styled text when it is read

by a letter application, you can map font numbers to font names when you add styled

text to a letter.

Put the mapping of font numbers to font names in a block that has a block creator of

'fish' and a block type of 'font'. Then add the block to the letter. The first word in

the block must contain the number of font information elements in the block, followed

by a packed array of font information elements. Each element consists of a word

containing a font number followed by a Pascal string containing the font name and, if

necessary, a pad byte for word alignment.

Constants are not defined for the 'fish' and 'font' block creator and type.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The MailBuffer structure is described on page 2-96.

See Inside Macintosh: Text for more information about script runs, script code constants,

style runs, the style scrap structure, and the functions GetScriptManagerVariable,

GetSysFont, and GetAppFont.

The segment types that you can specify in the segmentType field and the data format

for each segment type are described on page 2-109.

Trap macro Selector

_oceTBDispatch $051A

noErr 0 No error
dskFulErr –34 All allocation blocks on the

volume are full
kOCEParamErr –50 Invalid parameter
kOCEInvalidRef –1502 Invalid message reference number
kOCERefIsClosing –1516 IPM Manager is shutting down the

personal MSAM, or server MSAM’s
mail server is shutting down

kMailInvalidOrder –15040 Content already closed
kMailInvalidRequest –15045 Message reference number does

not refer to a letter

C H A P T E R 2

Messaging Service Access Modules

2-190 Messaging Service Access Module Reference

MSAMPutEnclosure

The MSAMPutEnclosure function adds an enclosure to a letter that you specify.

pascal OSErr MSAMPutEnclosure (MSAMParam *paramBlock);

paramBlock Pointer to a parameter block.

Parameter block

See “The MSAM Parameter Block” on page 2-94 for descriptions of the ioResult field.

Field descriptions

mailMsgRef A reference number that identifies the letter to which you want to
add an enclosure. You obtain this reference number from the
MSAMCreate function.

contentEnclosure
A Boolean value that indicates whether this enclosure contains the
main content of the letter. A letter with a content enclosure may or
may not contain a content block. A content block contains data in
standard interchange format. A content enclosure typically is a file
in an application’s native format. Given a letter that contains both a
content block and a content enclosure, the block and the enclosure
are alternate representations of the same basic data.

Set this field to true if the enclosure you are adding is a content
enclosure. You can identify only one enclosure as a content
enclosure for each letter.

hfs A Boolean value that indicates the location of the enclosure that you
want to add to the letter. Set this field to true to indicate that your
enclosure is located on disk in the Macintosh file system. Set this
field to false to indicate that your enclosure resides in memory.

append A Boolean value that indicates whether you want the function to
append the data in your buffer to the current enclosure. The
MSAMPutEnclosure function ignores this field when you set the
hfs field to true. When you set the hfs field to false, set this
field to false for your first call to the function. Set it to true on
subsequent calls to continue writing the enclosure.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ mailMsgRef MailMsgRef Letter reference number
→ contentEnclosure Boolean Is enclosure main letter content?
→ hfs Boolean Is enclosure in HFS or memory?
→ append Boolean Append data to enclosure?
↔ buffer MailBuffer Your buffer structure
→ enclosure FSSpec File specification
→ addlInfo MailEnclosureInfo

Additional enclosure info

C H A P T E R 2

Messaging Service Access Modules

Messaging Service Access Module Reference 2-191

buffer A MailBuffer structure. The MSAMPutEnclosure function
ignores this field when you set the hfs field to true. You set the
value of the bufferSize field in the MailBuffer structure to
the number of bytes in your buffer. You store the enclosure file’s
resource and data forks in your buffer. The MSAMPutEnclosure
function writes the information from the buffer to the letter and sets
the value of the dataSize field to the number of bytes of data it
actually wrote.

enclosure A file system specification record that identifies the file or folder
that you want to enclose. You specify this field when the file or
folder that you want to enclose is located on disk on either
the local computer or a mounted file server volume. The
MSAMPutEnclosure function ignores this field when the hfs
field is set to false.

addlInfo A structure that you provide to specify file system information for
the enclosure, such as the filename, icon, HFS catalog information,
and so forth. You provide this information when you add an
enclosure that resides in memory. The MSAMPutEnclosure
function creates a file according to your specifications and puts your
data in it. The function ignores this field when you add an enclosure
that already exists as a file on disk (when the hfs field is set
to true).

DESCRIPTION

You call the MSAMPutEnclosure function to enclose a file, a folder, or both in a letter

that you specify. The enclosure that you specify may exist in memory or in the Macintosh

hierarchical file system. In the memory form, you provide your enclosure data in buffers,

and you specify additional information that defines the filename or file catalog

information, and other characteristics of the enclosure. In the HFS form, you supply

a path specification to an existing file or folder in the Macintosh file system, and the

function encloses that file or folder in the letter.

To enclose a file or folder that resides in the Macintosh Hierarchical File System, set

the enclosure field to point to the file or folder that you want to enclose. If you set the

enclosure field to point to a folder, the function encloses the folder and all of the files

and folders within it in the letter. Set the hfs field to true and specify the letter to

which you want to add the enclosure in the mailMsgRef field. Then call the

MSAMPutEnclosure function to enclose the file or folder.

To enclose a file that resides in memory, fully specify the addlInfo field. Set the hfs

field to false, the append field to false, and specify the letter to which you want to

add the enclosure in the mailMsgRef field. Store the enclosure file’s resource fork and

data fork into your buffer. Always store the resource fork before the data fork. Padding is

not required. If a particular fork is empty, do not write any bytes for that fork. Call the

MSAMPutEnclosure function to write the enclosure data to the letter. The function

writes the file data in AppleSingle format. (AppleSingle format accommodates the

Macintosh file structure.)

C H A P T E R 2

Messaging Service Access Modules

2-192 Messaging Service Access Module Reference

If you have more data to add to the enclosure, set the append field to true and store

additional enclosure data in your buffer. Call the MSAMPutEnclosure function to write

the enclosure data to the letter. You can repeatedly call the function with new data in

your buffer until you have written the entire enclosure file. When the append field is set

to true, the function ignores the addlInfo field.

With the memory form, you can enclose a folder instead of a file by specifying file catalog

information in the CInfoPBRec structure (a component of the MailEnclosureInfo

structure). Set the catalog bit in the ioFlAttrib field to identify the enclosure as a

folder. In this case, the function ignores the icon field in the MailEnclosureInfo

structure and the buffer and append fields (because folders don’t have data or

resource forks).

To enclose a file or a folder within a parent folder using the memory form of the

function, first enclose the parent folder. Set the volume reference number (the

ioVRefNum field in the CInfoPBRec structure) of the nested file or folder to the value

of the parent folder’s volume reference number (ioVRefNum) and set the parent folder

ID (ioFlParID) of the nested file or folder to the parent folder’s catalog ID (ioDirID).

You can add up to 50 enclosures to a letter, including a content enclosure. Each file and

folder that you add counts as one enclosure. For example, if you add as an enclosure

a folder containing three files, the total number of enclosures in the letter is four:

one folder and three files.

For each letter, you can designate one enclosure as a content enclosure. A content

enclosure typically is a file in an application’s native format. A letter with a content

enclosure may or may not contain a content block. A content block contains data in

standard interchange format. Given a letter that contains both a content block and a

content enclosure, the block and the enclosure are alternate representations of the same

basic data. The standard interchange format content block maximizes the probability

that the recipient will be able to read the letter. The application native format content

enclosure may provide a richer representation of the basic data, but it can be read only

if the recipient has the application. (Image blocks are a third form of letter content.

See the discussion on page 2-18 for more information about different representations of

letter content.)

IMPORTANT

Although it is technically possible to enclose a folder as a content
enclosure, doing so may cause problems with later releases of the AOCE
system software that use the services of the Translation Manager. ▲

SPECIAL CONSIDERATIONS

The MSAMPutEnclosure function is always executed synchronously.

ASSEMBLY-LANGUAGE INFORMATION

Trap macro Selector

_oceTBDispatch $051B

C H A P T E R 2

Messaging Service Access Modules

Messaging Service Access Module Reference 2-193

RESULT CODES

SEE ALSO

The MailBuffer structure is described on page 2-96.

The MailEnclosureInfo structure is described on page 2-111.

For more information on AppleSingle stream format, see the APDA document

AppleSingle/AppleDouble Formats for Foreign Files Developer Note.

The CInfoPBRec structure is described in Inside Macintosh: Files.

MSAMPutBlock

The MSAMPutBlock function adds data to a block in a message.

pascal OSErr MSAMPutBlock (MSAMParam *paramBlock,

 Boolean asyncFlag);

paramBlock Pointer to a parameter block.

asyncFlag A Boolean value that specifies if the function is to be
executed asynchronously. Set this to true if you want
the function to be executed asynchronously.

Parameter block

See “The MSAM Parameter Block” on page 2-94 for descriptions of the ioCompletion

and ioResult fields.

noErr 0 No error
dskFulErr –34 All allocation blocks on the volume are full
kOCEParamErr –50 Invalid parameter
kOCEInvalidRef –1502 Invalid message reference number
kOCERefIsClosing –1516 IPM Manager is shutting down the

personal MSAM, or server MSAM’s
mail server is shutting down

kMailBadEnclLengthErr –15044 Invalid data length
kMailInvalidRequest –15045 Nested letter already created for this letter

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ mailMsgRef MailMsgRef Message reference number
→ refCon long Reserved for your use
→ blockType OCECreatorType Block type
→ append Boolean Append data to current block?
↔ buffer MailBuffer Your buffer
→ mode MailBlockMode Location of mark in block
→ offset unsigned long Byte offset from mark location

C H A P T E R 2

Messaging Service Access Modules

2-194 Messaging Service Access Module Reference

Field descriptions

mailMsgRef A reference number that identifies the message to which you want
to write a block. You obtain the reference number when you call the
MSAMCreate function.

refCon A value reserved for your private use when you add a block to a
non-letter message. You may provide a value to be interpreted by
the recipient. This field is ignored when you add a block to a letter.
If you provide a value in the refCon field, it is stored in the
message header. The recipient can retrieve the value by calling the
MSAMGetMsgHeader function and specifying kIPMTOC in the
selector field of its parameter block.

blockType A structure that specifies the creator and type of the block that you
want to write. The creator field indicates the creator of the block,
for example, kMailAppleMailCreator if the block was created
by AOCE software. The type field identifies the type of block.

append A Boolean value that indicates whether you want the
MSAMPutBlock function to append the data in your buffer to the
current block. Set this field to false when you call the function to
start a new block. If you set this field to true, the function uses
the values in the mode and offset fields to determine where to
begin writing to the current block.

buffer A pointer to a MailBuffer structure in which you store the data
that you want to write to the message that you specify. You set the
value of the bufferSize field in the MailBuffer structure to the
number of bytes in your buffer. The MSAMPutBlock function reads
the information that you placed in your buffer and sets the value
of the dataSize field to the number of bytes of data it wrote into
the block.

mode A value that specifies the mode in which the function interprets the
offset field. The MSAMPutBlock function uses the mode and
offset to determine where in the current block to begin writing the
data from your buffer. The function ignores this field when the
value of the append field is false.

offset A value that specifies an offset that the function uses to determine
the starting point of the write operation. Set this field to 0 when you
start a new block. The function ignores this field when the value of
the append field is false.

DESCRIPTION

You call the MSAMPutBlock function to write data into a block whose type you specify

in the blockType field. The function writes the data into a new block unless you set the

append field to true.

C H A P T E R 2

Messaging Service Access Modules

Messaging Service Access Module Reference 2-195

You use the mode and offset fields to specify the point in the block at which the

MSAMPutBlock function starts writing. You can set a variable of type MailBlockMode

(the mode field) to any one of the following values:

enum {

kMailFromStart = 1,

kMailFromLEOB = 2,

kMailFromMark = 3

};

Constant descriptions

kMailFromStart The function interprets the value in the offset field as an offset
from the beginning of the block. When you use this mode, you
cannot set the offset field to a negative value.

kMailFromLEOB The function interprets the value in the offset field as an offset
from the current end of the block. The offset must always be
negative and cannot extend beyond the beginning of the block.

kMailFromMark The function interprets the value in the offset field as an offset
from the current position of the mark. The mark points to the end of
the last byte written. Use a 0 offset value to indicate a starting point
right at the mark. Use a negative offset value to indicate a starting
point prior to the current position of the mark and a positive offset
value to indicate a starting point following the current position of
the mark. You cannot specify a negative offset that extends beyond
the beginning of the block.

If your buffer is too small to hold all of the data that you want to write to a block,

you can call the function repeatedly until you have written the entire block. The

first time you call the function, set the append field to false, the mode field to

kMailFromStart, and the offset field to 0. On subsequent calls to write additional

data to the same block, set the append field to true, the mode field to kMailFromMark,

and the offset field to 0.

You can overwrite data you have already written to a block, but cannot modify a

completed block once you start a new block.

Once you begin writing a block, you must not call other MSAM functions until you

finish writing the block. Calling a function other than MSAMPutBlock closes the

current block.

Typically, you call the MSAMPutBlock function to write image blocks (block type is

kMailImageBodyType) or private blocks (block type is kMailMSAMType) because the

MSAM API provides no other way to write these types of blocks. Although it is possible

to call the MSAMPutBlock function to write blocks that contain letter content, attributes,

enclosures, and so forth, you should use the specific functions provided for writing that

type of information.

C H A P T E R 2

Messaging Service Access Modules

2-196 Messaging Service Access Module Reference

The kMailMSAMType block type indicates a block whose format and content are private

to the MSAM. If you add a private block to a message, AOCE software includes the

private block when it generates a report on the message.

If you are adding an image block to a message, you provide the block’s data in the

format of a TPfPgDir structure, followed by the picture elements (PICTs).

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The OCECreatorType structure is described in the chapter “Interprogram Messaging

Manager” in Inside Macintosh: AOCE Application Interfaces.

The TPfPgDir structure is described on page 2-113.

MSAMBeginNested

The MSAMBeginNested function begins the process of creating a nested message.

pascal OSErr MSAMBeginNested (MSAMParam *paramBlock,

Boolean asyncFlag);

paramBlock Pointer to a parameter block.

asyncFlag A Boolean value that specifies whether the function is to be
executed asynchronously. Set this to true if you want the function
to be executed asynchronously.

Trap macro Selector

_oceTBDispatch $051C

noErr 0 No error
dskFulErr –34 All allocation blocks on the volume are full
kOCEParamErr –50 Invalid parameter
kOCEInvalidRef –1502 Invalid message reference number
kIPMMsgTypeReserved –1511 Message creator and/or type

specified not allowed
kOCERefIsClosing –1516 IPM Manager is shutting down the

personal MSAM, or server MSAM’s
mail server is shutting down

C H A P T E R 2

Messaging Service Access Modules

Messaging Service Access Module Reference 2-197

Parameter block

See “The MSAM Parameter Block” on page 2-94 for descriptions of the ioResult and

ioCompletion fields.

Field descriptions

mailMsgRef A reference number that identifies the message to which you want
to add a nested message. You obtain the reference number when
you call the MSAMCreate function.

refCon A value reserved for your private use when you create a non-letter
nested message. You may provide a value to be interpreted by the
recipient. This field is ignored when you create a nested letter.

msgType The creator and type of the nested message that you are creating.

DESCRIPTION

You call the MSAMBeginNested function to begin the process of creating a message

nested within a message that you have already created but not yet submitted for

delivery. The function increments the nesting level of the existing message. All

subsequent calls that you make to MSAMPut functions refer to this nesting level until

you call either the MSAMEndNested function or the MSAMBeginNested function.

You can call the MSAMBeginNested function repeatedly to create a hierarchy of nested

messages, but you cannot create more than one nested message per nesting level.

If you provide a value in the refCon field when you create a non-letter nested message,

it is stored in its message header. The recipient can retrieve the value by calling the

MSAMOpenNested function to obtain the nested message’s reference number and then

calling the MSAMGetMsgHeader function, specifying that reference number and setting

the selector field of its parameter block to kIPMFixedInfo.

▲ W A R N I N G

You cannot delete the nested portion of a message once you put data
(recipients, blocks, enclosures, and so on) in it. Furthermore, an empty
nested message is not allowed. If you call the MSAMEndNested function
immediately after you call the MSAMBeginNested function, the
function returns the kMailHdrAttrMissing result code, indicating
that the nested message is incomplete. In this case, the function deletes
the entire message, not just the nested message. ▲

SPECIAL CONSIDERATIONS

You do not get a separate reference number for a nested message. You always use the

reference number of the outermost message when adding any kind of data to a nested

message, regardless of how deeply it is nested.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ mailMsgRef MailMsgRef Message reference number
→ refCon long Reserved for your use
→ msgType IPMMsgType Message type of nested message

C H A P T E R 2

Messaging Service Access Modules

2-198 Messaging Service Access Module Reference

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The IPMMsgType structure is described in the chapter “Interprogram Messaging

Manager” in Inside Macintosh: AOCE Application Interfaces.

MSAMEndNested

The MSAMEndNested function ends the nested message currently being written.

pascal OSErr MSAMEndNested (MSAMParam *paramBlock);

paramBlock Pointer to a parameter block.

Parameter block

See “The MSAM Parameter Block” on page 2-94 for descriptions of the ioCompletion

and ioResult fields.

Field descriptions

mailMsgRef A reference number that identifies the message that contains the
message letter that you want to end. You obtain the reference
number when you call the MSAMCreate function.

Trap macro Selector

_oceTBDispatch $0515

noErr 0 No error
dskFulErr –34 All allocation blocks on the volume are full
memFullErr –108 Not enough memory
kOCEInvalidRef –1502 Invalid message reference number
kOCERefIsClosing –1516 IPM Manager is shutting down the personal

MSAM, or server MSAM’s mail server is
shutting down

kMailHdrAttrMissing –15043 Required attribute not written into header
kMailInvalidRequest –15045 Nested letter already created for this letter

← ioResult OSErr Result code
→ mailMsgRef MailMsgRef Message reference number

C H A P T E R 2

Messaging Service Access Modules

Messaging Service Access Module Reference 2-199

DESCRIPTION

You call the MSAMEndNested function to indicate that you have finished constructing

your nested message. After the function successfully completes, you cannot make any

additions to the nested message. Subsequent calls that you make to MSAMPut functions

apply to the next higher nesting level.

▲ W A R N I N G

An empty nested message is not allowed. If you call the
MSAMEndNested function immediately after you call the
MSAMBeginNested function, the MSAMEndNested function
returns the kMailHdrAttrMissing result code, indicating that
the nested message is incomplete. In this case, MSAMEndNested
deletes the entire message, not just the nested message. ▲

SPECIAL CONSIDERATIONS

This function is always executed synchronously.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The MSAMBeginNested function is described on page 2-196.

Trap macro Selector

_oceTBDispatch $0516

noErr 0 No error
dskFulErr –34 All allocation blocks on the volume are full
kOCEParamErr –50 Invalid parameter
memFullErr –108 Not enough memory
kOCEInvalidRef –1502 Invalid message reference number
kOCERefIsClosing –1516 IPM Manager is shutting down the personal

MSAM, or server MSAM’s mail server is
shutting down

kMailHdrAttrMissing –15043 Required attribute not added to message
kMailBadEnclLengthErr –15044 Number of bytes written not equal to

number of bytes needed for memForm
enclosure in progress

C H A P T E R 2

Messaging Service Access Modules

2-200 Messaging Service Access Module Reference

Submitting a Message

When you have finished composing a letter, report, or non-letter message, use the

function MSAMSubmit to submit it for delivery into the AOCE system.

MSAMSubmit

The MSAMSubmit function submits a completed letter, report, or non-letter message for

delivery to the addressee or requests that it be deleted.

pascal OSErr MSAMSubmit (MSAMParam *paramBlock);

paramBlock Pointer to a parameter block.

Parameter block

See “The MSAM Parameter Block” on page 2-94 for descriptions of the ioResult field.

Field descriptions

mailMsgRef A reference number that identifies the message to which the request
applies. You obtain the reference number when you call the
MSAMCreate function.

submitFlag A Boolean value that indicates whether you want the MSAMSubmit
function to accept the message that you specify for delivery or to
delete it. Set this field to true to indicate that the message is
complete and ready for delivery. Set this field to false if you want
the function to delete the message.

DESCRIPTION

You call the MSAMSubmit function to request delivery of a incoming message to an

AOCE addressee or to request that the message be deleted.

A message must be complete at the time you call the MSAMSubmit function to submit

the message for delivery. To be complete, you must have added to the message header

at least a to, a from, and a sendTimeStamp attribute. You should also add all nested

messages, enclosures (letters only), blocks, content (letters only), attributes, and

recipients before you submit the message for delivery. After you call the MSAMSubmit

function, the message reference number is invalid and you can make no further changes

to the message.

You can call the MSAMSubmit function to delete a message at any time after you create

the message.

← ioResult OSErr Result code
→ mailMsgRef MailMsgRef Message reference number
→ submitFlag Boolean Submit or delete message?

C H A P T E R 2

Messaging Service Access Modules

Messaging Service Access Module Reference 2-201

If you submit a message to which you did not add a msgFamily attribute, AOCE

software adds a msgFamily attribute and sets it to kIPMFamilyUnspecified for a

non-letter message and to kMailFamily for a letter. If you submit a letter to which you

did not add an indications attribute, AOCE software adds it and sets the priority

bit field to kIPMNormalPriority and all of the other bit fields to 0.

If a personal MSAM sets the submitFlag field to false for a letter, the function deletes

the letter, but not the letter’s message summary. To delete a letter’s message summary,

call the MSAMDelete function.

SPECIAL CONSIDERATIONS

The MSAMSubmit function is always executed synchronously.

Because it normally has continuous access to the PowerShare mail server, a server

MSAM should translate incoming messages immediately and submit them to the

PowerShare mail server. If the PowerShare mail server quits, the server MSAM should

either stop accepting incoming messages or store the incoming messages until the

PowerShare mail server is available again.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Methods of detecting when a PowerShare mail server quits and starts are discussed on

page 2-42.

The MSAMDelete function is described next.

Letter attributes and the MailIndications data type are described on page 2-100 and

page 2-102, respectively.

Trap macro Selector

_oceTBDispatch $0517

noErr 0 No error
dskFulErr –34 All allocation blocks on the volume are full
kOCEParamErr –50 Invalid parameter
memFullErr –108 Not enough memory
kOCEInvalidRef –1502 Invalid message reference number
kOCERefIsClosing –1516 IPM Manager is shutting down the personal

MSAM, or server MSAM’s mail server is
shutting down

kMailHdrAttrMissing –15043 Required attribute not added to message
kMailBadEnclLengthErr –15044 Number of bytes written not equal

to number of bytes needed for memForm
enclosure in progress

C H A P T E R 2

Messaging Service Access Modules

2-202 Messaging Service Access Module Reference

Deleting a Message

A server MSAM uses the MSAMDelete function to delete a message from its outgoing

queue. A personal MSAM uses the function to delete letters and message summaries

from its incoming queues.

MSAMDelete

The MSAMDelete function deletes a message from a queue that you specify.

pascal OSErr MSAMDelete (MSAMParam *paramBlock,

Boolean asyncFlag);

paramBlock Pointer to a parameter block.

asyncFlag A Boolean value that specifies whether the function is to be
executed asynchronously. Set this to true if you want the function
to be executed asynchronously.

Parameter block

See “The MSAM Parameter Block” on page 2-94 for descriptions of the ioCompletion

and ioResult fields.

Field descriptions

queueRef The queue that contains the message that you want to delete. A
personal MSAM may specify either an outgoing queue reference or
an incoming queue reference. It obtains queue references from the
PMSAMOpenQueues function. A server MSAM specifies the queue
reference that it obtained from the SMSAMStartup function, which
refers to its outgoing queue.

seqNum The sequence number that identifies the message that you want to
delete. You obtain this value from the MSAMEnumerate function.

msgOnly A Boolean value that indicates whether a personal MSAM wants to
delete only a letter or both a letter and its message summary from
an incoming queue. You set this field to true if you want to delete
only the letter itself. If you set this field to false, you delete both
the letter and its associated message summary. A personal MSAM
that is deleting a letter from an outgoing queue, and all server
MSAMs, should set this field to false.

result Reserved. Set this field to the noErr result code.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ queueRef MSAMQueueRef Queue reference number
→ seqNum long Sequence number of message in the

queue
→ msgOnly Boolean Delete letter, not message summary?
→ result OSErr Reserved

C H A P T E R 2

Messaging Service Access Modules

Messaging Service Access Module Reference 2-203

DESCRIPTION

You call the MSAMDelete function to delete a message that you specify. You identify the

message by its sequence number. Once you have deleted a message, it is no longer

available to you on the local computer.

Generally, a personal MSAM should not call this function to delete a letter from an

outgoing queue. Instead, it should leave letters in an outgoing queue so that the user can

peruse them. An exception to this rule occurs when a user wants to delete a letter rather

than send it. In that case, the IPM Manager sends the personal MSAM a

kMailEPPCDeleteOutQMsg event, and the personal MSAM should delete the letter.

A server MSAM calls this function to delete messages from its outgoing queue.

The MSAMDelete function allows a personal MSAM to delete a letter, with or without

the message summary, from an incoming queue. For example, it may want to delete a

letter, but not the message summary, when it decides the letter no longer needs to be

cached locally. If the personal MSAM is trying to mirror the letter’s status on its external

messaging system, it can delete the letter and the message summary when the letter is

removed from the external messaging system. If a personal MSAM sets the msgOnly

field to false and only the message summary is present in the queue, the function

deletes it and returns the noErr result code.

The MSAMDelete function closes a message if it is open.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Message summaries are discussed in the section “MSAM Modes of Operation”

beginning on page 2-12.

The IPM Manager may also delete a letter from a personal MSAM’s incoming queue in

response to a user action. In that case, it sets the msgDeleted flag in the letter’s message

summary and sends the kMailEPPCInQUpdate event. The kMailEPPCInQUpdate

event is described on page 2-228.

The kMailEPPCDeleteOutQMsg event is described on page 2-231.

Trap macro Selector

_oceTBDispatch $0504

noErr 0 No error
dskFulErr –34 All allocation blocks on the volume are full
kOCEParamErr –50 Invalid parameter
memFullErr –108 Not enough memory
kOCEInvalidRef –1502 Invalid message reference number
kOCEDoesntExist –1511 No such letter
kOCERefIsClosing –1516 IPM Manager is shutting down the personal

MSAM, or server MSAM’s mail server is
shutting down

C H A P T E R 2

Messaging Service Access Modules

2-204 Messaging Service Access Module Reference

Generating Log Entries and Reports

A personal MSAM may run into operational problems. Use the function

PMSAMLogError to log such problems.

Use MSAMCreateReport and MSAMPutRecipientReport to create delivery and

non-delivery reports when the originator of a message has requested them.

PMSAMLogError

The PMSAMLogError function reports operational errors in a personal MSAM.

pascal OSErr PMSAMLogError (MSAMParam *paramBlock);

paramBlock Pointer to a parameter block.

Parameter block

See “The MSAM Parameter Block” on page 2-94 for a description of the ioResult field.

Field descriptions

msamSlotID A value that indicates whether the error you are logging applies to
the personal MSAM as a whole or to one of its slots. Set this field
to 0 to indicate that the error applies to the personal MSAM.
Otherwise, set it to the slot ID of the slot to which the error applies.

logEntry A pointer to a MailErrorLogEntryInfo structure that contains
information about the error that you are logging.

DESCRIPTION

You call the PMSAMLogError function to log information about an operational error in a

personal MSAM or in one of its slots. In some cases, you also log suggested actions a

user can take to correct the problem.

To log an error, you must provide values in the version, errorType, and errorCode

fields of the MailErrorLogEntryInfo structure. In addition, you must fill in the

errorResource field if the errorCode field has the value kMailMSAMErrorCode,

and you must fill in the actionResource field if the errorType field has the value

kMailELECorrectable.

Errors of type kMailELEError, kMailELEWarning, and kMailELEInformational

either require no user intervention or cannot be corrected by user intervention. Errors of

type kMailELECorrectable do require user intervention to correct the problem.

When you log a correctable error (kMailELECorrectable), the IPM Manager

considers either the personal MSAM or one of its slots to be suspended. While the

personal MSAM is suspended, the IPM Manager does not send it any high-level events

← ioResult OSErr Result code
→ msamSlotID MSAMSlotID Personal MSAM or slot ID
→ logEntry MailErrorLogEntryInfo* Error log record

C H A P T E R 2

Messaging Service Access Modules

Messaging Service Access Module Reference 2-205

or restart it at scheduled times if it quits. While a slot is suspended, the user cannot

modify or delete it. Moreover, if you specify the suspended slot in a call to the

PMSAMOpenQueues function, it returns the kMailSlotSuspended result code. Other

than these exceptions, a personal MSAM can continue whatever activity it deems

appropriate while it or one of its slots is suspended. The IPM Manager reinstates a

suspended personal MSAM or a slot when the user informs the IPM Manager that the

error is corrected or when the computer on which the personal MSAM is running is

restarted. If the personal MSAM is not running when the error is marked as corrected,

the IPM Manager launches it. If the personal MSAM is running, it receives an

kMailEPPCContinue high-level event.

Because logging a correctable error implies that the problem is not transient in nature,

the PMSAMLogError function does not provide you with a mechanism for canceling

correctable errors or accessing logged entries. Also, because correctable errors by

definition require a user’s attention, you should not log them unless absolutely necessary.

You can supply your own error messages. To do so, you must set the errorCode field

to kMailMSAMErrorCode. You must also set the errorResource field in the

MailErrorLogEntryInfo structure. This field is an index into a list of error

messages. The list is a 'STR#' (string list) resource in the personal MSAM’s resource

file. The first index into the string list is 1. The resource ID for the string list is

kMailMSAMErrorStringListID. This method ensures that all error messages

are localizable.

When the value of errorType is kMailELECorrectable, you must specify an action

that a user should take to correct the error. The procedure is the same as the one just

described for MSAM-defined error messages, except that the resource ID of the string list

is kMailMSAMActionStringListID and the field that you set is actionResource.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The MailErrorLogEntryInfo structure is described on page 2-128.

See the section “Logging Personal MSAM Operational Errors” on page 2-91 for more

information about logging operational errors.

Trap macro Selector

_oceTBDispatch $0521

noErr 0 No error
dskFulErr –34 All allocation blocks on the volume are full
kOCEParamErr –50 Invalid parameter
memFullErr –108 Not enough memory
kOCEInvalidRef –1502 Invalid queue reference
kOCERefIsClosing –1516 IPM Manager is shutting down

the personal MSAM
kMailNoMSAMErr –15056 No such MSAM
kMailNoSuchSlot –15062 No such slot

C H A P T E R 2

Messaging Service Access Modules

2-206 Messaging Service Access Module Reference

MSAMCreateReport

The MSAMCreateReport function creates a report about a message that you specify and

returns a reference number for the report.

pascal OSErr MSAMCreateReport (MSAMParam *paramBlock,

Boolean asyncFlag);

paramBlock Pointer to a parameter block.

asyncFlag A Boolean value that specifies whether the function is to be
executed asynchronously. Set this to true if you want the function
to be executed asynchronously.

Parameter block

See “The MSAM Parameter Block” on page 2-94 for descriptions of the ioCompletion

and ioResult fields.

Field descriptions

queueRef A reference number that identifies the queue from which the MSAM
read the message about which it is reporting. A personal MSAM
specifies an outgoing queue reference that it obtained from the
PMSAMOpenQueues function. A server MSAM specifies the queue
reference that it obtained from the SMSAMStartup function.

mailMsgRef A reference number that identifies the report that you create. The
MSAMCreateReport function returns this to you upon successfully
completing execution.

msgID A value that identifies the message about which you want to create
a report. If the message is a letter, you provide the letter’s letter ID
attribute. If it is a non-letter message, you provide the message ID
from the message header’s fixed information.

sender A pointer to a MailRecipient structure that contains the address
of the sender of the message about which you want to report. If the
message is a letter, you provide the value of the letter’s From
recipient. If it is a non-letter message, you provide the value of the
reply queue address in the message header.

DESCRIPTION

You call the MSAMCreateReport function to create a report about a message that you

are responsible for delivering. Use the MSAMPutRecipientReport function to fill in

the report information.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
← queueRef MSAMQueueRef Queue reference number
← mailMsgRef MailMsgRef Report reference number
→ msgID MailLetterID Message the report applies to
→ sender MailRecipient* Sender of the message

C H A P T E R 2

Messaging Service Access Modules

Messaging Service Access Module Reference 2-207

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The MailRecipient structure is defined to be of type OCERecipient. The

OCERecipient structure is described on page 2-106.

You get the value of the reply queue address in the message header by calling

the MSAMGetMsgHeader function with the selector field set to kIPMSender. The

MSAMGetMsgHeader function is described on page 2-148.

The section “Generating a Report” beginning on page 2-61 explains how to determine

when you are required to create a report.

MSAMPutRecipientReport

The MSAMPutRecipientReport function adds information about one recipient

to a report.

pascal OSErr MSAMPutRecipientReport (MSAMParam *paramBlock,

Boolean asyncFlag);

paramBlock Pointer to a parameter block.

asyncFlag A Boolean value that specifies whether the function is to be
executed asynchronously. Set this to true if you want the function
to be executed asynchronously.

Parameter block

Trap macro Selector

_oceTBDispatch $051F

noErr 0 No error
dskFulErr –34 All allocation blocks on the volume are full
kOCEParamErr –50 Invalid parameter
memFullErr –108 Not enough memory
kOCEInvalidRef –1502 Invalid queue reference
kOCEInvalidRecipient –1514 Bad recipient
kOCERefIsClosing –1516 IPM Manager is shutting down the

personal MSAM, or server MSAM’s
mail server is shutting down

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ mailMsgRef MailMsgRef Report reference number
→ recipientIndex short Message recipient
→ result OSErr Result of delivery attempt

C H A P T E R 2

Messaging Service Access Modules

2-208 Messaging Service Access Module Reference

See “The MSAM Parameter Block” on page 2-94 for descriptions of the ioCompletion

and ioResult fields.

Field descriptions

mailMsgRef A reference number that identifies the report to which you want to
add recipient information. You obtain this reference number from
the MSAMCreateReport function.

recipientIndex A value that identifies the recipient about which you are
reporting. You obtain this value from the index field of the
MailResolvedRecipient structure returned by the
MSAMGetRecipients function.

result A value that indicates the result of your delivery attempts. The
constants that you may use here are described below.

DESCRIPTION

You call the MSAMPutRecipientReport function to report on the result of your

attempt to deliver a message to a recipient that you specify. You can specify only

one recipient to the MSAMPutRecipientReport function. To report on more than one

recipient, make multiple calls to the function. Use the report reference number that you

obtained from the MSAMCreateReport function to associate your recipient report

information with a particular report. When you have finished adding recipient infor-

mation to the report, you must call the MSAMSubmit function to request delivery of

the report.

The result field contains either a delivery or a non-delivery indication for a given

recipient. Set the result field to noErr to add a delivery indication. The values you can

use for a non-delivery indication are described in the following list:

Constant descriptions

kIPMNoSuchRecipient
The recipient does not exist.

kIPMRecipientMalFormed
The address is malformed. An MSAM detects an invalid
extension value.

kIPMRecipientAmbiguous
The MSAM is unable to resolve, look up, or find the specified
recipient.

kIPMRecipientAccessDenied
The recipient probably exists and may be valid, but the MSAM
doesn’t have access to deliver the message.

kIPMGroupExpansionProblem
The MSAM was unable to expand a group address completely. It
may have delivered the message to some of the recipients in the
group address.

kIPMMsgUnreadable
The MSAM cannot read the message; it’s corrupted or missing.

C H A P T E R 2

Messaging Service Access Modules

Messaging Service Access Module Reference 2-209

kIPMMsgExpired The MSAM’s time limit ran out before it was able to confirm
delivery of the message to the specified recipient. Note that this
does not mean that the message was not successfully delivered to
the recipient.

kIPMMsgNoTranslatibleContent
The message is missing information that is considered critical to its
delivery—for example, there is no subject, no content, or no image
content (for a fax MSAM).

kIPMRecipientReqStdCont
The MSAM could not deliver the message to a particular recipient
because the message did not contain a required standard inter-
change format block.

kIPMRecipientReqSnapShot
The MSAM could not deliver the message to a particular recipient
because the message did not contain a required snapshot (image)
format block.

kIPMNoTransferDiskFull
The destination system refused delivery because of a disk/system
full condition.

kIPMNoTransferMsgRejectedbyDest
The destination system refused delivery for an unspecified reason.

kIPMNoTransferMsgTooLarge
The destination system refused delivery because the message
exceeded the maximum size limit for messages in that system.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The MSAMGetRecipients function is described beginning on page 2-144.

The MailResolvedRecipient structure is described on page 2-108.

The MSAMSubmit function is described on page 2-200.

Trap macro Selector

_oceTBDispatch $0520

noErr 0 No error
dskFulErr –34 All allocation blocks on the volume are full
kOCEParamErr –50 Invalid parameter
memFullErr –108 Not enough memory
kOCEInvalidRef –1502 Invalid message reference number
kOCERefIsClosing –1516 IPM Manager is shutting down the

personal MSAM, or server MSAM’s
mail server is shutting down

kMailInvalidRequest –15045 Nested letter already created for this letter

C H A P T E R 2

Messaging Service Access Modules

2-210 Messaging Service Access Module Reference

For more information about adding delivery or non-delivery indications to a report, see

the section “Generating a Report” on page 2-61.

The non-delivery indication constants for use in the result field are also documented

in the chapter “Interprogram Messaging Manager” in Inside Macintosh: AOCE
Application Interfaces.

Shutting Down a Server MSAM

A server MSAM calls the SMSAMShutdown function to notify its PowerShare mail server

that it is shutting down.

SMSAMShutdown

The SMSAMShutdown function informs a PowerShare mail server that a server MSAM is

shutting down.

pascal OSErr SMSAMShutdown (MSAMParam *paramBlock,

Boolean asyncFlag);

paramBlock Pointer to a parameter block.

asyncFlag A Boolean value that specifies whether the function is to be
executed asynchronously. Set this to true if you want the function
to be executed asynchronously.

Parameter block

See “The MSAM Parameter Block” on page 2-94 for descriptions of the ioCompletion

and ioResult fields.

Field descriptions

queueRef A value that identifies the queue belonging to the server MSAM
that is shutting down. Set this field to the queue reference value you
obtained from the SMSAMStartup function.

DESCRIPTION

You call the SMSAMShutdown function as part of the process of shutting down a server

MSAM. The queue reference is not valid after the function successfully completes.

ASSEMBLY-LANGUAGE INFORMATION

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ queueRef MSAMQueueRef Outgoing queue reference

Trap macro Selector

_oceTBDispatch $0502

C H A P T E R 2

Messaging Service Access Modules

Messaging Service Access Module Reference 2-211

RESULT CODES

Setting Message Status

A personal MSAM calls the PMSAMSetStatus function to set the status of a message in

a queue.

PMSAMSetStatus

The PMSAMSetStatus function sets the status of a message in a queue.

pascal OSErr PMSAMSetStatus (MSAMParam *paramBlock,

 Boolean asyncFlag);

paramBlock Pointer to a parameter block.

asyncFlag A Boolean value that specifies whether the function is to be
executed asynchronously. Set this to true if you want the function
to be executed asynchronously.

Parameter block

See “The MSAM Parameter Block” on page 2-94 for descriptions of the ioCompletion

and ioResult fields.

Field descriptions

queueRef The value that identifies the queue that holds the message whose
status you want to set.

seqNum The sequence number of the message whose status you want
to set. For an outgoing message, you obtain the sequence
number of a message from the MSAMEnumerateOutQReply
structure returned by the MSAMEnumerate function. For an
incoming letter, you obtain the sequence number either from
the MSAMEnumerateInQReply structure returned by the
MSAMEnumerate function or from the SMCA structure associated
with a kMailEPPCMsgOpened event.

noErr 0 No error
dskFulErr –34 All allocation blocks on the volume are full
kOCEInvalidRef –1502 Invalid queue reference
kOCERefIsClosing –1516 Server MSAM’s mail server is shutting down

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ queueRef MSAMQueueRef ID number of queue
→ seqNum long Message sequence number
→ msgHint long Letter reference value
→ status PMSAMStatus Status to set

C H A P T E R 2

Messaging Service Access Modules

2-212 Messaging Service Access Module Reference

msgHint A reference value associated with a letter. You set this field to the
reference value when you are reporting a problem with retrieving a
letter that the user has opened. You obtain this value from the
SMCA structure associated with a kMailEPPCMsgOpened event.
Set this field to 0 when you are reporting status for a letter in an
outgoing queue.

status The status that you want to set.

DESCRIPTION

A personal MSAM calls the PMSAMSetStatus function to set the status of a message.

You call the function to set the status of a letter in an incoming queue after you have

received a kMailEPPCMsgOpened high-level event for that letter. The Finder uses the

status information that you provide to display the status of the letter to the user. To

provide an acceptable response time for the user, it is very important that you call the

PMSAMSetStatus function in a timely manner. Note that you set the status only for

incoming letters, not non-letter messages.

You set the status of all messages in an outgoing queue. You call the PMSAMSetStatus

function as a result of your personal MSAM’s handling of the message. The Finder uses

the status information that you provide to display the status of outgoing letters to the

user. It is important to call the PMSAMSetStatus function in a timely manner for

outgoing messages, although it is not as critical as it is with incoming letters. With

incoming letters, you must respond to a user action; with outgoing messages, you do not.

The following table describes the status settings:

Constant Value Description

kPMSAMStatusPending 1 Applies to all types of messages in the out-
going queue. Set this status when you have
not yet tried to deliver a message, or when you
have tried and failed but will try again.

kPMSAMStatusError 2 Applies to letters in an incoming queue. Set this
status when you have failed to retrieve a letter
from the external messaging system and to
write it to the incoming queue.

kPMSAMStatusSending 3 Applies to all types of messages in the outgoing
queue. Set this status to indicate that you are in
the process of sending the message.

kPMSAMStatusCaching 4 Applies to letters in the incoming queue.
Set this status to indicate that you are in
the process of writing the letter into the
incoming queue.

kPMSAMStatusSent 5 You do not set this status. When all of the
recipients of a message in the outgoing queue
have been marked as delivered, the IPM
Manager sets this status for the message.

C H A P T E R 2

Messaging Service Access Modules

Messaging Service Access Module Reference 2-213

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

Personal MSAM Template Functions

The functions described in this section are called not by a personal MSAM itself, but by

its AOCE setup template.

MailCreateMailSlot

The MailCreateMailSlot function creates a new mail slot.

pascal OSErr MailCreateMailSlot (MSAMParam *paramBlock);

paramBlock Pointer to a parameter block.

Parameter block

See “The MSAM Parameter Block” on page 2-94 for descriptions of the ioCompletion

and ioResult fields.

Field descriptions

mailboxRef Reserved. Set this field to 0.

timeout The amount of time, expressed in ticks, that you are willing to wait
for a response from the personal MSAM. It is recommended that
you set the timeout period to be a number of seconds. If the timeout
period elapses without a response from the personal MSAM, the
function completes with a noRelErr result code.

Trap macro Selector

_oceTBDispatch $0527

noErr 0 No error
dskFulErr –34 All allocation blocks on the volume are full
kOCEParamErr –50 Invalid parameter
memFullErr –108 Not enough memory
kOCEInvalidRef –1502 Invalid queue reference number
kOCERefIsClosing –1516 IPM Manager is shutting down

the personal MSAM
kMailInvalidSeqNum –15041 Invalid message sequence number
kMailNotASlotInQ –15047 If you set msgHint, it does not refer

to a slot’s incoming queue
kMailBadState –15068 Invalid status setting

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ mailboxRef MailboxRef Reserved
→ timeout long Timeout interval
→ pmsamCid CreationID Creation ID of personal MSAM record
↔ smca SMCA Shared communications area

C H A P T E R 2

Messaging Service Access Modules

2-214 Messaging Service Access Module Reference

pmsamCid The creation ID of the MSAM record, which represents the personal
MSAM to which you want to add a mail slot.

smca An SMCA structure. You set the slotCID field to the creation ID of
the Mail Service or Combined record, which contains information
about the newly created mail slot. The IPM Manager sets the
result field to 1 before sending the kMailEPPCCreateSlot
high-level event to the personal MSAM. When the
MailCreateMailSlot function completes, the result field
contains the MSAM’s result, if the personal MSAM has processed
the kMailEPPCCreateSlot event. Otherwise, it still contains 1.

DESCRIPTION

Your setup template calls the MailCreateMailSlot function to add a new mail slot to

a personal MSAM. This causes the IPM Manager to send a kMailEPPCCreateSlot

high-level event to the personal MSAM.

Do not poll the smca.result field to determine when the function has completed. If

you poll, poll the ioResult field. Then check the value of the smca.result field.

If the MSAM responds to the event, the MailCreateMailSlot function completes

with the noErr result code, regardless of the value of the smca.result field. Therefore,

you should always check the value of the smca.result field to get the result of the

MSAM’s processing of the event. You cannot assume that if the MailCreateMailSlot

function returns noErr, the MSAM also reported no error.

If the personal MSAM is not running at the time the associated template calls this

function, the IPM Manager launches the MSAM before sending it the

kMailEPPCCreateSlot event.

SPECIAL CONSIDERATIONS

The MailCreateMailSlot function is always executed asynchronously. After calling

MailCreateMailSlot, you should call the kDETcmdBusy callback routine to provide

time for the personal MSAM to receive and respond to the kMailEPPCCreateSlot

high-level event.

Your template does not need to delete a mail slot. The AOCE software deletes a mail slot

in response to a user action.

ASSEMBLY-LANGUAGE INFORMATION

Trap macro Selector

_oceTBDispatch $052B

C H A P T E R 2

Messaging Service Access Modules

Messaging Service Access Module Reference 2-215

RESULT CODES

SEE ALSO

The CreationID structure is described in the chapter “AOCE Utilities” in Inside
Macintosh: AOCE Application Interfaces.

See the chapter “Service Access Module Setup” in this book for information about the

personal MSAM’s record.

The kMailEPPCCreateSlot high-level event is described on page 2-221.

The kDETcmdBusy callback routine is described in the chapter “AOCE Templates” in

Inside Macintosh: AOCE Application Interfaces.

MailModifyMailSlot

The MailModifyMailSlot function modifies the information in a mail slot.

pascal OSErr MailModifyMailSlot (MSAMParam *paramBlock);

paramBlock Pointer to a parameter block.

Parameter block

See “The MSAM Parameter Block” on page 2-94 for descriptions of the ioCompletion

and ioResult fields.

noErr 0 No error
dskFulErr –34 All allocation blocks on the volume are full
kOCEParamErr –50 Invalid parameter
memFullErr –108 Not enough memory
noRelErr –1101 Timer expired before MSAM responded
kOCERefIsClosing –1516 IPM Manager is shutting down

the personal MSAM
kMailIgnoredErr –15053 MSAM ignored high-level event
kMailLengthErr –15054 Error occurred in sending the event
kMailTooManyErr –15055 IPM Manager too busy to send event
kMailNoMSAMErr –15056 No such MSAM
kMailMSAMSuspended –15059 MSAM is suspended
kMailBadSlotInfo –15060 Invalid slot information

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ mailboxRef MailboxRef Reserved
→ timeout long Timeout interval
→ pmsamCid CreationID Creation ID of personal MSAM record
↔ smca SMCA Shared communications area

C H A P T E R 2

Messaging Service Access Modules

2-216 Messaging Service Access Module Reference

Field descriptions

mailboxRef Reserved. Set this field to 0.

timeout The amount of time, expressed in ticks, that you are willing to wait
for a response from the personal MSAM. It is recommended
that you set the timeout period to be a number of seconds. If the
timeout period elapses without a response from the personal
MSAM, the function completes with a noRelErr result code.

pmsamCid The creation ID of the MSAM record, which represents the personal
MSAM whose mail slot you want to modify.

smca An SMCA structure. You set the slotCID field to the creation ID of
the new Mail Service or Combined record, which contains
information about the modified mail slot. The IPM Manager sets
the result field to 1 before sending the kMailEPPCModifySlot
high-level event to the personal MSAM. When the function
completes, if the personal MSAM has processed the
kMailEPPCModifySlot event, the result field contains the
MSAM’s result. Otherwise, it still contains 1.

DESCRIPTION

Your setup template calls the MailModifyMailSlot function to change the informa-

tion in a mail slot. This causes the IPM Manager to send a kMailEPPCModifySlot

high-level event to the personal MSAM. You invoke the function after you have created a

new Mail Service record in the Setup catalog that contains the changed information.

Do not poll the smca.result field to determine when the function has completed. If

you poll, poll the ioResult field. Then check the value of the smca.result field.

If the MSAM responds to the event, the MailModifyMailSlot function completes

with the noErr result code, regardless of the value of the smca.result field. Therefore,

you should always check the value of the smca.result field to get the result of the

MSAM’s processing of the event. You cannot assume that if the MailModifyMailSlot

function returns noErr, the MSAM also reported no error.

If the MSAM specifies noErr in the result field of the SMCA structure, you should

delete the old Mail Service record and update the slot attribute (attribute type index is

kMailServiceAttrTypeNum) in the MSAM record in the Setup catalog to point to the

new Mail Service record. If the MSAM reports an error, you should leave the original Mail

Service record intact, delete the new Mail Service record, and report the error to the user.

SPECIAL CONSIDERATIONS

The MailModifyMailSlot function is always executed asynchronously. After calling

MailModifyMailSlot, you should call the kDETcmdBusy callback routine to provide

time for the personal MSAM to receive and respond to the kMailEPPCModifySlot

high-level event.

C H A P T E R 2

Messaging Service Access Modules

Messaging Service Access Module Reference 2-217

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The CreationID structure is described in the chapter “AOCE Utilities” in Inside
Macintosh: AOCE Application Interfaces.

See the chapter “Service Access Module Setup” in this book for information about the

personal MSAM’s record, Mail Service records, and the Setup catalog.

The kDETcmdBusy callback routine is described in the chapter “AOCE Templates” in

Inside Macintosh: AOCE Application Interfaces.

MailWakeupPMSAM

The MailWakeupPMSAM function causes the IPM Manager to send a kMailEPPCWakeup

event to the personal MSAM that you specify.

pascal OSErr MailWakeupPMSAM (MSAMParam *paramBlock);

paramBlock Pointer to a parameter block.

Parameter block

See “The MSAM Parameter Block” on page 2-94 for descriptions of the ioCompletion

and ioResult fields.

Trap macro Selector

_oceTBDispatch $052C

noErr 0 No error
dskFulErr –34 All allocation blocks on the volume are full
kOCEParamErr –50 Invalid parameter
noRelErr –1101 Timer expired before MSAM responded
kOCERefIsClosing –1516 IPM Manager is shutting down

the personal MSAM
kMailIgnoredErr –15053 MSAM ignored high-level event
kMailLengthErr –15054 Error in sending the event
kMailTooManyErr –15055 IPM Manager too busy to send event
kMailNoMSAMErr –15056 No such MSAM
kMailNoSuchSlot –15062 No such slot

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ pmsamCid CreationID Record ID of MSAM record
→ mailSlotID MailSlotID Reserved

C H A P T E R 2

Messaging Service Access Modules

2-218 Messaging Service Access Module Reference

Field descriptions

pmsamCid The creation ID of the MSAM record in the Setup catalog that
represents the personal MSAM you want to launch.

mailSlotID Reserved. Set this field to 0.

DESCRIPTION

You call the MailWakeupPMSAM function to request that the IPM Manager send a

kMailEPPCWakeup event to the personal MSAM that you specify.

Typically, you call this function in response to unpredictable events that require action by

the MSAM. For example, a fax modem driver might call the MailWakeupPMSAM

function when it receives an incoming call so that the MSAM can put the letter in the

incoming queue.

If the MSAM is not running at the time you call the MailWakeupPMSAM function, the

IPM Manager launches it.

The kMailEPPCWakeup event is not infallible. Therefore, you cannot count on it as a

mechanism to force something to happen. However, the IPM Manager makes every

attempt to inform you of possible failures so that you can retry the operation if you wish.

SPECIAL CONSIDERATIONS

The MailWakeupPMSAM function is always executed asynchronously. After calling

MailWakeupPMSAM, you must call the WaitNextEvent function, which provides time

for the personal MSAM to be launched.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The CreationID structure is described in the chapter “AOCE Utilities” in Inside
Macintosh: AOCE Application Interfaces.

See the chapter “Service Access Module Setup” in this book for more information about

the personal MSAM’s record.

Trap macro Selector

_oceTBDispatch $0507

noErr 0 No error
dskFulErr –34 All allocation blocks on the volume are full
kOCERefIsClosing –1516 IPM Manager is shutting down

the personal MSAM
kMailNoMSAMErr –15056 No such MSAM

C H A P T E R 2

Messaging Service Access Modules

Messaging Service Access Module Reference 2-219

Application-Defined Function

This section describes the completion routine that you may provide when you call a

function in the MSAM API asynchronously.

MyCompletionRoutine

When you call an MSAM API function asynchronously, you can provide a pointer to a

completion routine.

void MyCompletionRoutine (MSAMParam *paramBlock);

paramBlock A pointer to the parameter block that you provided when you called the
MSAM function that is calling your completion routine.

DESCRIPTION

You can provide a completion routine to any MSAM function that you can call

asynchronously. To do so, you pass a pointer to the completion routine in the

ioCompletion field of the MSAMParam parameter block. If you provide a completion

routine, it executes when the asynchronous request completes execution.

The MSAM function saves the value of your A5 register at the time you call it and

then restores the A5 value before it calls your completion routine. Your completion

routine is always called at deferred-task time. Running at deferred-task time is a

safe practice when you use virtual memory.

You can write your completion routine in C, Pascal, or assembly language.

To declare a completion routine in Pascal, use the following statement:

PROCEDURE MyCompletionRoutine(VAR paramBlock: MSAMParam);

Note that if you do not want to specify a completion routine for an asynchronous

function call, you can specify nil in the ioCompletion field and poll the ioResult

field of the parameter block header. When you call an MSAM function asynchronously, it

sets the ioResult field in the parameter block to 1 to indicate that the routine has not

yet completed execution. When the routine completes execution, the MSAM function

sets the ioResult field to the actual function result. If you poll, you should do so within

a loop that calls either the WaitNextEvent or EventAvail routine so that other

processes have access to processor time.

ASSEMBLY-LANGUAGE INFORMATION

When a completion routine written in assembly language is called, register A0 contains a

pointer to the MSAMParam parameter block, and register D0 contains the MSAM function

result code (also available in the ioResult field of the parameter block). The condition

codes are set as a result of TST.W D0.

C H A P T E R 2

Messaging Service Access Modules

2-220 Messaging Service Access Module Reference

You cannot make any other assumptions about any part of your environment, including,

but not limited to

■ the stack pointer and register A6

■ registers A2, A3, and A4

■ low-memory global variables

You must preserve all registers except D0, D1, D2, A0, and A1.

High-Level Events

This section contains descriptions of the AOCE high-level events that an MSAM may

receive. Server MSAMs may receive the kMailEPPCAdmin and kMailEPPCMsgPending

high-level events. Personal MSAMs receive the kMailEPPCMsgPending event as well as

a number of others. You can find a complete list of the events sent to personal and server

MSAMs on page 2-32.

Each event description in this section provides a description of the where and

modifiers fields of the event record. The what, message, and when field descriptions

are the same for every event. They are provided here; this information is not repeated in

the individual event descriptions.

Certain events require more information than can be passed in the event record. For

these events, the MSAM obtains the additional information it needs by calling the

AcceptHighLevelEvent function. If an event requires no additional information, an

MSAM does not need to call the AcceptHighLevelEvent function.

The AcceptHighLevelEvent function returns a MailEPPCMsg structure that contains

one of the following:

■ a pointer to an SMCA structure

■ a letter sequence number

■ a MailLocationInfo structure

Where it applies, the event descriptions in this section include a description of the

sequence number or the relevant fields of the SMCA or MailLocationInfo structure.

The SMCA structure is described on page 2-114. The MailLocationInfo structure is

described on page 2-116.

Field name Data type Description

what short Always contains the constant kHighLevelEvent.

message long Always contains the event class
kMailAppleMailCreator.

when long Unused.

C H A P T E R 2

Messaging Service Access Modules

Messaging Service Access Module Reference 2-221

kMailEPPCCreateSlot

The kMailEPPCCreateSlot event informs a personal MSAM that the MSAM’s

template has added a new Mail Service or Combined record to the Setup catalog.

EVENT RECORD

MailEPPCMsg STRUCTURE

DESCRIPTION

The IPM Manager sends the kMailEPPCCreateSlot event when a setup template

calls the MailCreateMailSlot function. Receipt of a kMailEPPCCreateSlot event

informs a personal MSAM that two actions have already taken place:

1. A new Mail Service or Combined record representing the new slot has been added to
the Setup catalog.

2. The configuration information for the new slot has been added to the new record.

Upon receipt of a kMailEPPCCreateSlot event, the personal MSAM should call

the AcceptHighLevelEvent function to get additional information associated

with this event and get the creation ID of the new slot’s record from the

u.theSMCA->u.slotCID field of the MailEPPCMsg structure. Then the MSAM should

read the new slot’s record and validate the information it contains. If the information

passes the validation checks, the personal MSAM should generate a unique 2-byte slot

ID that distinguishes the new slot and add it to the slot’s record in the Setup catalog. The

MSAM should store the slot ID in an attribute whose type is referenced by the attribute

type index kSlotIDAttrTypeNum. Valid values for a slot ID range from 1 to $FFFE.

Field name Data type Description

where long The constant kMailEPPCCreateSlot.

modifiers short Unused; contains 0.

Field name Data type Description

u.theSMCA->result OSErr The result of performing the
activity requested by the
kMailEPPCCreateSlot event.
When the personal MSAM receives
the kMailEPPCCreateSlot event,
this field is already set to 1. Set this
field to the noErr result code if you
successfully complete the activity.
Otherwise, set this field to a result
code that you define.

u.theSMCA->u.slotCID CreationID Creation ID of the new Mail Service
or Combined record that represents
the newly created slot.

C H A P T E R 2

Messaging Service Access Modules

2-222 Messaging Service Access Module Reference

After adding the new slot ID to the slot’s record, the MSAM should return the noErr

result code in the MailEPPCMsg.u.theSMCA->result field.

If the information in the new Mail Service or Combined record is invalid, if the MSAM

fails to add the new slot ID to the record, or if some other error occurs, the MSAM

should return an error code in the result field. This error code is available to the

MSAM’s setup template when the template’s call to the MailCreateMailSlot

function completes. The MSAM and its setup template define the values that the MSAM

may return in the result field.

While it is running, the MSAM must be prepared to receive and process a

kMailEPPCCreateSlot event at any time.

RESULT CODES

SEE ALSO

The MailEPPCMsg structure is described on page 2-113.

The SMCA structure is described on page 2-114.

The MailCreateMailSlot function is described on page 2-213.

For information on setup templates, see the chapter “Service Access Module Setup” in

this book.

kMailEPPCModifySlot

The kMailEPPCModifySlot event informs a personal MSAM that the user has

modified the information associated with a particular slot.

EVENT RECORD

noErr 0 No error

Field name Data type Description

where long The constant kMailEPPCModifySlot.

modifiers short The slot ID of the slot that has been modified.

C H A P T E R 2

Messaging Service Access Modules

Messaging Service Access Module Reference 2-223

MailEPPCMsg STRUCTURE

DESCRIPTION

When the information for one of the personal MSAM’s slots changes, the MSAM gets a

kMailEPPCModifySlot event. The IPM Manager sends the kMailEPPCModifySlot

event when a setup template calls the MailModifyMailSlot function. When the

IPM Manager sends the event, the MSAM’s setup template has already created a

new record containing the updated information for the slot and added the record to

the Setup catalog. Upon receipt of this event, the personal MSAM should call the

AcceptHighLevelEvent function to get additional information associated with this

event. The MSAM should update any internal data it maintains for the slot and store the

creation ID of the slot’s new record so that it can read the record if it needs to. For

instance, if the MSAM got a second kMailEPPCModifySlot event for the same

slot, it would want to compare the new and old records to determine which informa-

tion changed.

The kMailEPPCModifySlot event does not invalidate the slot’s existing queue

references.

After updating its internal data about the modified slot, the MSAM should return the

noErr result code in the u.theSMCA->result field of the MailEPPCMsg structure. If it

fails to do this for some reason, the MSAM should return an error code in this field. This

error code is available to the MSAM’s setup template when the template’s call to the

MailModifyMailSlot function completes. The MSAM and its setup template define

the values that the MSAM may return in the MailEPPCMsg.u.theSMCA->result field.

While it is running, the MSAM must be prepared to receive and process a

kMailEPPCModifySlot event at any time.

Field name Data type Description

u.theSMCA->result OSErr The result of performing the
activity requested by the
kMailEPPCModifySlot event.
When the personal MSAM receives
the kMailEPPCModifySlot event,
this field is already set to 1. Set this
field to the noErr result code if you
successfully complete the activity.
Otherwise, set this field to a result
code that you define.

u.theSMCA->u.slotCID CreationID Creation ID of the new record
that represents the slot that has
been modified.

C H A P T E R 2

Messaging Service Access Modules

2-224 Messaging Service Access Module Reference

RESULT CODES

SEE ALSO

The MailEPPCMsg structure is described on page 2-113.

The SMCA structure is described on page 2-114.

The MailModifyMailSlot function is described on page 2-215.

For information on setup templates, see the chapter “Service Access Module Setup” in

this book.

kMailEPPCDeleteSlot

The kMailEPPCDeleteSlot event advises the personal MSAM that a slot will

be deleted.

EVENT RECORD

MailEPPCMsg STRUCTURE

DESCRIPTION

The IPM Manager sends the kMailEPPCDeleteSlot event when a user deletes a slot.

Before a slot is actually deleted, the personal MSAM gets a kMailEPPCDeleteSlot

event. The personal MSAM should call the AcceptHighLevelEvent function to get

access to the MailEPPCMsg structure. It should do what is necessary to handle this

event internally, such as discarding data that relates to that slot.

noErr 0 No error

Field name Data type Description

where long The constant kMailEPPCDeleteSlot.

modifiers short The slot ID of the slot to be deleted.

Field name Data type Description

u.theSMCA->result OSErr The result of performing the activity
requested by the kMailEPPCDeleteSlot
event. When the personal MSAM receives
the kMailEPPCDeleteSlot event, this
field is already set to 1. Set this field to the
noErr result code if you successfully
complete the activity. Otherwise, set this
field to a result code that you define.

C H A P T E R 2

Messaging Service Access Modules

Messaging Service Access Module Reference 2-225

After taking whatever action is appropriate regarding the slot to be deleted, the MSAM

should return the noErr result code in the u.theSMCA->result field of the

MailEPPCMsg. If it fails to do this for some reason, the MSAM should return an

MSAM-defined error result in this field.

If the MSAM returns a noErr result code, AOCE software deletes the slot’s record in

the Setup catalog. If the MSAM returns an error, the slot’s record in the Setup catalog

is not deleted.

While it is running, the MSAM must be prepared to receive and process a

kMailEPPCDeleteSlot event at any time.

RESULT CODES

SEE ALSO

The MailEPPCMsg structure is described on page 2-113.

The SMCA structure is described on page 2-114.

kMailEPPCMailboxOpened

The kMailEPPCMailboxOpened event tells a personal MSAM that a user has opened

his or her AOCE desktop mailbox.

EVENT RECORD

DESCRIPTION

This event notifies the personal MSAM that the user has opened his or her AOCE

mailbox. A personal MSAM receiving this event should connect to its external messaging

system, check for letters, and update the incoming queue for each of its mail slots.

This event is advisory only and requires no response from the personal MSAM.

noErr 0 No error

Field name Data type Description

where long The constant kMailEPPCMailboxOpened.

modifiers short Unused; contains 0.

C H A P T E R 2

Messaging Service Access Modules

2-226 Messaging Service Access Module Reference

kMailEPPCMailboxClosed

The kMailEPPCMailboxClosed event tells a personal MSAM that a user has closed

his or her mailbox.

EVENT RECORD

DESCRIPTION

This event notifies the MSAM that the user has closed his or her AOCE mailbox.

A personal MSAM receiving this event should disconnect from its external

messaging system.

This event is advisory only and requires no response from the personal MSAM.

kMailEPPCShutDown

The kMailEPPCShutDown event instructs a personal MSAM to quit immediately.

EVENT RECORD

DESCRIPTION

This event corresponds directly to the standard Apple event kAEQuitApplication. An

MSAM should treat it in the same way as it does the kAEQuitApplication event. You

get this event after the user chooses the Shut Down or Restart command from the

Finder’s Special menu.

While it is running, an MSAM must be prepared to receive and process a

kMailEPPCShutDown event at any time.

Field name Data type Description

where long The constant kMailEPPCMailboxClosed.

modifiers short Unused; contains 0.

Field name Data type Description

where long The constant kMailEPPCShutDown.

modifiers short Unused; contains 0.

C H A P T E R 2

Messaging Service Access Modules

Messaging Service Access Module Reference 2-227

kMailEPPCContinue

The kMailEPPCContinue event instructs a personal MSAM to resume operation after

previously suspending either itself or one of its slots.

EVENT RECORD

DESCRIPTION

A personal MSAM may suspend itself or one of its slots if it runs into a problem that

requires user intervention to correct. The MSAM should call the PMSAMLogError

function to report such errors and then suspend itself or the particular slot, whichever is

appropriate. While it is in a suspended state, the personal MSAM should continue to call

the WaitNextEvent function. When the user has taken the appropriate corrective

action, the personal MSAM gets the kMailEPPCContinue event advising that it should

resume operations.

If the problem is with the personal MSAM itself, the MSAM can quit instead of

suspending itself. In that case, the IPM Manager launches the MSAM when the user has

taken the corrective action and then sends the MSAM the kMailEPPCContinue event.

kMailEPPCSchedule

The kMailEPPCSchedule event informs a personal MSAM that it is time to log on to

its external messaging system and transfer mail on behalf of a specific slot.

EVENT RECORD

Field name Data type Description

where long The constant kMailEPPCContinue.

modifiers short Contains either the slot ID of a slot to be reactivated or
0. If this field is set to 0, the event applies to the
personal MSAM itself.

Field name Data type Description

where long The constant kMailEPPCSchedule.

modifiers short The slot ID of the slot whose scheduled
time or interval has occurred.

C H A P T E R 2

Messaging Service Access Modules

2-228 Messaging Service Access Module Reference

DESCRIPTION

For each account or address that a user has on an external messaging system, the user

can provide information on how often or at what time the personal MSAM should log on

and transfer mail. The IPM Manager sends a personal MSAM a kMailEPPCSchedule

event when the schedule information for one of the MSAM’s slots indicates that it is time

for the MSAM to connect to its external messaging system and transfer mail for that slot.

If a personal MSAM is not running at a time when it should log on, the IPM Manager

first launches it and then sends it a kMailEPPCSchedule event.

SEE ALSO

The frequency information is stored in a MailStandardSlotInfoAttribute

structure, described on page 2-121.

A setup template obtains scheduling information from the user. See the chapter “Service

Access Module Setup” in this book for more information.

kMailEPPCInQUpdate

The kMailEPPCInQUpdate event notifies a personal MSAM that a letter in an incoming

queue has been updated.

EVENT RECORD

MailEPPCMsg STRUCTURE

DESCRIPTION

The kMailEPPCInQUpdate event informs a personal MSAM that the letter flags

attribute for a particular letter has changed, or that the user has deleted the letter.

The modifiers field of the event record contains the slot ID of the slot to which the

letter belongs.

Field name Data type Description

where long The constant kMailEPPCInQUpdate.

modifiers short The slot ID of the slot whose incoming queue
contains the letter to which the event applies.

Field name Data type Description

u.sequenceNumber long The sequence number of the letter that has
either had a change to its attribute values or
that has been deleted.

C H A P T E R 2

Messaging Service Access Modules

Messaging Service Access Module Reference 2-229

Upon receipt of this event, the personal MSAM should first call the

AcceptHighLevelEvent function to get additional information associated

with this event. The sequence number of the affected letter is specified in the

u.sequenceNumber field of the MailEPPCMsg structure.

If the MSAM chooses to act on the event immediately, it should call the

PMSAMGetMsgSummary function to read the message summary associated with

the letter. If the letter has been deleted by the user, the msgDeleted field in the

MSAMMsgSummary structure is set to true. An MSAM operating in online mode should

delete the letter on its external messaging system. All MSAMs should delete the message

summary for that letter.

If the letter flags attribute has changed, the msgUpdated field in the MSAMMsgSummary

structure is set to true. An MSAM operating in online mode should update information

about the letter on the external messaging system to maintain consistency with the

changed local information about the letter. All MSAMs should set the msgUpdated field

to false.

Alternatively, the personal MSAM can wait until the next time it enumerates the

incoming queue that contains the affected letter. At that time, the MSAM can check for

letters that have been deleted or whose letter flags attribute has been updated. Then it

should take the appropriate action already described here.

SEE ALSO

The MailEPPCMsg structure is described on page 2-113.

The SMCA structure is described on page 2-114.

A personal MSAM deletes letters and message summaries from an incoming queue by

calling the MSAMDelete function, described on page 2-202.

The PMSAMGetMsgSummary function is described on page 2-171.

The MSAMEnumerate function is described on page 2-138.

Message summaries are described in the section “MSAM Modes of Operation”

beginning on page 2-12.

The MSAMMsgSummary structure is described on page 2-124.

kMailEPPCMsgOpened

The kMailEPPCMsgOpened event tells a personal MSAM that the user wants to open a

letter that does not currently exist in the incoming queue. The personal MSAM should

place the letter into the incoming queue immediately.

C H A P T E R 2

Messaging Service Access Modules

2-230 Messaging Service Access Module Reference

EVENT RECORD

MailEPPCMsg STRUCTURE

DESCRIPTION

When a user double-clicks a letter to open it, the IPM Manager checks the associated

message summary in the incoming queue to see if the letter itself is also in the queue.

If only the message summary is in the incoming queue, the IPM Manager sends a

kMailEPPCMsgOpened event to the personal MSAM. This event notifies the MSAM

that a user wants to open a letter not currently in the incoming queue. Upon receipt of

this event, the personal MSAM should call the AcceptHighLevelEvent function to

get additional information associated with this event. You should acknowledge the event

by setting the u.theSMCA->result field of the MailEPPCMsg structure to the noErr

result code or, if you are aware of a condition that makes it impossible for you to

successfully retrieve the letter, set the field to a result code that you define. If you set the

field to noErr, you should retrieve the letter from your external messaging system,

translate it, and write it to the incoming queue.

If you have a problem retrieving the letter, you should report the problem by

calling the PMSAMSetStatus function. Set the seqNum and msgHint fields

of the PMSAMSetStatus function parameter block to the values of the

u.theSMCA->userBytes and u.theSMCA->u.msgHint fields of the MailEPPCMsg

structure, respectively. Then set the status field of the parameter block to

kPMSAMStatusError and call the function.

Field name Data type Description

where long The constant kMailEPPCMsgOpened.

modifiers short The slot ID of the slot whose incoming
queue should contain the letter.

Field name Data type Description

u.theSMCA->result OSErr When the personal MSAM receives the
kMailEPPCMsgOpened event, this field is
already set to 1. Set this field to the noErr
result code to acknowledge receiving the
event. If you already know that it is not
possible to retrieve the letter that the user
wants to open, set this field to a result code
that you define.

u.theSMCA->userBytes

long The sequence number of the letter
that the user wants to open.

u.theSMCA->u.msgHint

long A reference value associated with
the letter. You supply this value to the
PMSAMSetStatus function if you need
to report an error.

C H A P T E R 2

Messaging Service Access Modules

Messaging Service Access Module Reference 2-231

RESULT CODES

SEE ALSO

The MailEPPCMsg structure is described on page 2-113.

The SMCA structure is described on page 2-114.

kMailEPPCDeleteOutQMsg

The kMailEPPCDeleteOutQMsg event instructs a personal MSAM to delete a message

in its outgoing queue.

EVENT RECORD

MailEPPCMsg STRUCTURE

DESCRIPTION

This event tells a personal MSAM to delete, rather than send, a letter in its outgoing

queue. The IPM Manager sends this event in response to a user action. Upon receipt of

this event, the personal MSAM should call the AcceptHighLevelEvent function to

get the sequence number of the letter.

SEE ALSO

The MailEPPCMsg structure is described on page 2-113.

The SMCA structure is described on page 2-114.

noErr 0 No error

Field name Data type Description

where long The constant kMailEPPCDeleteOutQMsg.

modifiers short The slot ID of the slot whose outgoing
queue holds the letter to be deleted.

Field name Data type Description

u.sequenceNumber long The sequence number of the letter that
the user has deleted.

C H A P T E R 2

Messaging Service Access Modules

2-232 Messaging Service Access Module Reference

kMailEPPCWakeup

The kMailEPPCWakeup event notifies a personal MSAM that a process called the

MailWakeupPMSAM function.

EVENT RECORD

DESCRIPTION

When a process calls the MailWakeupPMSAM function, the IPM Manager sends a

kMailEPPCWakeup event to the personal MSAM specified by the application. Typically,

a process calls the MailWakeupPMSAM function in response to an external event that

cannot be predicted. For example, a fax modem driver might call the MailWakeupPMSAM

function when it has received an incoming call so that the MSAM can put the fax into the

incoming queue.

If the MSAM is not running at the time the MailWakeupPMSAM function is called, the

IPM Manager launches it.

kMailEPPCLocationChanged

The kMailEPPCLocationChanged event notifies a personal MSAM that the current

system location has changed or that a user has changed the location flags for the

specified slot.

EVENT RECORD

Field name Data type Description

where long The constant kMailEPPCWakeup.

modifiers short Unused; contains 0.

Field name Data type Description

where long The constant kMailEPPCLocationChanged.

modifiers short The slot ID of the slot to which the event applies.

C H A P T E R 2

Messaging Service Access Modules

Messaging Service Access Module Reference 2-233

MailEPPCMsg STRUCTURE

DESCRIPTION

The IPM Manager sends a kMailEPPCLocationChanged high-level event when either

of two events occurs:

1. The current system location changes. In this case, the IPM Manager sends one
kMailEPPCLocationChanged high-level event for each slot belonging to an MSAM.

2. A user activates or deactivates a mail slot in a given location. In this case, the IPM
Manager updates the location flags in the MailStandardSlotInfoAttribute
structure for that slot and sends a kMailEPPCLocationChanged high-level event to
the MSAM.

The event tells the MSAM the slot to which the event applies, the current system

location, and the location flags for the slot. Upon receipt of a

kMailEPPCLocationChanged high-level event, an MSAM should examine the

location flags. If the location flags show that the slot is inactive at the current location

and the slot was previously active, the MSAM should immediately stop performing any

activity on behalf of the slot, such as downloading letters or attempting to send letters.

If the location flags show that the slot is active at the current location and the slot

was previously inactive, the MSAM should begin acting on behalf of the slot.

SEE ALSO

The MailEPPCMsg structure is described on page 2-113.

The MailLocationFlags data type is described on page 2-115.

The OCESetupLocation data type is described on page 2-115.

Field name Data type Description

u.locationInfo->location OCESetupLocation A value that identifies
the current system
location. It may
contain any integer
value between 0–8.

u.locationInfo->active MailLocationFlags A bit array that defines
whether the slot is
active at a given
location.

C H A P T E R 2

Messaging Service Access Modules

2-234 Messaging Service Access Module Reference

kMailEPPCSendImmediate

The kMailEPPCSendImmediate event notifies a personal MSAM to send a letter in an

outgoing queue as soon as possible.

EVENT RECORD

MailEPPCMsg STRUCTURE

DESCRIPTION

The IPM Manager sends a kMailEPPCSendImmediate event in response to a user’s

request to send a letter immediately. When a personal MSAM receives the event, it

should attempt immediate delivery of the letter to the external messaging system. The

letter is specified in the MailEPPCMsg.u.theSMCA->userBytes field of the external

messaging system.

After sending the letter, the MSAM should return the noErr result code in the

u.theSMCA->result field of the MailEPPCMsg structure. If it is unable to send the

letter, the MSAM should return an error result code in this field. Typically, the result

codes it returns are kMailSlotSuspended and kMailTooManyErr.

RESULT CODES

Field name Data type Description

where long The constant kMailEPPCSendImmediate.

modifiers short The slot ID of the slot in whose
outgoing queue the letter resides.

Field name Data type Description

u.theSMCA->result OSErr The result of performing the
activity requested by the
kMailEPPCSendImmediate event.
When the personal MSAM receives the
kMailEPPCSendImmediate event, this
field is already set to 1. Set this field to
the noErr result code if you successfully
complete the activity. Otherwise, set this
field to an appropriate result code.

u.theSMCA->userBytes long The sequence number of the letter that
the MSAM should attempt to send
immediately.

noErr 0 No error
kMailTooManyErr –15055 MSAM too busy to process event
kMailSlotSuspended –15058 Slot is suspended

C H A P T E R 2

Messaging Service Access Modules

Messaging Service Access Module Reference 2-235

SEE ALSO

The MailEPPCMsg structure is described on page 2-113.

The SMCA structure is described on page 2-114.

kMailEPPCMsgPending

The kMailEPPCMsgPending event informs a personal or server MSAM that there is a

message in an outgoing queue.

EVENT RECORD

DESCRIPTION

Upon receiving a kMailEPPCMsgPending event, a personal MSAM should retrieve the

letter from the outgoing queue of the slot identified in the modifiers field. A server

MSAM should retrieve the message from its single outgoing queue. Both personal and

server MSAMs should then translate the letter or non-letter message and transmit it to

the external messaging system.

When an MSAM is launched, it should check its outgoing queue or queues for messages

awaiting transmittal. The kMailEPPCMsgPending event makes constant monitoring of

the outgoing queue or queues for pending messages unnecessary. However, like all

high-level events, a kMailEPPCMsgPending event may be lost. Therefore, an MSAM

should periodically check its outgoing queue or queues rather than relying exclusively

on the kMailEPPCMsgPending event to inform it of pending messages.

kMailEPPCAdmin

The kMailEPPCAdmin event notifies a server MSAM that its configuration has changed.

EVENT RECORD

Field name Data type Description

where long The constant kMailEPPCMsgPending.

modifiers short For personal MSAMs, this field contains the slot ID of
the slot in whose outgoing queue the letter is located.
For server MSAMs, this field contains 0.

Field name Data type Description

where long The constant kMailEPPCAdmin.

modifiers short Unused; contains 0.

C H A P T E R 2

Messaging Service Access Modules

2-236 Messaging Service Access Module Reference

MailEPPCMsg STRUCTURE

DESCRIPTION

The kMailEPPCAdmin high-level event notifies a server MSAM that its configuration

has changed. Upon receiving the kMailEPPCAdmin event, a server MSAM should

call the AcceptHighLevelEvent function to get additional information associated

with this event. The MailEPPCMsg.u.theSMCA->result field is initially set to 1.

The MSAM should set the MailEPPCMsg.u.theSMCA->result field to noErr to

acknowledge receipt of the kMailEPPCAdmin event.

The SMSAMAdminEPPCRequest structure pointed to by the

MailEPPCMsg.u.theSMCA->userBytes field contains an adminCode field. The

value in the adminCode field indicates the format of the remaining data in the

SMSAMAdminEPPCRequest structure. In release 1 of the PowerShare software, the

adminCode field should always be set to kSMSAMNotifyFwdrSetupChange, indicating

that the remaining data is an SMSAMSetupChange structure. If you receive a

kMailEPPCAdmin event whose code value is not kSMSAMNotifyFwdrSetupChange,

you should acknowledge it (set the MailEPPCMsg.u.theSMCA->result field to noErr)

and then ignore the event.

In release 1 of the PowerShare software, the kSMSAMNotifyFwdrSetupChange

subtype of the kMailEPPCAdmin event always indicates that the record location

information of the server MSAM’s foreign dNodes has changed. The MSAM can

verify this by examining the whatChanged field in the SMSAMSetupChange structure.

The kSMSAMFwdrForeignRLIsChangedBit bit should be set. The server MSAM

should read its Forwarder record to obtain the new record location information of its

foreign dNodes.

SPECIAL CONSIDERATIONS

Server MSAMs should act only on kMailEPPCAdmin events that are generated on

the local computer. When you call the AcceptHighLevelEvent function, it returns

a TargetID structure. Within that structure is a LocationNameRec structure. If

the locationKindSelector field of the LocationNameRec structure is set to

ppcNoLocation, you know that the event’s sender resides on the local computer.

RESULT CODES

Field name Data type Description

u.theSMCA->result OSErr When a server MSAM receives the
kMailEPPCAdmin event, this field is
already set to 1. Set this field to the noErr
result code to acknowledge receiving the
kMailEPPCAdmin event.

u.theSMCA->userBytes long Pointer to a SMSAMAdminEPPCRequest
structure.

noErr 0 No error

C H A P T E R 2

Messaging Service Access Modules

Messaging Service Access Module Reference 2-237

SEE ALSO

See the section “AOCE Addresses” beginning on page 2-23 for a description of

foreign dNodes.

The section “Initializing a Server MSAM” beginning on page 2-40 describes what types

of information are found in a server MSAM’s Forwarder record and how it gets there.

The MailEPPCMsg structure is described on page 2-113.

The SMCA structure is described on page 2-114.

The SMSAMAdminEPPCRequest structure is described on page 2-117.

The SMSAMSetupChange structure is described on page 2-117.

Record location information is specified by an RLI structure. It is described in the

chapter “AOCE Utilities” in Inside Macintosh: AOCE Application Interfaces.

The LocationNameRec structure is described in Inside Macintosh: Interapplication
Communication.

The AcceptHighLevelEvent function and the TargetID structure are described in

Inside Macintosh: Macintosh Toolbox Essentials.

2-238 Summary of the MSAM Interface

C H A P T E R 2

Messaging Service Access Modules

Summary of the MSAM Interface

C Summary

Data Types and Constants

/* predefined message creator and message type */

#define kMailAppleMailCreator 'apml' /* message creator */

#define kMailLtrMsgType 'lttr' /* message type for letter, report */

/* predefined block creator and block types */

#define kMailAppleMailCreator 'apml' /* block creator */

#define kMailLtrHdrType 'lthd' /* letter header */

#define kMailContentType 'body' /* content of letter */

#define kMailEnclosureListType 'elst' /* list of enclosures */

#define kMailEnclosureDesktopType'edsk' /* Desktop Mgr info for enclosures */

#define kMailEnclosureFileType 'asgl' /* a file enclosure */

#define kMailImageBodyType 'imag' /* image of letter */

#define kMailMSAMType 'gwyi' /* MSAM-specific information */

#define kMailReportType 'rpti' /* report info */

#define kMailTunnelLtrType 'tunl' /* reserved */

#define kMailHopInfoType 'hopi' /* reserved */

/* families used for mail or related msgs */

#define kMailFamily 'mail' /* letter with content block or

 content enclosure */

#define kMailFamilyFile 'file' /* letter without content block or

 content enclosure */

#define kMailResolvedList 0 /* MailAttributeID value for resolved

recipient list */

/* mask to test location flags of a slot */

#define MailLocationMask(locationNumber) (1<<((locationNumber)-1))

/* bit flags of MailAttributeID type */

enum {

kMailLetterFlagsBit = 1, /* letter flags bit */

kMailIndicationsBit = 3, /* indications bit */

C H A P T E R 2

Messaging Service Access Modules

Summary of the MSAM Interface 2-239

kMailMsgTypeBit = 4, /* letter creator & type bit */

kMailLetterIDBit = 5, /* letter ID bit */

kMailSendTimeStampBit = 6, /* send timestamp bit */

kMailNestingLevelBit = 7, /* nesting level bit */

kMailMsgFamilyBit = 8, /* message family bit */

kMailReplyIDBit = 9, /* reply ID bit */

kMailConversationIDBit = 10, /* conversation ID bit */

kMailSubjectBit = 11, /* subject bit */

kMailFromBit = 12, /* From recipient bit */

kMailToBit = 13, /* To recipient bit */

kMailCcBit = 14, /* cc recipient bit */

kMailBccBit = 15 /* bcc recipient bit */

};

/* Values of MailAttributeMask data type. The masks are defined for use

 with the MailAttributeBitmap data type. However, because the

 MailAttributeBitmap data type is defined as a bit field structure, and the

 masks operate on variables of type long, you cannot use these masks to set

 or test the value of a bit field in a MailAttributeBitmap structure. The

 masks are included for historical reasons only. */

enum {

kMailLetterFlagsMask = 1L<<(kMailLetterFlagsBit-1),

kMailIndicationsMask = 1L<<(kMailIndicationsBit-1),

kMailMsgTypeMask = 1L<<(kMailMsgTypeBit-1),

kMailLetterIDMask = 1L<<(kMailLetterIDBit-1),

kMailSendTimeStampMask = 1L<<(kMailSendTimeStampBit-1),

kMailNestingLevelMask = 1L<<(kMailNestingLevelBit-1),

kMailMsgFamilyMask = 1L<<(kMailMsgFamilyBit-1),

kMailReplyIDMask = 1L<<(kMailReplyIDBit-1),

kMailConversationIDMask = 1L<<(kMailConversationIDBit-1),

kMailSubjectMask = 1L<<(kMailSubjectBit-1),

kMailFromMask = 1L<<(kMailFromBit-1),

kMailToMask = 1L<<(kMailToBit-1),

kMailCcMask = 1L<<(kMailCcBit-1),

kMailBccMask = 1L<<(kMailBccBit-1)

};

/* bit flags of MailIndications type */

enum {

kMailOriginalInReportBit = 1,

kMailNonReceiptReportsBit = 3,

kMailReceiptReportsBit = 4,

kMailForwardedBit = 5,

kMailPriorityBit = 6,

C H A P T E R 2

Messaging Service Access Modules

2-240 Summary of the MSAM Interface

kMailIsReportWithOriginalBit = 8,

kMailIsReportBit = 9,

kMailHasContentBit = 10,

kMailHasSignatureBit = 11,

kMailAuthenticatedBit = 12,

kMailSentBit = 13

};

/* Masks for bits of MailIndications type. Because the MailIndications data

 type is defined as a bit field structure, and the masks operate on variables

 of type long, you cannot use the masks to set or test the value of a bit

 field in a MailIndications structure. The masks are included for

 historical reasons only. */

enum {

kMailSentMask = 1L<<(kMailSentBit-1),

kMailAuthenticatedMask = 1L<<(kMailAuthenticatedBit-1),

kMailHasSignatureMask = 1L<<(kMailHasSignatureBit-1),

kMailHasContentMask = 1L<<(kMailHasContentBit-1),

kMailIsReportMask = 1L<<(kMailIsReportBit-1),

kMailIsReportWithOriginalMask = 1L<<(kMailIsReportWithOriginalBit-1),

kMailPriorityMask = 3L<<(kMailPriorityBit-1),

kMailForwardedMask = 1L<<(kMailForwardedBit-1),

kMailReceiptReportsMask = 1L<<(kMailReceiptReportsBit-1),

kMailNonReceiptReportsMask = 1L<<(kMailNonReceiptReportsBit-1),

kMailOriginalInReportMask = 3L<<(kMailOriginalInReportBit-1)

};

/* bit values of the originalInReport field in MailIndications */

enum {

kMailNoOriginal = 0, /* do not enclose original in report */

kMailEncloseOnNonReceipt= 3 /* enclose original with non-delivery

indication */

};

/* values of MailSegmentType type*/

enum {

kMailInvalidSegmentType = 0,

kMailTextSegmentType = 1,

kMailPictSegmentType = 2,

kMailSoundSegmentType = 3,

kMailStyledTextSegmentType = 4,

kMailMovieSegmentType = 5

};

C H A P T E R 2

Messaging Service Access Modules

Summary of the MSAM Interface 2-241

enum {

kMailTextSegmentBit,

kMailPictSegmentBit,

kMailSoundSegmentBit,

kMailStyledTextSegmentBit,

kMailMovieSegmentBit

};

/* values of MailSegmentMask type */

enum {

kMailTextSegmentMask = 1L<<kMailTextSegmentBit,

kMailPictSegmentMask = 1L<<kMailPictSegmentBit,

kMailSoundSegmentMask = 1L<<kMailSoundSegmentBit,

kMailStyledTextSegmentMask = 1L<<kMailStyledTextSegmentBit,

kMailMovieSegmentMask = 1L<<kMailMovieSegmentBit

};

/* values of MailBlockMode type */

enum {

kMailFromStart = 1, /* write data at offset from start of block */

kMailFromLEOB = 2, /* write data at offset from end of block */

kMailFromMark = 3 /* write data at offset from the current mark */

};

/* bit values of MailLetterSystemFlags type */

enum {

kMailIsLocalBit = 2 /* letter is available locally */

};

enum {

kMailIsLocalMask = 1L<<kMailIsLocalBit

};

/* bit values of MailLetterUserFlags type */

enum {

kMailReadBit, /* letter has been opened */

kMailDontArchiveBit, /* reserved */

kMailInTrashBit /* reserved */

};

enum {

kMailReadMask = 1L<<kMailReadBit,

kMailDontArchiveMask = 1L<<kMailDontArchiveBit,

kMailInTrashMask = 1L<<kMailInTrashBit

};

C H A P T E R 2

Messaging Service Access Modules

2-242 Summary of the MSAM Interface

#define kMailErrorLogEntryVersion 0x101

/* 'STR#' resource IDs for personal MSAM's error and action messages */

#define kMailMSAMErrorStringListID 128 /* list of error message strings */

#define kMailMSAMActionStringListID 129 /* list of action message strings */

/* values of MailLogErrorType type*/

enum {

kMailELECorrectable = 0, /* error correctable by user */

kMailELEError = 1, /* error not correctable by user */

kMailELEWarning = 2, /* warning requiring no user intervention */

kMailELEInformational = 3 /* informational message */

};

/* predefined values of MailLogErrorCode type */

enum {

kMailMSAMErrorCode= 0, /* MSAM-defined error */

kMailMiscError = -1, /* miscellaneous error */

kMailNoModem = -2 /* modem required, but missing */

};

#define kMailMsgSummaryVersion 1

#define kMailMaxPMSAMMsgSummaryData 128/* maximum bytes for private MSAM

message summary data */

/* defines for the addressedToMe field in MailCoreData */

#define kAddressedAs_TO 0x1

#define kAddressedAs_CC 0x2

#define kAddressedAs_BCC 0x4

enum {

kMailTimerOff = 0, /* no timer specified */

kMailTimerTime = 1, /* timer relative to midnight */

kMailTimerFrequency = 2 /* frequency timer */

};

/* values of PMSAMStatus type */

enum {

kPMSAMStatusPending = 1, /* for outQueue */

kPMSAMStatusError = 2, /* for inQueue letters */

kPMSAMStatusSending = 3, /* for outQueue */

kPMSAMStatusCaching = 4, /* for inQueue letters */

kPMSAMStatusSent = 5 /* for outQueue */

};

C H A P T E R 2

Messaging Service Access Modules

Summary of the MSAM Interface 2-243

#define kMailEPPCMsgVersion 3

/* values of AOCE high-level event message classes */

enum {

kMailEPPCCreateSlot = 'crsl',

kMailEPPCModifySlot = 'mdsl',

kMailEPPCDeleteSlot = 'dlsl',

kMailEPPCShutDown = 'quit',

kMailEPPCMailboxOpened = 'mbop',

kMailEPPCMailboxClosed = 'mbcl',

kMailEPPCMsgPending = 'msgp',

kMailEPPCSendImmediate = 'sndi',

kMailEPPCContinue = 'cont',

kMailEPPCSchedule = 'sked',

kMailEPPCAdmin = 'admn',

kMailEPPCInQUpdate = 'inqu',

kMailEPPCMsgOpened = 'msgo',

kMailEPPCDeleteOutQMsg = 'dlom',

kMailEPPCWakeup = 'wkup',

kMailEPPCLocationChanged = 'locc'

};

/* values of SMSAMAdminCode type */

enum {

kSMSAMNotifyFwdrSetupChange = 1,

kSMSAMNotifyFwdrNameChange = 2,

kSMSAMNotifyFwdrPwdChange = 3,

kSMSAMGetDynamicFwdrParams = 4

};

enum {

kSMSAMFwdrHomeInternetChangedBit,

kSMSAMFwdrConnectedToChangedBit,

kSMSAMFwdrForeignRLIsChangedBit,

kSMSAMFwdrMnMServerChangedBit

};

/* values of SMSAMSlotChanges type */

enum {

kSMSAMFwdrEverythingChangedMask = -1,

kSMSAMFwdrHomeInternetChangedMask= 1L<<kSMSAMFwdrHomeInternetChangedBit,

kSMSAMFwdrConnectedToChangedMask = 1L<<kSMSAMFwdrConnectedToChangedBit,

kSMSAMFwdrForeignRLIsChangedMask = 1L<<kSMSAMFwdrForeignRLIsChangedBit,

kSMSAMFwdrMnMServerChangedMask = 1L<<kSMSAMFwdrMnMServerChangedBit

};

C H A P T E R 2

Messaging Service Access Modules

2-244 Summary of the MSAM Interface

enum {

kOCESetupLocationNone = 0, /* disconnect state */

kOCESetupLocationMax = 8 /* maximum location value */

};

typedef long MailMsgRef; /* reference to new/open letter or message */

typedef long MSAMQueueRef; /* reference to an open MSAM queue */

typedef unsigned short MSAMSlotID; /* slot identifier */

typedef unsigned short MailSlotID; /* identifies slots within a mailbox */

typedef long MailboxRef; /* reference to an active mailbox */

typedef unsigned short MailAttributeID;/* letter attribute identifier */

/* The MailAttributeMask data type defines a set of masks for the

 MailAttributeBitmap data type. However, because the MailAttributeBitmap data

 type is defined as a bit field structure, and the masks operate on variables

 of type long, you cannot use the masks to set or test the value of a bit

 field in a MailAttributeBitmap structure. The MailAttributeMask data type is

 included for historical reasons only. */

typedef unsigned long MailAttributeMask;

typedef IPMMsgID MailLetterID;

typedef unsigned short MailNestingLevel;

typedef OCERecipient MailRecipient;

typedef unsigned short MailSegmentMask;

typedef unsigned short MailSegmentType;

typedef short MailBlockMode;

typedef unsigned short PMSAMStatus;

typedef char OCESetupLocation; /* current system location */

typedef unsigned char MailLocationFlags; /* slot location flags */

struct MailBuffer {
long bufferSize; /* size of your buffer */
Ptr buffer; /* pointer to your buffer */
long dataSize; /* amount of data returned in or read out

of your buffer */
};

typedef struct MailBuffer MailBuffer;

C H A P T E R 2

Messaging Service Access Modules

Summary of the MSAM Interface 2-245

struct MailReply {

unsigned short tupleCount;

/* tuple[tupleCount] */

};

typedef struct MailReply MailReply;

struct MSAMEnumerateOutQReply {

long seqNum; /* sequence number of message */

Boolean done; /* resolution of message */

IPMPriority priority; /* priority of message */

OSType msgFamily /* message family */

long approxSize; /* size of message */

Boolean tunnelForm; /* reserved */

Byte padByte; /* for even byte boundary */

NetworkSpec nextHop; /* reserved */

OCECreatorType msgType; /* message creator and type */

};

typedef struct MSAMEnumerateOutQReply MSAMEnumerateOutQReply;

struct MSAMEnumerateInQReply {

long seqNum; /* letter sequence number */

Boolean msgDeleted; /* should letter be deleted? */

Boolean msgUpdated; /* was message summary updated? */

Boolean msgCached; /* is letter in the incoming queue? */

Byte padByte; /* for even byte boundary */

};

typedef struct MSAMEnumerateInQReply MSAMEnumerateInQReply;

struct MailAttributeBitmap {

unsigned int /* 32 bits */

reservedA:16, /* bits 17 through 32 reserved */

reservedB:1, /* bit 16--reserved */

bcc:1, /* bit 15--blind carbon copy recipients */

cc:1, /* bit 14--carbon copy recipients */

to:1, /* bit 13--To recipients */

from:1, /* bit 12--sender of letter */

subject:1, /* bit 11--subject of letter */

conversationID:1, /* bit 10--ID of conversation thread */

replyID:1, /* bit 09--ID of letter being replied to */

msgFamily:1, /* bit 08--message family */

nestingLevel:1, /* bit 07--nesting level of letter */

sendTimeStamp:1, /* bit 06--time letter was sent */

C H A P T E R 2

Messaging Service Access Modules

2-246 Summary of the MSAM Interface

letterID:1; /* bit 05--letter's unique ID number */

msgType:1, /* bit 04--letter's creator and type */

indications:1, /* bit 03--MailIndications */

reservedC:1, /* bit 02--reserved */

letterFlags:1 /* bit 01--letter flags */

};

typedef struct MailAttributeBitmap MailAttributeBitmap;

struct MailIndications {

unsigned int

reservedB:16,

hasStandardContent:1,/* letter has a content block */

hasImageContent:1, /* letter an image block */

hasNativeContent:1, /* letter has a content enclosure */

sent:1, /* letter sent, not just composed */

authenticated:1, /* letter was created and transported with

authentication */

hasSignature:1, /* letter was signed with a digital signature */

hasContent:1, /* this letter or a nested letter has content */

isReport:1, /* is really a report */

isReportWithOriginal:1,

/* Report contains the original letter */

priority:2, /* letter has normal, low, or high priority */

forwarded:1, /* letter contains a forwarded letter */

receiptReports:1, /* originator requests delivery indications */

nonReceiptReports:1, /* originator requests non-delivery indications */

originalInReport:2 /* originator wants original letter enclosed in

reports */

};

typedef struct MailIndications MailIndications;

struct OCERecipient {

RecordID* entitySpecifier;

OSType extensionType;

unsigned short extensionSize;

Ptr extensionValue;

};

struct OCEPackedRecipient {

unsigned short dataLength; /* length of recipient data */

/* followed by recipient data of dataLength bytes */

};

C H A P T E R 2

Messaging Service Access Modules

Summary of the MSAM Interface 2-247

struct MailOriginalRecipient {

short index; /* index for recipient */

/* followed by OCEPackedRecipient structure */

};

typedef struct MailOriginalRecipient MailOriginalRecipient;

struct MailResolvedRecipient {

short index; /* index for recipient */

short recipientFlags;/* recipient information */

Boolean responsible; /* responsible for delivery? */

Byte padByte;

/* followed by OCEPackedRecipient structure */

};

typedef struct MailResolvedRecipient MailResolvedRecipient;

struct MailEnclosureInfo {

StringPtr enclosureName; /* name of the enclosure */

CInfoPBPtr catInfo; /* HFS catalog info about enclosure */

StringPtr comment; /* comment for Get-Info window */

Ptr icon; /* icon for enclosure file */

};

typedef struct MailEnclosureInfo MailEnclosureInfo;

typedef unsigned short MailLogErrorType;

typedef short MailLogErrorCode;

struct MailErrorLogEntryInfo {

short version; /* log entry version */

UTCTime timeOccurred; /* time of error */

Str31 reportingPMSAM; /* which MSAM? */

Str31 reportingMSAMSlot; /* which slot? */

MailLogErrorType errorType; /* level of error */

MailLogErrorCode errorCode; /* error code */

short errorResource; /* error string resource index */

short actionResource; /* action string resource index */

unsigned long filler; /* reserved */

unsigned short filler2; /* reserved */

};

typedef struct MailErrorLogEntryInfo MailErrorLogEntryInfo;

C H A P T E R 2

Messaging Service Access Modules

2-248 Summary of the MSAM Interface

struct MailMasterData {

MailAttributeBitmap attrMask; /* indicates attributes present in

MSAMMsgSummary */

MailLetterID messageID; /* ID of this letter *

MailLetterID replyID; /* ID of letter this is a reply to */

MailLetterID conversationID;/* ID of letter that started this

conversation */

};

typedef struct MailMasterData MailMasterData;

struct MailCoreData {

MailLetterFlags letterFlags; /* letter status flags */

unsigned long messageSize /* size of letter */

MailIndications letterIndications;

/* indications for this letter */

OCECreatorType messageType; /* message creator and type of this

letter */

MailTime sendTime; /* time this letter was sent */

OSType messageFamily; /* message family */

unsigned char reserved;

unsigned char addressedToMe; /* user is To, cc, or bcc recipient */

char agentInfo[6]; /* reserved */

RString32 sender; /* sender of this letter */

RString32 subject; /* subject of this letter */

};

typedef struct MailCoreData MailCoreData;

struct MSAMMsgSummary {

short version; /* version of the MSAMMsgSummary */

Boolean msgDeleted; /* true if letter is to be deleted by

personal MSAM */

Boolean msgUpdated; /* true if MSAMMsgSummary was updated

by IPM Manager */

Boolean msgCached; /* true if letter is in the inQueue */

Byte padByte;

MailMasterData masterData; /* attributes not essential to

display */

MailCoreData coreData; /* attributes critical to display */

/* followed by the personal MSAM's private data: Byte PMSAMSpecData[]; */

};

typedef struct MSAMMsgSummary MSAMMsgSummary;

C H A P T E R 2

Messaging Service Access Modules

Summary of the MSAM Interface 2-249

struct MailLocationInfo {

OCESetupLocation location; /* the current location */

MailLocationFlags active; /* slot's location flags */

};

typedef struct MailLocationInfo MailLocationInfo;

struct MailEPPCMsg {
short version; /* message version */

union {
SMCA * theSMCA; /* pointer to SMCA */

long sequenceNumber; /* letter sequence number */
MailLocationInfo locationInfo;/* location information */

} u;
};

typedef struct MailEPPCMsg MailEPPCMsg;

struct SMCA {
unsigned short smcaLength; /* length of entire SMCA

(including the length field) */
OSErr result; /* result code */

long userBytes; /* command interpreted user data */
union{

CreationID slotCID; /* creation ID of record
containing slot information */

long msgHint; /* message reference value */
} u;

};

typedef struct SMCA SMCA;

typedef unsigned short SMSAMAdminCode;

struct SMSAMAdminEPPCRequest {

SMSAMAdminCode adminCode; /* admin code */

union {

SMSAMSetupChange setupChange; /* setup change */

SMSAMNameChange nameChange; /* reserved */

SMSAMPasswordChange passwordChange; /* reserved */

SMSAMDynamicParams dynamicParams; /* reserved */

} u;

};

typedef struct SMSAMAdminEPPCRequest SMSAMAdminEPPCRequest;

typedef unsigned long SMSAMSlotChanges;

C H A P T E R 2

Messaging Service Access Modules

2-250 Summary of the MSAM Interface

struct SMSAMSetupChange {

SMSAMSlotChanges whatChanged; /* bitmap of changed parameters */

AddrBlock serverHint; /* AOCE server address */

};

typedef struct SMSAMSetupChange SMSAMSetupChange;

struct SMSAMNameChange { /* reserved data type */

RString newName; /* sever MSAM's new name */

AddrBlock serverHint; /* AOCE server address */

};

typedef struct SMSAMNameChange SMSAMNameChange;

struct SMSAMPasswordChange { /* reserved data type */

RString newPassword; /* server MSAM's new password */

AddrBlock serverHint; /* AOCE server address */

};

typedef struct SMSAMPasswordChange SMSAMPasswordChange;

struct SMSAMDynamicParams { /* reserved data type */

unsigned long curDiskUsed; /* disk space used */

unsigned long curMemoryUsed; /* memory used */

};

typedef struct SMSAMDynamicParams SMSAMDynamicParams;

struct MailTime {

UTCTime time; /* current UTC (GMT) */

UTCOffset offset; /* offset from UTC */

};

typedef struct MailTime MailTime;

union MailTimer {

long frequency; /* how often to connect */

long connectTime; /* time since midnight */

};

typedef union MailTimer MailTimer;

typedef Byte MailTimerKind;

C H A P T E R 2

Messaging Service Access Modules

Summary of the MSAM Interface 2-251

struct MailTimers {

MailTimerKind sendTimeKind; /* timer kind for sending */

MailTimerKind receiveTimeKind; /* timer kind for receiving */

MailTimer send; /* connect time or frequency for

sending letters */

MailTimer receive; /* connect time or frequency for

receiving letters */

};

typedef struct MailTimers MailTimers;

struct MailStandardSlotInfoAttribute {

short version; /* MSAM version of the slot */

MailLocationFlags active; /* active at location i if

MailLocationMask (i) is set */

Byte padByte;

MailTimers sendReceiveTimer;

};

typedef struct MailStandardSlotInfoAttribute MailStandardSlotInfoAttribute;

typedef unsigned short MailLetterSystemFlags;

typedef unsigned short MailLetterUserFlags;

struct MailLetterFlags {

MailLetterSystemFlags sysFlags; /* system flags */

MailLetterUserFlags userFlags; /* user flags */

};

typedef struct MailLetterFlags MailLetterFlags;

struct MailMaskedLetterFlags {

MailLetterFlags flagMask; /* flags that are to be set */

MailLetterFlags flagValues; /* their values */

};

typedef struct MailMaskedLetterFlags MailMaskedLetterFlags;

struct MailBlockInfo {

OCECreatorType blockType;

unsigned long offset;

unsigned long blockLength;

};

typedef struct MailBlockInfo MailBlockInfo;

C H A P T E R 2

Messaging Service Access Modules

2-252 Summary of the MSAM Interface

define MailParamBlockHeader

Ptr qLink; /* reserved */ \

long reservedH1; /* reserved */ \

long reservedH2; /* reserved */ \

ProcPtr ioCompletion; /* pointer to completion routine */ \

OSErr ioResult; /* result code */ \

long saveA5; /* pointer to global variables */ \

short reqCode; /* reserved */

struct PMSAMGetMSAMRecordPB {

MailParamBlockHeader

CreationID msamCID;

};

typedef struct PMSAMGetMSAMRecordPB PMSAMGetMSAMRecordPB;

struct PMSAMOpenQueuesPB {

MailParamBlockHeader

MSAMQueueRef inQueueRef;

MSAMQueueRef outQueueRef;

MSAMSlotID msamSlotID;

long filler[2];

};

typedef struct PMSAMOpenQueuesPB PMSAMOpenQueuesPB;

struct PMSAMSetStatusPB {

MailParamBlockHeader

MSAMQueueRef queueRef;

long seqNum;

long msgHint;

PMSAMStatus status;

};

typedef struct PMSAMSetStatusPB PMSAMSetStatusPB;

struct PMSAMLogErrorPB {

MailParamBlockHeader

MSAMSlotID msamSlotID; /* 0 for PMSAM errors */

MailErrorLogEntryInfo* logEntry;

long filler[2];

};

typedef struct PMSAMLogErrorPB PMSAMLogErrorPB;

C H A P T E R 2

Messaging Service Access Modules

Summary of the MSAM Interface 2-253

struct PMSAMCreateMsgSummaryPB {

MailParamBlockHeader

MSAMQueueRef inQueueRef;

long seqNum; /* sequence number of new letter */

MSAMMsgSummary * msgSummary; /* attributes and mask filled in */

MailBuffer * buffer; /* private MSAM data to add to summary */

};

typedef struct PMSAMCreateMsgSummaryPB PMSAMCreateMsgSummaryPB;

sstruct PMSAMPutMsgSummaryPB {

MailParamBlockHeader

MSAMQueueRef inQueueRef;

long seqNum;

MailMaskedLetterFlags * letterFlags;

MailBuffer* buffer; /* PMSAM private data */

};

typedef struct PMSAMPutMsgSummaryPB PMSAMPutMsgSummaryPB;

struct PMSAMGetMsgSummaryPB {

MailParamBlockHeader

MSAMQueueRef inQueueRef;

long seqNum;

MSAMMsgSummary * msgSummary; /* buffer for message summary */

MailBuffer * buffer; /* buffer for PMSAM private data */

unsigned short msgSummaryOffset; /* offset of PMSAM private data

from start of message summary */

};

typedef struct PMSAMGetMsgSummaryPB PMSAMGetMsgSummaryPB;

struct SMSAMSetupPB {

 MailParamBlockHeader

 RecordIDPtr serverMSAM;

 RStringPtr password;

 OSType gatewayType;

 RStringPtr gatewayTypeDescription;

 AddrBlock catalogServerHint;

 };

typedef struct SMSAMSetupPB SMSAMSetupPB;

C H A P T E R 2

Messaging Service Access Modules

2-254 Summary of the MSAM Interface

struct SMSAMStartupPB {

MailParamBlockHeader

AuthIdentity msamIdentity;

MSAMQueueRef queueRef;

};

typedef struct SMSAMStartupPB SMSAMStartupPB;

struct SMSAMShutdownPB {

MailParamBlockHeader

MSAMQueueRef queueRef;

};

typedef struct SMSAMShutdownPB SMSAMShutdownPB;

struct MSAMEnumeratePB {

MailParamBlockHeader

MSAMQueueRef queueRef;

long startSeqNum;

long nextSeqNum;

MailBuffer buffer;

};

typedef struct MSAMEnumeratePB MSAMEnumeratePB;

struct MSAMDeletePB {

MailParamBlockHeader

MSAMQueueRef queueRef;

long seqNum;

Boolean msgOnly; /* delete letter and message summary? */

Byte padByte;

OSErr result; /* reserved */

};

typedef struct MSAMDeletePB MSAMDeletePB;

struct MSAMOpenPB {

MailParamBlockHeader

MSAMQueueRef queueRef;

long seqNum;

MailMsgRef mailMsgRef;

};

typedef struct MSAMOpenPB MSAMOpenPB;

C H A P T E R 2

Messaging Service Access Modules

Summary of the MSAM Interface 2-255

struct MSAMOpenNestedPB {
MailParamBlockHeader

MailMsgRef mailMsgRef;
MailMsgRef nestedRef;

};

typedef struct MSAMOpenNestedPB MSAMOpenNestedPB;

struct MSAMClosePB {
MailParamBlockHeader

MailMsgRef mailMsgRef;
};

typedef struct MSAMClosePB MSAMClosePB;

struct MSAMGetMsgHeaderPB {

MailParamBlockHeader
MailMsgRef mailMsgRef;

IPMHeaderSelector selector;
unsigned long offset;

MailBuffer buffer;
unsigned long remaining;

};

typedef struct MSAMGetMsgHeaderPB MSAMGetMsgHeaderPB;

struct MSAMGetAttributesPB {
MailParamBlockHeader

MailMsgRef mailMsgRef;
MailAttributeBitmap requestMask;

MailBuffer buffer;
MailAttributeBitmap responseMask;

Boolean more;
};

typedef struct MSAMGetAttributesPB MSAMGetAttributesPB;

struct MSAMGetRecipientsPB {

MailParamBlockHeader
MailMsgRef mailMsgRef;

MailAttributeID attrID; /* kMailFromBit thru kMailBccBit */
unsigned short startIndex; /* starts at 1 */

MailBuffer buffer;
unsigned short nextIndex;

Boolean more;
};

typedef struct MSAMGetRecipientsPB MSAMGetRecipientsPB;

C H A P T E R 2

Messaging Service Access Modules

2-256 Summary of the MSAM Interface

struct MSAMGetContentPB {

MailParamBlockHeader

MailMsgRef mailMsgRef;

MailSegmentMask segmentMask;

MailBuffer buffer;

StScrpRec * textScrap;

ScriptCode script;

MailSegmentType segmentType;

Boolean endOfScript;

Boolean endOfSegment;

Boolean endOfContent;

long segmentLength;

long segmentID;

};

typedef struct MSAMGetContentPB MSAMGetContentPB;

struct MSAMGetEnclosurePB {

MailParamBlockHeader

MailMsgRef mailMsgRef;

Boolean contentEnclosure;

Byte padByte;

MailBuffer buffer;

Boolean endOfFile;

Boolean endOfEnclosures;

};

typedef struct MSAMGetEnclosurePB MSAMGetEnclosurePB;

struct MSAMEnumerateBlocksPB {

MailParamBlockHeader

MailMsgRef mailMsgRef;

unsigned short startIndex; /* starts at 1 */

MailBuffer buffer;

unsigned short nextIndex;

Boolean more;

};

typedef struct MSAMEnumerateBlocksPB MSAMEnumerateBlocksPB;

struct MSAMGetBlockPB {
MailParamBlockHeader

MailMsgRef mailMsgRef;
OCECreatorType blockType;

unsigned short blockIndex;

C H A P T E R 2

Messaging Service Access Modules

Summary of the MSAM Interface 2-257

MailBuffer buffer;
unsigned long dataOffset;

Boolean endOfBlock;
Byte padByte;

unsigned long remaining;
};

typedef struct MSAMGetBlockPB MSAMGetBlockPB;

struct MSAMMarkRecipientsPB {

MailParamBlockHeader
MSAMQueueRef queueRef;

long seqNum;
MailBuffer buffer;

};

typedef struct MSAMMarkRecipientsPB MSAMMarkRecipientsPB;

struct MSAMnMarkRecipientsPB {
MailParamBlockHeader

MailMsgRef mailMsgRef;
MailBuffer buffer;

};

typedef struct MSAMnMarkRecipientsPB MSAMMarknRecipientsPB;

struct MSAMCreatePB {
MailParamBlockHeader

MSAMQueueRef queueRef;
Boolean asLetter; /* create as letter or message */

IPMMsgType msgType;
long refCon; /* for messages only */

long seqNum; /* set if creating message in the inQueue */
Boolean tunnelForm; /* always false */

Boolean bccRecipients; /* true if creating letter with bcc
recipients */

MailMsgRef newRef;
};

typedef struct MSAMCreatePB MSAMCreatePB;

struct MSAMBeginNestedPB {

MailParamBlockHeader
MailMsgRef mailMsgRef;

long refCon; /* for messages only */
IPMMsgType msgType;

};

typedef struct MSAMBeginNestedPB MSAMBeginNestedPB;

C H A P T E R 2

Messaging Service Access Modules

2-258 Summary of the MSAM Interface

struct MSAMEndNestedPB {
MailParamBlockHeader

MailMsgRef mailMsgRef;

};

typedef struct MSAMEndNestedPB MSAMEndNestedPB;

struct MSAMSubmitPB {

MailParamBlockHeader

MailMsgRef mailMsgRef; /* message reference number */

Boolean submitFlag; /* submit or delete message? */
Byte padByte;

MailLetterID msgID; /* reserved */

};

typedef struct MSAMSubmitPB MSAMSubmitPB;

struct MSAMPutMsgHeaderPB {

MailParamBlockHeader

MailMsgRef mailMsgRef;

OCERecipient * replyQueue;
IPMSender * sender;

IPMNotificationType deliveryNotification;

IPMPriority priority;

};

typedef struct MSAMPutMsgHeaderPB MSAMPutMsgHeaderPB;

struct MSAMPutAttributePB {

MailParamBlockHeader

MailMsgRef mailMsgRef;
MailAttributeID attrID;

MailBuffer buffer;

};

typedef struct MSAMPutAttributePB MSAMPutAttributePB;

struct MSAMPutRecipientPB {

MailParamBlockHeader

MailMsgRef mailMsgRef;

MailAttributeID attrID;
MailRecipient * recipient;

Boolean responsible; /* for server and message msams only */

};

typedef struct MSAMPutRecipientPB MSAMPutRecipientPB;

C H A P T E R 2

Messaging Service Access Modules

Summary of the MSAM Interface 2-259

struct MSAMPutContentPB {

MailParamBlockHeader

MailMsgRef mailMsgRef;

MailSegmentType segmentType;

Boolean append;

Byte padByte;

MailBuffer buffer;

StScrpRec * textScrap;

Boolean startNewScript;

ScriptCode script; /* valid when startNewScript is true */

};

typedef struct MSAMPutContentPB MSAMPutContentPB;

struct MSAMPutEnclosurePB {

MailParamBlockHeader

MailMsgRef mailMsgRef;

Boolean contentEnclosure;

Byte padByte;

Boolean hfs;

Boolean append;

MailBuffer buffer; /* unused if hfs is true */

FSSpec enclosure;

MailEnclosureInfo addlInfo;

};

typedef struct MSAMPutEnclosurePB MSAMPutEnclosurePB;

struct MSAMPutBlockPB {

MailParamBlockHeader

MailMsgRef mailMsgRef;

long refCon; /* for messages only */

OCECreatorType blockType;

Boolean append;

MailBuffer buffer;

MailBlockMode mode;

unsigned long offset;

};

typedef struct MSAMPutBlockPB MSAMPutBlockPB;

C H A P T E R 2

Messaging Service Access Modules

2-260 Summary of the MSAM Interface

struct MSAMCreateReportPB {

MailParamBlockHeader

MailMsgRef mailMsgRef;

MailLetterID msgID; /* letter ID of letter being reported on */

MailRecipient * sender; /* sender of the letter being reported on */

};

typedef struct MSAMCreateReportPB MSAMCreateReportPB;

struct MSAMPutRecipientReportPB {

MailParamBlockHeader

MailMsgRef mailMsgRef;

short recipientIndex; /* recipient index in the original letter */

OSErr result; /* result of sending to the recipient */

};

typedef struct MSAMPutRecipientReportPB MSAMPutRecipientReportPB;

struct MailWakeupPMSAMPB {

MailParamBlockHeader

CreationID pmsamCID;

MailSlotID mailSlotID;

};

typedef struct MailWakeupPMSAMPB MailWakeupPMSAMPB;

struct MailCreateMailSlotPB {

MailParamBlockHeader

MailboxRef mailboxRef;

long timeout;

CreationID pmsamCID;

SMCA smca;

};

typedef struct MailCreateMailSlotPB MailCreateMailSlotPB;

struct MailModifyMailSlotPB {

MailParamBlockHeader

MailboxRef mailboxRef;

long timeout;

CreationID pmsamCID;

SMCA smca;

};

typedef struct MailModifyMailSlotPB MailModifyMailSlotPB;

C H A P T E R 2

Messaging Service Access Modules

Summary of the MSAM Interface 2-261

union MSAMParam {

struct {MailParamBlockHeader} header;

PMSAMGetMSAMRecordPB pmsamGetMSAMRecord;

PMSAMOpenQueuesPB pmsamOpenQueues;

PMSAMSetStatusPB pmsamSetStatus;

PMSAMLogErrorPB pmsamLogError;

SMSAMSetupPB smsamSetup;

SMSAMStartupPB smsamStartup;

SMSAMShutdownPB smsamShutdown;

MSAMEnumeratePB msamEnumerate;

MSAMDeletePB msamDelete;

MSAMOpenPB msamOpen;

MSAMOpenNestedPB msamOpenNested;

MSAMClosePB msamClose;

MSAMGetMsgHeaderPB msamGetMsgHeader;

MSAMGetAttributesPB msamGetAttributes;

MSAMGetRecipientsPB msamGetRecipients;

MSAMGetContentPB msamGetContent;

MSAMGetEnclosurePB msamGetEnclosure;

MSAMEnumerateBlocksPB msamEnumerateBlocks;

MSAMGetBlockPB msamGetBlock;

MSAMMarkRecipientsPB msamMarkRecipients;

MSAMnMarkRecipientsPB msamnMarkRecipients;

MSAMCreatePB msamCreate;

MSAMBeginNestedPB msamBeginNested;

MSAMEndNestedPB msamEndNested;

MSAMSubmitPB msamSubmit;

MSAMPutMsgHeaderPB msamPutMsgHeader;

MSAMPutAttributePB msamPutAttribute;

MSAMPutRecipientPB msamPutRecipient;

MSAMPutContentPB msamPutContent;

MSAMPutEnclosurePB msamPutEnclosure;

MSAMPutBlockPB msamPutBlock;

MSAMCreateReportPB msamCreateReport;

MSAMPutRecipientReportPB msamPutRecipientReport;

C H A P T E R 2

Messaging Service Access Modules

2-262 Summary of the MSAM Interface

PMSAMCreateMsgSummaryPB pmsamCreateMsgSummary;

PMSAMPutMsgSummaryPB pmsamPutMsgSummary;

PMSAMGetMsgSummaryPB pmsamGetMsgSummary;

MailWakeupPMSAMPB wakeupPMSAM;

MailCreateMailSlotPB createMailSlot;

MailModifyMailSlotPB modifyMailSlot;

};

typedef union MSAMParam MSAMParam;

MSAM Functions

Initializing an MSAM

pascal OSErr PMSAMGetMSAMRecord(MSAMParam *paramBlock);

pascal OSErr PMSAMOpenQueues(MSAMParam *paramBlock);

pascal OSErr SMSAMSetup(MSAMParam *paramBlock);

pascal OSErr SMSAMStartup(MSAMParam *paramBlock);

Enumerating Messages in a Queue

pascal OSErr MSAMEnumerate(MSAMParam *paramBlock, Boolean asyncFlag);

Opening an Outgoing Message

pascal OSErr MSAMOpen(MSAMParam *paramBlock, Boolean asyncFlag);

Reading Header Information

pascal OSErr MSAMGetAttributes(MSAMParam *paramBlock, Boolean asyncFlag);

pascal OSErr MSAMGetRecipients(MSAMParam *paramBlock, Boolean asyncFlag);

pascal OSErr MSAMGetMsgHeader(MSAMParam *paramBlock, Boolean asyncFlag);

Reading a Message

pascal OSErr MSAMGetContent(MSAMParam *paramBlock, Boolean asyncFlag);

pascal OSErr MSAMGetEnclosure(MSAMParam *paramBlock, Boolean asyncFlag);

pascal OSErr MSAMEnumerateBlocks(MSAMParam *paramBlock, Boolean asyncFlag);

pascal OSErr MSAMGetBlock(MSAMParam *paramBlock, Boolean asyncFlag);

pascal OSErr MSAMOpenNested(MSAMParam *paramBlock, Boolean asyncFlag);

Marking a Recipient

pascal OSErr MSAMnMarkRecipients(MSAMParam *paramBlock, Boolean asyncFlag);

pascal OSErr MSAMMarkRecipients(MSAMParam *paramBlock, Boolean asyncFlag);

C H A P T E R 2

Messaging Service Access Modules

Summary of the MSAM Interface 2-263

Closing a Message

pascal OSErr MSAMClose(MSAMParam *paramBlock, Boolean asyncFlag);

Creating, Reading, and Writing Message Summaries
pascal OSErr PMSAMCreateMsgSummary(MSAMParam *paramBlock, Boolean asyncFlag);

pascal OSErr PMSAMGetMsgSummary(MSAMParam *paramBlock, Boolean asyncFlag);

pascal OSErr PMSAMPutMsgSummary(MSAMParam *paramBlock, Boolean asyncFlag);

Creating a Message

pascal OSErr MSAMCreate(MSAMParam *paramBlock, Boolean asyncFlag);

Writing Header Information

pascal OSErr MSAMPutAttribute(MSAMParam *paramBlock, Boolean asyncFlag);

pascal OSErr MSAMPutRecipient(MSAMParam *paramBlock, Boolean asyncFlag);

pascal OSErr MSAMPutMsgHeader(MSAMParam *paramBlock, Boolean asyncFlag);

Writing a Message

pascal OSErr MSAMPutContent(MSAMParam *paramBlock, Boolean asyncFlag);

pascal OSErr MSAMPutEnclosure(MSAMParam *paramBlock);

pascal OSErr MSAMPutBlock(MSAMParam *paramBlock, Boolean asyncFlag);

pascal OSErr MSAMBeginNested(MSAMParam *paramBlock, Boolean asyncFlag);

pascal OSErr MSAMEndNested(MSAMParam *paramBlock);

Submitting a Message

pascal OSErr MSAMSubmit(MSAMParam *paramBlock);

Deleting a Message

pascal OSErr MSAMDelete(MSAMParam *paramBlock, Boolean asyncFlag);

Generating Log Entries and Reports

pascal OSErr PMSAMLogError(MSAMParam *paramBlock);

pascal OSErr MSAMCreateReport(MSAMParam *paramBlock, Boolean asyncFlag);

pascal OSErr MSAMPutRecipientReport(MSAMParam *paramBlock, Boolean asyncFlag);

Shutting Down a Server MSAM

pascal OSErr SMSAMShutdown(MSAMParam *paramBlock, Boolean asyncFlag);

C H A P T E R 2

Messaging Service Access Modules

2-264 Summary of the MSAM Interface

Setting Message Status

pascal OSErr PMSAMSetStatus(MSAMParam *paramBlock, Boolean asyncFlag);

Personal MSAM AOCE Template Functions

pascal OSErr MailCreateMailSlot(MSAMParam *paramBlock);

pascal OSErr MailModifyMailSlot(MSAMParam *paramBlock);

pascal OSErr MailWakeupPMSAM(MSAMParam *paramBlock);

Application-Defined Function

void MyCompletionRoutine(MSAMParam *paramBlock);

Pascal Summary

Data Types and Constants

CONST

{ predefined message creator and message type }

kMailAppleMailCreator = 'apml'; { message creator }

kMailLtrMsgType = 'lttr'; { message type for letter, report }

{ predefined block creator and block types }

kMailAppleMailCreator = 'apml'; { block creator }

kMailLtrHdrType = 'lthd'; { letter header }

kMailContentType = 'body'; { content of letter }

kMailEnclosureListType = 'elst'; { list of enclosures }

kMailEnclosureDesktopType = 'edsk'; { Desktop Mgr info for enclosures }

kMailEnclosureFileType = 'asgl'; { a file enclosure }

kMailImageBodyType = 'imag'; { image of letter }

kMailMSAMType = 'gwyi'; { MSAM-specific information }

kMailReportType = 'rpti'; { report info }

{ families used for mail or related msgs }

kMailFamily = 'mail'; { letter with content block or

 content enclosure }

kMailFamilyFile = 'file'; { letter without content block or

 content enclosure }

kMailResolvedList = 0; { MailAttributeID value for resolved

recipient list }

C H A P T E R 2

Messaging Service Access Modules

Summary of the MSAM Interface 2-265

{ bit flags of MailAttributeID type }

kMailLetterFlagsBit = 1; { letter flags bit }

kMailIndicationsBit = 3; { indications bit }

kMailMsgTypeBit = 4; { letter creator & type bit }

kMailLetterIDBit = 5; { letter ID bit }

kMailSendTimeStampBit = 6; { send timestamp bit }

kMailNestingLevelBit = 7; { nesting level bit }

kMailMsgFamilyBit = 8; { message family bit }

kMailReplyIDBit = 9; { reply ID bit }

kMailConversationIDBit = 10; { conversation ID bit }

kMailSubjectBit = 11; { subject bit }

kMailFromBit = 12; { From recipient bit }

kMailToBit = 13; { To recipient bit }

kMailCcBit = 14; { cc recipient bit }

kMailBccBit = 15; { bcc recipient bit }

{ Values of MailAttributeMask data type. The masks are defined for use

 with the MailAttributeBitmap data type. However, because the

 MailAttributeBitmap data type is defined as a bit field structure, and the

 masks operate on variables of type LONGINT, you cannot use these masks to

 set or test the value of a bit field in a MailAttributeBitmap structure. The

 masks are included for historical reasons only. }

kMailLetterFlagsMask = $00000001;{1<<(kMailLetterFlagsBit-1)}

kMailIndicationsMask = $00000004;{1<<(kMailIndicationsBit-1)}

kMailMsgTypeMask = $00000008;{1<<(kMailMsgTypeBit-1)}

kMailLetterIDMask = $00000010;{1<<(kMailLetterIDBit-1)}

kMailSendTimeStampMask = $00000020;{1<<(kMailSendTimeStampBit-1)}

kMailNestingLevelMask = $00000040;{1<<(kMailNestingLevelBit-1)}

kMailMsgFamilyMask = $00000080;{1<<(kMailMsgFamilyBit-1)}

kMailReplyIDMask = $00000100;{1<<(kMailReplyIDBit-1)}

kMailConversationIDMask = $00000200;{1<<(kMailConversationIDBit-1)}

kMailSubjectMask = $00000400;{1<<(kMailSubjectBit-1)}

kMailFromMask = $00000800;{1<<(kMailFromBit-1)}

kMailToMask = $00001000;{1<<(kMailToBit-1)}

kMailCcMask = $00002000;{1<<(kMailCcBit-1)}

kMailBccMask = $00004000;{1<<(kMailBccBit-1)}

{ bit flags of MailIndications type }

kMailOriginalInReportBit = 1;

kMailNonReceiptReportsBit = 3;

kMailReceiptReportsBit = 4;

kMailForwardedBit = 5;

kMailPriorityBit = 6;

kMailIsReportWithOriginalBit = 8;

C H A P T E R 2

Messaging Service Access Modules

2-266 Summary of the MSAM Interface

kMailIsReportBit = 9;

kMailHasContentBit = 10;

kMailHasSignatureBit = 11;

kMailAuthenticatedBit = 12;

kMailSentBit = 13;

{ Masks for bits of MailIndications type. Because the MailIndications data

 type is defined as a bit field structure, and the masks operate on variables

 of type LONGINT, you cannot use the masks to set or test the value of a bit

 field in a MailIndications structure. The masks are included for

 historical reasons only}

kMailSentMask = $00001000; {1<<(kMailSentBit-1),

kMailAuthenticatedMask = $00000800; {1<<(kMailAuthenticatedBit-1),

kMailHasSignatureMask = $00000400; {1<<(kMailHasSignatureBit-1),

kMailHasContentMask = $00000200; {1<<(kMailHasContentBit-1),

kMailIsReportMask = $00000100; {1<<(kMailIsReportBit-1),

kMailIsReportWithOriginalMask = $00000080;

{1<<(kMailIsReportWithOriginalBit-1),

kMailPriorityMask = $00000060; {3<<(kMailPriorityBit-1),

kMailForwardedMask = $00000010; {1<<(kMailForwardedBit-1),

kMailReceiptReportsMask = $00000008; {1<<(kMailReceiptReportsBit-1),

kMailNonReceiptReportsMask = $00000004; {1<<(kMailNonReceiptReportsBit-1),

kMailOriginalInReportMask = $00000003; {3<<(kMailOriginalInReportBit-1);

{ Bit values of the originalInReport field in MailIndications }

kMailNoOriginal = 0; { do not enclose original in report }

kMailEncloseOnNonReceipt= 3; { enclose original in non-delivery

indication }

{ values of MailSegmentType type}

kMailInvalidSegmentType = 0;

kMailTextSegmentType = 1;

kMailPictSegmentType = 2;

kMailSoundSegmentType = 3;

kMailStyledTextSegmentType = 4;

kMailMovieSegmentType = 5;

kMailTextSegmentBit = 0;

kMailPictSegmentBit = 1;

kMailSoundSegmentBit = 2;

kMailStyledTextSegmentBit = 3;

kMailMovieSegmentBit = 4;

C H A P T E R 2

Messaging Service Access Modules

Summary of the MSAM Interface 2-267

{ values of MailSegmentMask type }

kMailTextSegmentMask = $0001; {1<<kMailTextSegmentBit}

kMailPictSegmentMask = $0002; {1<<kMailPictSegmentBit}

kMailSoundSegmentMask = $0004; {1<<kMailSoundSegmentBit}

kMailStyledTextSegmentMask = $0008; {1<<kMailStyledTextSegmentBit}

kMailMovieSegmentMask = $0010; {1<<kMailMovieSegmentBit}

{ values of MailBlockMode type }

kMailFromStart = 1; { write data at offset from start of block }

kMailFromLEOB = 2; { write data at offset from end of block }

kMailFromMark = 3; { write data at offset from the current mark }

{ bit values of MailLetterSystemFlags type }

kMailIsLocalBit = 2; { letter is available locally }

kMailIsLocalMask = $0004; {1<<kMailIsLocalBit}

{ bit values of MailLetterUserFlags type }

kMailReadBit = 0; { letter has been opened }

kMailDontArchiveBit = 1; { reserved }

kMailInTrashBit = 2; { reserved }

kMailReadMask = $0001; {1<<kMailReadBit}

kMailDontArchiveMask = $0002; {1<<kMailDontArchiveBit}

kMailInTrashMask = $0004; {1<<kMailInTrashBit}

kMailErrorLogEntryVersion = $101;

{ 'STR#' resource IDs for personal MSAM's error and action messages }

kMailMSAMErrorStringListID = 128; { list of error message strings }

kMailMSAMActionStringListID = 129; { list of action message strings }

{ values of MailLogErrorType type}

kMailELECorrectable = 0; { error correctable by user }

kMailELEError = 1; { error not correctable by user }

kMailELEWarning = 2; { warning requiring no user intervention }

kMailELEInformational = 3; { informational message }

{ values of MailLogErrorCode type }

kMailMSAMErrorCode= 0; { MSAM-defined error }

kMailMiscError = -1; { miscellaneous error }

kMailNoModem = -2; { modem required, but missing }

kMailMsgSummaryVersion = 1;

C H A P T E R 2

Messaging Service Access Modules

2-268 Summary of the MSAM Interface

kMailMaxPMSAMMsgSummaryData = 128; { maximum bytes for private MSAM

message summary data }

{ defines for the addressedToMe field in MailCoreData }

kAddressedAs_TO = 1;

kAddressedAs_CC = 2;

kAddressedAs_BCC = 4;

kMailTimerOff = 0; { no timer specified }

kMailTimerTime = 1; { timer relative to midnight }

kMailTimerFrequency = 2; { frequency timer }

{ values of PMSAMStatus type }

kPMSAMStatusPending = 1; { for outQueue }

kPMSAMStatusError = 2; { for inQueue letters }

kPMSAMStatusSending = 3; { for outQueue }

kPMSAMStatusCaching = 4; { for inQueue letters }

kPMSAMStatusSent = 5; { for outQueue }

kMailEPPCMsgVersion = 3;

{ values of AOCE high-level event message classes }

kMailEPPCCreateSlot = 'crsl';

kMailEPPCModifySlot = 'mdsl';

kMailEPPCDeleteSlot = 'dlsl';

kMailEPPCShutDown = 'quit';

kMailEPPCMailboxOpened = 'mbop';

kMailEPPCMailboxClosed = 'mbcl';

kMailEPPCMsgPending = 'msgp';

kMailEPPCSendImmediate = 'sndi';

kMailEPPCContinue = 'cont';

kMailEPPCSchedule = 'sked';

kMailEPPCAdmin = 'admn';

kMailEPPCInQUpdate = 'inqu';

kMailEPPCMsgOpened = 'msgo';

kMailEPPCDeleteOutQMsg = 'dlom';

kMailEPPCWakeup = 'wkup';

kMailEPPCLocationChanged = 'locc'

{ values of SMSAMAdminCode type }

kSMSAMNotifyFwdrSetupChange= 1;

kSMSAMNotifyFwdrNameChange = 2;

kSMSAMNotifyFwdrPwdChange = 3;

kSMSAMGetDynamicFwdrParams = 4;

C H A P T E R 2

Messaging Service Access Modules

Summary of the MSAM Interface 2-269

kSMSAMFwdrHomeInternetChangedBit = 0;

kSMSAMFwdrConnectedToChangedBit = 1;

kSMSAMFwdrForeignRLIsChangedBit = 2;

kSMSAMFwdrMnMServerChangedBit = 3;

{ values of SMSAMSlotChanges type }

kSMSAMFwdrEverythingChangedMask = -1,

kSMSAMFwdrHomeInternetChangedMask = $00000001;

{1<<kSMSAMFwdrHomeInternetChangedBit}

kSMSAMFwdrConnectedToChangedMask = $00000002;

{1<<kSMSAMFwdrConnectedToChangedBit}

kSMSAMFwdrForeignRLIsChangedMask = $00000004;

{1<<kSMSAMFwdrForeignRLIsChangedBit}

kSMSAMFwdrMnMServerChangedMask = $00000008;

{1<<kSMSAMFwdrMnMServerChangedBit}

kOCESetupLocationNone = 0; { disconnect state }

kOCESetupLocationMax = 8; { maximum location value }

TYPE

MailMsgRef = LONGINT; { reference to new/open letter or message }

MSAMQueueRef = LONGINT; { reference to an open MSAM queue }

MSAMSlotID = INTEGER; { slot identifier }

MailSlotID = INTEGER; { identifies slots within a mailbox }

MailboxRef = LONGINT; { reference to an active mailbox }

MailAttributeID = INTEGER; { letter attribute identifier }

{ The MailAttributeMask data type defines a set of masks for the

 MailAttributeBitmap data type. However, because the MailAttributeBitmap data

 type is defined as a bit field structure, and the masks operate on variables

 of type LONGINT, you cannot use the masks to set or test the value of a bit

 field in a MailAttributeBitmap structure. The MailAttributeMask data type is

 included for historical reasons only. }

MailAttributeMask = LONGINT;

MailLetterID = IPMMsgID;

MailNestingLevel = INTEGER;

MailRecipient = OCERecipient;

C H A P T E R 2

Messaging Service Access Modules

2-270 Summary of the MSAM Interface

MailSegmentMask = INTEGER;

MailSegmentType = INTEGER;

MailBlockMode = INTEGER;

PMSAMStatus = INTEGER;

OCESetupLocation = Byte; { current system location }

MailLocationFlags = Byte; { slot location flags }

MailBuffer = RECORD

bufferSize: LONGINT; { size of your buffer }

buffer: Ptr; { pointer to your buffer }

dataSize: LONGINT; { amount of data returned in or read out

of your buffer }

END;

MailReply = RECORD

tupleCount: INTEGER;

{ tuple[1..tupleCount] }

END;

MSAMEnumerateOutQReply = PACKED RECORD

seqNum: LONGINT; { sequence number of message }

done: BOOLEAN; { resolution of message }

priority: IPMPriority; { priority of message }

msgFamily: OSType { message family }

approxSize: LONGINT; { size of message }

tunnelForm: BOOLEAN; { reserved }

padByte: Byte; { for even byte boundary }

nextHop: NetworkSpec; { reserved }

msgType: OCECreatorType;{ message creator and type }

END;

MSAMEnumerateInQReply = RECORD

seqNum: LONGINT; { letter sequence number }

msgDeleted: BOOLEAN; { should letter be deleted? }

msgUpdated: BOOLEAN; { was message summary updated? }

msgCached: BOOLEAN; { is letter in the incoming queue? }

{padByte: Byte;}

END;

C H A P T E R 2

Messaging Service Access Modules

Summary of the MSAM Interface 2-271

MailAttributeBitmap = PACKED RECORD

reservedA: 0..65535;{ reserved }

reservedB: 0..1; { reserved }

bcc: 0..1; { blind carbon copy recipients }

cc: 0..1; { carbon copy recipients }

toRecipient: 0..1; { to recipients }

from: 0..1; { sender of letter }

subject: 0..1; { subject of letter }

conversationID:0..1; { ID of conversation thread }

replyID: 0..1; { ID of letter being replied to }

msgFamily: 0..1; { message family }

nestingLevel: 0..1; { nesting level of letter }

sendTimeStamp: 0..1; { time letter was sent }

letterID: 0..1; { letter's unique ID number }

msgType: 0..1; { letter's creator and type }

indications: 0..1; { MailIndications }

reservedC: 0..1; { reserved }

letterFlags: 0..1; { letter flags }

END;

MailIndications = PACKED RECORD

reservedB: 0..65535;{ reserved }

hasStandardContent: 0..1; { letter has a content block }

hasImageContent: 0..1; { letter has an image block }

hasNativeContent: 0..1; { letter has a content enclosure }

sent: 0..1; { letter was sent, not just composed }

authenticated: 0..1; { letter was created and transported with

authentication }

hasSignature: 0..1; { letter was signed with digital signature }

hasContent: 0..1; { this letter or nested letter has content }

isReport: 0..1; { letter is a report }

isReportWithOriginal: 0..1; { report contains the original letter }

priority: 0..3; { letter has normal, low, or high priority }

forwarded: 0..1; { letter contains a forwarded letter }

receiptReports: 0..1; { originator requests delivery indications }

nonReceiptReports: 0..1; { originator requests non-delivery

indications }

originalInReport: 0..3; { originator wants original letter

enclosed in reports }

END;

C H A P T E R 2

Messaging Service Access Modules

2-272 Summary of the MSAM Interface

OCERecipient = RECORD

entitySpecifier: ^RecordID;

extensionType: OSType;

extensionSize: INTEGER;

extensionValue: Ptr;

END;

OCEPackedRecipient = RECORD

dataLength: INTEGER; { length of recipient data }

data: PACKED ARRAY[1..kPackedDSSpecMaxBytes] OF Byte;

END;

MailOriginalRecipient = RECORD

index: INTEGER; { index for recipient }

{ Followed by OCEPackedRecipient }

END;

MailResolvedRecipient = PACKED RECORD

index: INTEGER; { index for recipient }

recipientFlags: INTEGER; { recipient information }

responsible: BOOLEAN; { responsible for delivery? }

padByte: Byte;

{ followed by OCEPackedRecipient }

END;

MailEnclosureInfo = RECORD

enclosureName: StringPtr; { name of the enclosure }

catInfo: CInfoPBPtr; { HFS catalog info about enclosure }

comment: StringPtr; { comment for Get-Info window }

icon: Ptr; { icon for enclosure file }

END;

MailLogErrorType = INTEGER;

MailLogErrorCode = INTEGER;

MailErrorLogEntryInfo = RECORD

version: INTEGER; { log entry version }

timeOccurred: UTCTime; { time of error }

reportingPMSAM: Str31; { which MSAM? }

reportingMSAMSlot: Str31; { which slot? }

errorType: MailLogErrorType; { level of error }

errorCode: MailLogErrorCode; { error code }

C H A P T E R 2

Messaging Service Access Modules

Summary of the MSAM Interface 2-273

errorResource: INTEGER; { error string resource index }

actionResource: INTEGER; { action string resource index }

filler: LONGINT; { reserved }

filler2: INTEGER; { reserved }

END;

MailMasterData = RECORD

attrMask: MailAttributeBitmap; { indicates attributes present in

MSAMMsgSummary }

messageID: MailLetterID; { ID of this letter }

replyID: MailLetterID; { ID of letter this is a reply to }

conversationID: MailLetterID; { ID of letter that started this

conversation}

END;

MailCoreData = RECORD

letterFlags: MailLetterFlags; { letter status flags }

messageSize: LONGINT; { size of letter }

letterIndications: MailIndications; { indications for this letter }

messageType: OCECreatorType; { message creator and type of

this letter }

sendTime: MailTime; { time this letter was sent }

messageFamily: OSType; { message family }

reserved unsigned char;

addressedToMe unsigned char;

agentInfo: ARRAY[1..2] OF Byte; { reserved }

{ sender and subject are variable length and even padded }

sender: RString32; { sender of this letter }

subject: RString32; { subject of this letter }

END;

MSAMMsgSummary = RECORD

version: INTEGER; { version of the MSAMMsgSummary }

msgDeleted: BOOLEAN; { true if letter is to be deleted by MSAM }

msgUpdated: BOOLEAN; { true if MSAMMsgSummary was updated by IPM

Manager }

msgCached: BOOLEAN; { true if letter is in the incoming queue }

{padByte: Byte;}

masterData: MailMasterData; { attributes not essential to display }

coreData: MailCoreData; { attributes critical to display }

{ followed by the personal MSAM's private data }

END;

C H A P T E R 2

Messaging Service Access Modules

2-274 Summary of the MSAM Interface

MailLocationInfo = RECORD

location: OCESetupLocation; { the current location }

active: MailLocationFlags; { slot’s location flags }

END;

MailEPPCMsg = RECORD

version: INTEGER; { message version }

CASE INTEGER OF

1. (smca: ^SMCA); { pointer to SMCA }

2. (sequenceNumber: LONGINT); { letter sequence number }

3. (locationInfo: MailLocationInfo);{ location information }

END;

SMCA = RECORD

smcaLength: INTEGER; { length of entire SMCA, including size of

smcaLength field }

result: OSErr; { result code }

userBytes: LONGINT; { command interpreted user data }

CASE INTEGER OF

1: (slotCID: CreationID); { creation ID of record

containing slot information }

2: (msgHint: LONGINT); { message reference value }

END;

SMSAMAdminCode = INTEGER;

SMSAMAdminEPPCRequest = RECORD

adminCode: SMSAMAdminCode; { admin code }

CASE INTEGER OF

1: (setupChange: SMSAMSetupChange); { setup change }

2: (nameChange: SMSAMNameChange); { reserved }

3: (passwordChange: SMSAMPasswordChange); { reserved }

4: (dynamicParams: SMSAMDynamicParams); { reserved }

END;

SMSAMSlotChanges = LONGINT;

SMSAMSetupChange = RECORD

whatChanged: SMSAMSlotChanges; { bitmap of changed parameters }

serverHint: AddrBlock; { AOCE server address }

END;

C H A P T E R 2

Messaging Service Access Modules

Summary of the MSAM Interface 2-275

SMSAMNameChange = RECORD { reserved data type }

newName: RString; { server MSAM's new name }

serverHint: AddrBlock; { AOCE server address }

END;

SMSAMPasswordChange = RECORD { reserved data type }

newPassword: RString; { server MSAM's new password }

serverHint: AddrBlock; { AOCE server address }

END;

SMSAMDynamicParams = RECORD { reserved data type }

curDiskUsed: LONGINT; { disk space used }

curMemoryUsed: LONGINT; { memory used }

END;

MailTime = RECORD

time: UTCTime; { current UTC(GMT) }

offset: UTCOffset; { offset from UTC }

END;

MailTimer = RECORD

CASE INTEGER OF

1: (frequency: LONGINT); { how often to connect }

2: (connectTime: LONGINT); { time since midnight }

END;

MailTimerKind = Byte;

MailTimers = PACKED RECORD

sendTimeKind: MailTimerKind; { timer kind for sending }

receiveTimeKind: MailTimerKind; { timer kind for receiving }

send: MailTimer; { connect time or frequency

for sending letters }

receive: MailTimer; { connect time or frequency

for sending letters }

END;

MailStandardSlotInfoAttribute = PACKED RECORD

version: INTEGER; { MSAM version of the slot }

active: MailLocationFlags; { active at location i if

MailLocation Mask(i) is set }

padByte: Byte;

sendReceiveTimer: MailTimers;

END;

C H A P T E R 2

Messaging Service Access Modules

2-276 Summary of the MSAM Interface

MailLetterSystemFlags= INTEGER;

MailLetterUserFlags = INTEGER;

MailLetterFlags = RECORD

sysFlags: MailLetterSystemFlags; { system flags }

userFlags: MailLetterUserFlags; { user flags }

END;

MailMaskedLetterFlags = RECORD

flagMask: MailLetterFlags; { flags that are to be set }

flagValues: MailLetterFlags; { their values }

END;

MailBlockInfo = RECORD

blockType: OCECreatorType;

offset: LONGINT;

blockLength: LONGINT;

END;

MailParamBlockHeader = RECORD

qLink: Ptr; { next queue entry }

reservedH1: LONGINT; { reserved }

reservedH2: LONGINT; { reserved }

ioCompletion: ProcPtr; { pointer to completion routine }

ioResult: OSErr; { result code }

saveA5: LONGINT; { pointer to global variables }

reqCode: INTEGER; { reserved }

END;

PMSAMGetMSAMRecordPB = RECORD

qLink: Ptr; { next queue entry }

reservedH1: LONGINT; { reserved }

reservedH2: LONGINT; { reserved }

ioCompletion: ProcPtr; { pointer to completion routine }

ioResult: OSErr; { result code }

saveA5: LONGINT; { pointer to global variables }

reqCode: INTEGER; { reserved }

msamCID: CreationID;

END;

PMSAMOpenQueuesPB = RECORD

qLink: Ptr; { next queue entry }

reservedH1: LONGINT; { reserved }

reservedH2: LONGINT; { reserved }

C H A P T E R 2

Messaging Service Access Modules

Summary of the MSAM Interface 2-277

ioCompletion: ProcPtr; { pointer to completion routine }

ioResult: OSErr; { result code }

saveA5: LONGINT; { pointer to global variables }

reqCode: INTEGER; { reserved }

inQueueRef: MSAMQueueRef;

outQueueRef: MSAMQueueRef;

msamSlotID: MSAMSlotID;

filler: ARRAY[1..2] OF LONGINT;

END;

PMSAMSetStatusPB = RECORD

qLink: Ptr; { next queue entry }

reservedH1: LONGINT; { reserved }

reservedH2: LONGINT; { reserved }

ioCompletion: ProcPtr; { pointer to completion routine }

ioResult: OSErr; { result code }

saveA5: LONGINT; { pointer to global variables }

reqCode: INTEGER; { reserved }

queueRef: MSAMQueueRef;

seqNum: LONGINT;

msgHint: LONGINT;

status: PMSAMStatus;

END;

PMSAMLogErrorPB = RECORD

qLink: Ptr; { next queue entry }

reservedH1: LONGINT; { reserved }

reservedH2: LONGINT; { reserved }

ioCompletion: ProcPtr; { pointer to completion routine }

ioResult: OSErr; { result code }

saveA5: LONGINT; { pointer to global variables }

reqCode: INTEGER; { reserved }

msamSlotID: MSAMSlotID;

logEntry: ^MailErrorLogEntryInfo;

filler: ARRAY[1..2] OF LONGINT;

END;

PMSAMCreateMsgSummaryPB = RECORD

qLink: Ptr; { next queue entry }

reservedH1: LONGINT; { reserved }

reservedH2: LONGINT; { reserved }

ioCompletion: ProcPtr; { pointer to completion routine }

ioResult: OSErr; { result code }

saveA5: LONGINT; { pointer to global variables }

C H A P T E R 2

Messaging Service Access Modules

2-278 Summary of the MSAM Interface

reqCode: INTEGER; { reserved }

inQueueRef: MSAMQueueRef;

seqNum: LONGINT; { seq of the new letter }

msgSummary: ^MSAMMsgSummary;

buffer: ^MailBuffer;{ PMSAM specific data }

END;

PMSAMPutMsgSummaryPB = RECORD

qLink: Ptr; { next queue entry }

reservedH1: LONGINT; { reserved }

reservedH2: LONGINT; { reserved }

ioCompletion: ProcPtr; { pointer to completion routine }

ioResult: OSErr; { result code }

saveA5: LONGINT; { pointer to global variables }

reqCode: INTEGER; { reserved }

inQueueRef: MSAMQueueRef;

seqNum: LONGINT;

letterFlags: ^MailMaskedLetterFlags;

buffer: ^MailBuffer; { PMSAM private data }

END;

PMSAMGetMsgSummaryPB = RECORD

qLink: Ptr; { next queue entry }

reservedH1: LONGINT; { reserved }

reservedH2: LONGINT; { reserved }

ioCompletion: ProcPtr; { pointer to completion routine }

ioResult: OSErr; { result code }

saveA5: LONGINT; { pointer to global variables }

reqCode: INTEGER; { reserved }

inQueueRef: MSAMQueueRef;

seqNum: LONGINT;

msgSummary: ^MSAMMsgSummary;

buffer: ^MailBuffer;{ PMSAM private data }

msgSummaryOffset: INTEGER; { offset of PMSAM private data }

{ from start of MsgSummary }

END;

SMSAMSetupPB = RECORD

qLink: Ptr; { next queue entry }

reservedH1: LONGINT; { reserved }

reservedH2: LONGINT; { reserved }

ioCompletion: ProcPtr; { pointer to completion routine }

ioResult: OSErr; { result code }

saveA5: LONGINT; { pointer to global variables }

C H A P T E R 2

Messaging Service Access Modules

Summary of the MSAM Interface 2-279

reqCode: INTEGER; { reserved }

serverMSAM RecordIDPtr;

password RStringPtr;

gatewayType OSType;

gatewayTypeDescription RStringPtr;

catalogServerHint AddrBlock;

END;

SMSAMStartupPB = RECORD

qLink: Ptr; { next queue entry }

reservedH1: LONGINT; { reserved }

reservedH2: LONGINT; { reserved }

ioCompletion: ProcPtr; { pointer to completion routine }

ioResult: OSErr; { result code }

saveA5: LONGINT; { pointer to global variables }

reqCode: INTEGER; { reserved }

msamIdentity: AuthIdentity;

queueRef: MSAMQueueRef;

END;

SMSAMShutdownPB = RECORD

qLink: Ptr; { next queue entry }

reservedH1: LONGINT; { reserved }

reservedH2: LONGINT; { reserved }

ioCompletion: ProcPtr; { pointer to completion routine }

ioResult: OSErr; { result code }

saveA5: LONGINT; { pointer to global variables }

reqCode: INTEGER; { reserved }

queueRef: MSAMQueueRef;

END;

MSAMEnumeratePB = RECORD

qLink: Ptr; { next queue entry }

reservedH1: LONGINT; { reserved }

reservedH2: LONGINT; { reserved }

ioCompletion: ProcPtr; { pointer to completion routine }

ioResult: OSErr; { result code }

saveA5: LONGINT; { pointer to global variables }

reqCode: INTEGER; { reserved }

queueRef: MSAMQueueRef;

startSeqNum: LONGINT;

nextSeqNum: LONGINT;

buffer: MailBuffer;

END;

C H A P T E R 2

Messaging Service Access Modules

2-280 Summary of the MSAM Interface

MSAMDeletePB = PACKED RECORD

qLink: Ptr; { next queue entry }

reservedH1: LONGINT; { reserved }

reservedH2: LONGINT; { reserved }

ioCompletion: ProcPtr; { pointer to completion routine }

ioResult: OSErr; { result code }

saveA5: LONGINT; { pointer to global variables }

reqCode: INTEGER; { reserved }

queueRef: MSAMQueueRef;

seqNum: LONGINT;

msgOnly: BOOLEAN; { only valid for PMSAM & inQueue }

padByte: Byte;

result: OSErr; { reserved }

END;

MSAMOpenPB = RECORD

qLink: Ptr; { next queue entry }

reservedH1: LONGINT; { reserved }

reservedH2: LONGINT; { reserved }

ioCompletion: ProcPtr; { pointer to completion routine }

ioResult: OSErr; { result code }

saveA5: LONGINT; { pointer to global variables }

reqCode: INTEGER; { reserved }

queueRef: MSAMQueueRef;

seqNum: LONGINT;

mailMsgRef: MailMsgRef;

END;

MSAMOpenNestedPB = RECORD

qLink: Ptr; { next queue entry }

reservedH1: LONGINT; { reserved }

reservedH2: LONGINT; { reserved }

ioCompletion: ProcPtr; { pointer to completion routine }

ioResult: OSErr; { result code }

saveA5: LONGINT; { pointer to global variables }

reqCode: INTEGER; { reserved }

mailMsgRef: MailMsgRef;

nestedRef: MailMsgRef;

END;

MSAMClosePB = RECORD

qLink: Ptr; { next queue entry }

reservedH1: LONGINT; { reserved }

reservedH2: LONGINT; { reserved }

C H A P T E R 2

Messaging Service Access Modules

Summary of the MSAM Interface 2-281

ioCompletion: ProcPtr; { pointer to completion routine }

ioResult: OSErr; { result code }

saveA5: LONGINT; { pointer to global variables }

reqCode: INTEGER; { reserved }

mailMsgRef: MailMsgRef;

END;

MSAMGetMsgHeaderPB = RECORD

qLink: Ptr; { next queue entry }

reservedH1: LONGINT; { reserved }

reservedH2: LONGINT; { reserved }

ioCompletion: ProcPtr; { pointer to completion routine }

ioResult: OSErr; { result code }

saveA5: LONGINT; { pointer to global variables }

reqCode: INTEGER; { reserved }

mailMsgRef: MailMsgRef;

selector: IPMHeaderSelector;

offset: LONGINT;

buffer: MailBuffer;

remaining: LONGINT;

END;

MSAMGetAttributesPB = RECORD

qLink: Ptr; { next queue entry }

reservedH1: LONGINT; { reserved }

reservedH2: LONGINT; { reserved }

ioCompletion: ProcPtr; { pointer to completion routine }

ioResult: OSErr; { result code }

saveA5: LONGINT; { pointer to global variables }

reqCode: INTEGER; { reserved }

mailMsgRef: MailMsgRef;

requestMask: MailAttributeBitmap;

buffer: MailBuffer;

responseMask: MailAttributeBitmap;

more: BOOLEAN;

END;

MSAMGetRecipientsPB = RECORD

qLink: Ptr; { next queue entry }

reservedH1: LONGINT; { reserved }

reservedH2: LONGINT; { reserved }

ioCompletion: ProcPtr; { pointer to completion routine }

ioResult: OSErr; { result code }

saveA5: LONGINT; { pointer to global variables }

C H A P T E R 2

Messaging Service Access Modules

2-282 Summary of the MSAM Interface

reqCode: INTEGER; { reserved }

mailMsgRef: MailMsgRef;

attrID: MailAttributeID;

startIndex: INTEGER;

buffer: MailBuffer;

nextIndex: INTEGER;

more: BOOLEAN;

END;

MSAMGetContentPB = RECORD
qLink: Ptr; { next queue entry }

reservedH1: LONGINT; { reserved }

reservedH2: LONGINT; { reserved }

ioCompletion: ProcPtr; { pointer to completion routine }
ioResult: OSErr; { result code }

saveA5: LONGINT; { pointer to global variables }

reqCode: INTEGER; { reserved }

mailMsgRef: MailMsgRef;
segmentMask: MailSegmentMask;

buffer: MailBuffer;

textScrap: ^StScrpRec;

script: ScriptCode;
segmentType: MailSegmentType;

endOfScript: BOOLEAN;

endOfSegment: BOOLEAN;

endOfContent: BOOLEAN;
segmentLength: LONGINT;

segmentID: LONGINT;

END;

MSAMGetEnclosurePB = PACKED RECORD
qLink: Ptr; { next queue entry }

reservedH1: LONGINT; { reserved }

reservedH2: LONGINT; { reserved }

ioCompletion: ProcPtr; { pointer to completion routine }
ioResult: OSErr; { result code }

saveA5: LONGINT; { pointer to global variables }

reqCode: INTEGER; { reserved }

mailMsgRef: MailMsgRef;
contentEnclosure: BOOLEAN;

padByte: Byte;

buffer: MailBuffer;

endOfFile: BOOLEAN;
endOfEnclosures: BOOLEAN;

END;

C H A P T E R 2

Messaging Service Access Modules

Summary of the MSAM Interface 2-283

MSAMEnumerateBlocksPB = RECORD

qLink: Ptr; { next queue entry }

reservedH1: LONGINT; { reserved }

reservedH2: LONGINT; { reserved }

ioCompletion: ProcPtr; { pointer to completion routine }

ioResult: OSErr; { result code }

saveA5: LONGINT; { pointer to global variables }

reqCode: INTEGER; { reserved }

mailMsgRef: MailMsgRef;

startIndex: INTEGER; { starts at 1 }

buffer: MailBuffer;

nextIndex: INTEGER;

more: BOOLEAN;

END;

MSAMGetBlockPB = PACKED RECORD
qLink: Ptr; { next queue entry }

reservedH1: LONGINT; { reserved }

reservedH2: LONGINT; { reserved }

ioCompletion: ProcPtr; { pointer to completion routine }
ioResult: OSErr; { result code }

saveA5: LONGINT; { pointer to global variables }

reqCode: INTEGER; { reserved }

mailMsgRef: MailMsgRef;
blockType: OCECreatorType;

blockIndex: INTEGER;

buffer: MailBuffer;

dataOffset: LONGINT;
endOfBlock: BOOLEAN;

padByte: Byte;

remaining: LONGINT;

END;

MSAMMarkRecipientsPB = RECORD

qLink: Ptr; { next queue entry }

reservedH1: LONGINT; { reserved }

reservedH2: LONGINT; { reserved }
ioCompletion: ProcPtr; { pointer to completion routine }

ioResult: OSErr; { result code }

saveA5: LONGINT; { pointer to global variables }

reqCode: INTEGER; { reserved }
queueRef: MSAMQueueRef;

seqNum: LONGINT;

buffer: MailBuffer;

END;

C H A P T E R 2

Messaging Service Access Modules

2-284 Summary of the MSAM Interface

MSAMnMarkRecipientsPB = RECORD

qLink: Ptr; { next queue entry }

reservedH1: LONGINT; { reserved }

reservedH2: LONGINT; { reserved }

ioCompletion: ProcPtr; { pointer to completion routine }

ioResult: OSErr; { result code }

saveA5: LONGINT; { pointer to global variables }

reqCode: INTEGER; { reserved }

mailMsgRef: MailMsgRef;

buffer: MailBuffer;

END;

MSAMCreatePB = RECORD

qLink: Ptr; { next queue entry }

reservedH1: LONGINT; { reserved }

reservedH2: LONGINT; { reserved }

ioCompletion: ProcPtr; { pointer to completion routine }

ioResult: OSErr; { result code }

saveA5: LONGINT; { pointer to global variables }

reqCode: INTEGER; { reserved }

queueRef: MSAMQueueRef;

asLetter: BOOLEAN; { create as letter or message? }

msgType: IPMMsgType;

refCon: LONGINT; { for non-letter messages only }

seqNum: LONGINT;

tunnelForm: BOOLEAN; { always false }

bccRecipients: BOOLEAN; { true if creating letter with bcc recipients }

newRef: MailMsgRef;

END;

MSAMBeginNestedPB = RECORD

qLink: Ptr; { next queue entry }

reservedH1: LONGINT; { reserved }

reservedH2: LONGINT; { reserved }

ioCompletion: ProcPtr; { pointer to completion routine }

ioResult: OSErr; { result code }

saveA5: LONGINT; { pointer to global variables }

reqCode: INTEGER; { reserved }

mailMsgRef: MailMsgRef;

refCon: LONGINT; { for messages only }

msgType: IPMMsgType;

END;

C H A P T E R 2

Messaging Service Access Modules

Summary of the MSAM Interface 2-285

MSAMEndNestedPB = RECORD

qLink: Ptr; { next queue entry }

reservedH1: LONGINT; { reserved }

reservedH2: LONGINT; { reserved }

ioCompletion: ProcPtr; { pointer to completion routine }

ioResult: OSErr; { result code }

saveA5: LONGINT; { pointer to global variables }

reqCode: INTEGER; { reserved }

mailMsgRef: MailMsgRef;

END;

MSAMSubmitPB = PACKED RECORD

qLink: Ptr; { next queue entry }

reservedH1: LONGINT; { reserved }

reservedH2: LONGINT; { reserved }

ioCompletion: ProcPtr; { pointer to completion routine }

ioResult: OSErr; { result code }

saveA5: LONGINT; { pointer to global variables }

reqCode: INTEGER; { reserved }

mailMsgRef: MailMsgRef; { message reference number }

submitFlag: BOOLEAN; { submit or delete message? }

padByte: Byte;

msgID: MailLetterID; { reserved }

END;

MSAMPutMsgHeaderPB = PACKED RECORD

qLink: Ptr; { next queue entry }

reservedH1: LONGINT; { reserved }

reservedH2: LONGINT; { reserved }

ioCompletion: ProcPtr; { pointer to completion routine }

ioResult: OSErr; { result code }

saveA5: LONGINT; { pointer to global variables }

reqCode: INTEGER; { reserved }

mailMsgRef: MailMsgRef;

replyQueue: ^OCERecipient;

sender: ^IPMSender;

deliveryNotification: IPMNotificationType;

priority: IPMPriority;

END;

C H A P T E R 2

Messaging Service Access Modules

2-286 Summary of the MSAM Interface

MSAMPutAttributePB = RECORD

qLink: Ptr; { next queue entry }

reservedH1: LONGINT; { reserved }

reservedH2: LONGINT; { reserved }

ioCompletion: ProcPtr; { pointer to completion routine }

ioResult: OSErr; { result code }

saveA5: LONGINT; { pointer to global variables }

reqCode: INTEGER; { reserved }

mailMsgRef: MailMsgRef;

attrID: MailAttributeID;

buffer: MailBuffer;

END;

MSAMPutRecipientPB = RECORD

qLink: Ptr; { next queue entry }

reservedH1: LONGINT; { reserved }

reservedH2: LONGINT; { reserved }

ioCompletion: ProcPtr; { pointer to completion routine }

ioResult: OSErr; { result code }

saveA5: LONGINT; { pointer to global variables }

reqCode: INTEGER; { reserved }

mailMsgRef: MailMsgRef;

attrID: MailAttributeID;

recipient: ^MailRecipient;

responsible: BOOLEAN; { for server and message msams only }

END;

MSAMPutContentPB = PACKED RECORD

qLink: Ptr; { next queue entry }

reservedH1: LONGINT; { reserved }

reservedH2: LONGINT; { reserved }

ioCompletion: ProcPtr; { pointer to completion routine }

ioResult: OSErr; { result code }

saveA5: LONGINT; { pointer to global variables }

reqCode: INTEGER; { reserved }

mailMsgRef: MailMsgRef;

segmentType: MailSegmentType;

append: BOOLEAN;

padByte: Byte;

buffer: MailBuffer;

textScrap: ^StScrpRec;

startNewScript:BOOLEAN;

script: ScriptCode;

END;

C H A P T E R 2

Messaging Service Access Modules

Summary of the MSAM Interface 2-287

MSAMPutEnclosurePB = RECORD

qLink: Ptr; { next queue entry }

reservedH1: LONGINT; { reserved }

reservedH2: LONGINT; { reserved }

ioCompletion: ProcPtr; { pointer to completion routine }

ioResult: OSErr; { result code }

saveA5: LONGINT; { pointer to global variables }

reqCode: INTEGER; { reserved }

mailMsgRef: MailMsgRef;

contentEnclosure: BOOLEAN;

padByte: BOOLEAN;

hfs: BOOLEAN; { true = in file system, false = in memory }

append: BOOLEAN;

buffer: MailBuffer;

enclosure: FSSpec;

addlInfo: MailEnclosureInfo;

END;

MSAMPutBlockPB = RECORD

qLink: Ptr; { next queue entry }

reservedH1: LONGINT; { reserved }

reservedH2: LONGINT; { reserved }

ioCompletion: ProcPtr; { pointer to completion routine }

ioResult: OSErr; { result code }

saveA5: LONGINT; { pointer to global variables }

reqCode: INTEGER; { reserved }

mailMsgRef: MailMsgRef;

refCon: LONGINT; { for messages only }

blockType: OCECreatorType;

append: BOOLEAN;

buffer: MailBuffer;

mode: MailBlockMode;

offset: LONGINT;

END;

MSAMCreateReportPB = RECORD

qLink: Ptr; { next queue entry }

reservedH1: LONGINT; { reserved }

reservedH2: LONGINT; { reserved }

ioCompletion: ProcPtr; { pointer to completion routine }

ioResult: OSErr; { result code }

saveA5: LONGINT; { pointer to global variables }

reqCode: INTEGER; { reserved }

queueRef: MSAMQueueRef; { to distinguish personal and server MSAMs }

C H A P T E R 2

Messaging Service Access Modules

2-288 Summary of the MSAM Interface

mailMsgRef: MailMsgRef;

msgID: MailLetterID; { of letter being reported upon }

sender: ^MailRecipient;{ sender of the letter you’re reporting on }

END;

MSAMPutRecipientReportPB = RECORD

qLink: Ptr; { next queue entry }

reservedH1: LONGINT; { reserved }

reservedH2: LONGINT; { reserved }

ioCompletion: ProcPtr; { pointer to completion routine }

ioResult: OSErr; { result code }

saveA5: LONGINT; { pointer to global variables }

reqCode: INTEGER; { reserved }

mailMsgRef: MailMsgRef;

recipientIndex: INTEGER; { recipient index in the original letter }

result: OSErr; { result of sending the recipient }

END;

MailWakeupPMSAMPB = RECORD

qLink: Ptr; { next queue entry }

reservedH1: LONGINT; { reserved }

reservedH2: LONGINT; { reserved }

ioCompletion: ProcPtr; { pointer to completion routine }

ioResult: OSErr; { result code }

saveA5: LONGINT; { pointer to global variables }

reqCode: INTEGER; { reserved }

pmsamCID: CreationID;

mailSlotID: MailSlotID;

END;

MailCreateMailSlotPB = RECORD

qLink: Ptr; { next queue entry }

reservedH1: LONGINT; { reserved }

reservedH2: LONGINT; { reserved }

ioCompletion: ProcPtr; { pointer to completion routine }

ioResult: OSErr; { result code }

saveA5: LONGINT; { pointer to global variables }

reqCode: INTEGER; { reserved }

mailboxRef: MailboxRef;

timeout: LONGINT;

pmsamCID: CreationID;

smca: SMCA;

END;

C H A P T E R 2

Messaging Service Access Modules

Summary of the MSAM Interface 2-289

MailModifyMailSlotPB = RECORD

qLink: Ptr; { next queue entry }

reservedH1: LONGINT; { reserved }

reservedH2: LONGINT; { reserved }

ioCompletion: ProcPtr; { pointer to completion routine }

ioResult: OSErr; { result code }

saveA5: LONGINT; { pointer to global variables }

reqCode: INTEGER; { reserved }

mailboxRef: MailboxRef;

timeout: LONGINT;

pmsamCID: CreationID;

smca: SMCA;

END;

MSAMParam = RECORD

CASE INTEGER OF

1: (header: MailParamBlockHeader);

2: (pmsamGetMSAMRecord: PMSAMGetMSAMRecordPB);

3: (pmsamOpenQueues: PMSAMOpenQueuesPB);

4: (pmsamSetStatus: PMSAMSetStatusPB);

5: (pmsamLogError: PMSAMLogErrorPB);

6: (smsamSetup: SMSAMSetupPB);

7: (smsamStartup: SMSAMStartupPB);

8: (smsamShutdown: SMSAMShutdownPB);

9: (msamEnumerate: MSAMEnumeratePB);

10: (msamDelete: MSAMDeletePB);

11: (msamOpen: MSAMOpenPB);

12: (msamOpenNested: MSAMOpenNestedPB);

13: (msamClose: MSAMClosePB);

14: (msamGetMsgHeader: MSAMGetMsgHeaderPB);

15: (msamGetAttributes: MSAMGetAttributesPB);

16: (msamGetRecipients: MSAMGetRecipientsPB);

17: (msamGetContent: MSAMGetContentPB);

18: (msamGetEnclosure: MSAMGetEnclosurePB);

19: (msamEnumerateBlocks: MSAMEnumerateBlocksPB);

20: (msamGetBlock: MSAMGetBlockPB);

21: (msamMarkRecipients: MSAMMarkRecipientsPB);

22: (msamnMarkRecipients: MSAMnMarkRecipientsPB);

23: (msamCreate: MSAMCreatePB);

24: (msamBeginNested: MSAMBeginNestedPB);

25: (msamEndNested: MSAMEndNestedPB);

26: (msamSubmit: MSAMSubmitPB);

27: (msamPutMsgHeader: MSAMPutMsgHeaderPB);

28: (msamPutAttribute: MSAMPutAttributePB);

C H A P T E R 2

Messaging Service Access Modules

2-290 Summary of the MSAM Interface

29: (msamPutRecipient: MSAMPutRecipientPB);

30: (msamPutContent: MSAMPutContentPB);

31: (msamPutEnclosure: MSAMPutEnclosurePB);

32: (msamPutBlock: MSAMPutBlockPB);

33: (msamCreateReport: MSAMCreateReportPB);

34: (msamPutRecipientReport: MSAMPutRecipientReportPB);

35: (pmsamCreateMsgSummary: PMSAMCreateMsgSummaryPB);

36: (pmsamPutMsgSummary: PMSAMPutMsgSummaryPB);

37: (pmsamGetMsgSummary: PMSAMGetMsgSummaryPB);

38: (wakeupPMSAM: MailWakeupPMSAMPB);

39: (createMailSlot: MailCreateMailSlotPB);

40: (modifyMailSlot: MailModifyMailSlotPB);

END;

MSAM Functions

Initializing an MSAM

FUNCTION PMSAMGetMSAMRecord(VAR paramBlock: MSAMParam): OSErr;

FUNCTION PMSAMOpenQueues(VAR paramBlock: MSAMParam): OSErr;

FUNCTION SMSAMSetup(VAR paramBlock: MSAMParam): OSErr;

FUNCTION SMSAMStartup(VAR paramBlock: MSAMParam): OSErr;

Enumerating Messages in a Queue
FUNCTION MSAMEnumerate(VAR paramBlock: MSAMParam; asyncFlag: BOOLEAN): OSErr;

Opening an Outgoing Message

FUNCTION MSAMOpen(VAR paramBlock: MSAMParam; asyncFlag: BOOLEAN): OSErr;

Reading Header Information
FUNCTION MSAMGetAttributes(VAR paramBlock: MSAMParam; asyncFlag: BOOLEAN):

OSErr;

FUNCTION MSAMGetRecipients(VAR paramBlock: MSAMParam; asyncFlag: BOOLEAN):
OSErr;

FUNCTION MSAMGetMsgHeader(VAR paramBlock: MSAMParam; asyncFlag: BOOLEAN):
OSErr;

C H A P T E R 2

Messaging Service Access Modules

Summary of the MSAM Interface 2-291

Reading a Message

FUNCTION MSAMGetContent(VAR paramBlock: MSAMParam; asyncFlag: BOOLEAN):
OSErr;

FUNCTION MSAMGetEnclosure(VAR paramBlock: MSAMParam; asyncFlag: BOOLEAN):
OSErr;

FUNCTION MSAMEnumerateBlocks(VAR paramBlock: MSAMParam; asyncFlag:
BOOLEAN): OSErr;

FUNCTION MSAMGetBlock(VAR paramBlock: MSAMParam; asyncFlag: BOOLEAN): OSErr;

FUNCTION MSAMOpenNested(VAR paramBlock: MSAMParam; asyncFlag: BOOLEAN):
OSErr;

Marking a Recipient
FUNCTION MSAMnMarkRecipients(VAR paramBlock: MSAMParam; asyncFlag:

BOOLEAN): OSErr;

FUNCTION MSAMMarkRecipients(VAR paramBlock: MSAMParam; asyncFlag: BOOLEAN):
OSErr;

Closing a Message

FUNCTION MSAMClose(VAR paramBlock: MSAMParam; asyncFlag: BOOLEAN): OSErr;

Creating, Reading, and Writing Message Summaries
FUNCTION PMSAMCreateMsgSummary(VAR paramBlock: MSAMParam; asyncFlag:

BOOLEAN): OSErr;

FUNCTION PMSAMGetMsgSummary(VAR paramBlock: MSAMParam; asyncFlag: BOOLEAN):
OSErr;

FUNCTION PMSAMPutMsgSummary(VAR paramBlock: MSAMParam; asyncFlag: BOOLEAN):
OSErr;

Creating a Message

FUNCTION MSAMCreate(VAR paramBlock: MSAMParam; asyncFlag: BOOLEAN): OSErr;

Writing Header Information
FUNCTION MSAMPutAttribute(VAR paramBlock: MSAMParam; asyncFlag: BOOLEAN):

OSErr;

FUNCTION MSAMPutRecipient(VAR paramBlock: MSAMParam; asyncFlag: BOOLEAN):
OSErr;

FUNCTION MSAMPutMsgHeader(VAR paramBlock: MSAMParam; asyncFlag: BOOLEAN):
OSErr;

C H A P T E R 2

Messaging Service Access Modules

2-292 Summary of the MSAM Interface

Writing a Message

FUNCTION MSAMPutContent(VAR paramBlock: MSAMParam; asyncFlag: BOOLEAN):
OSErr;

FUNCTION MSAMPutEnclosure(VAR paramBlock: MSAMParam): OSErr;

FUNCTION MSAMPutBlock(VAR paramBlock: MSAMParam; asyncFlag: BOOLEAN): OSErr;

FUNCTION MSAMBeginNested(VAR paramBlock: MSAMParam; asyncFlag: BOOLEAN):
OSErr;

FUNCTION MSAMEndNested(VAR paramBlock: MSAMParam): OSErr;

Submitting a Message
FUNCTION MSAMSubmit(VAR paramBlock: MSAMParam): OSErr;

Deleting a Message

FUNCTION MSAMDelete(VAR paramBlock: MSAMParam; asyncFlag: BOOLEAN): OSErr;

Generating Log Entries and Reports
FUNCTION PMSAMLogError(VAR paramBlock: MSAMParam): OSErr;

FUNCTION MSAMCreateReport(VAR paramBlock: MSAMParam; asyncFlag: BOOLEAN):
OSErr;

FUNCTION MSAMPutRecipientReport(VAR paramBlock: MSAMParam; asyncFlag:
BOOLEAN): OSErr;

Shutting Down a Server MSAM

FUNCTION SMSAMShutdown(VAR paramBlock: MSAMParam; asyncFlag: BOOLEAN): OSErr;

Setting Message Status

FUNCTION PMSAMSetStatus(VAR paramBlock: MSAMParam; asyncFlag: BOOLEAN):
OSErr;

Personal MSAM AOCE Template Functions

FUNCTION MailCreateMailSlot(VAR paramBlock: MSAMParam): OSErr;

FUNCTION MailModifyMailSlot(VAR paramBlock: MSAMParam): OSErr;

FUNCTION MailWakeupPMSAM(VAR paramBlock: MSAMParam): OSErr;

Application-Defined Routine

PROCEDURE MyCompletionRoutine(VAR paramBlock: MSAMParam);

C H A P T E R 2

Messaging Service Access Modules

Summary of the MSAM Interface 2-293

Assembly-Language Summary

Trap Macros

Trap Macros Requiring Routine Selectors

_oceTBDispatch

Selector Routine

$0500 PMSAMOpenQueues

$0501 SMSAMStartup

$0502 SMSAMShutdown

$0503 MSAMEnumerate

$0504 MSAMDelete

$0505 MSAMMarkRecipients

$0506 PMSAMGetMSAMRecord

$0507 MailWakeupPMSAM

$0508 MSAMOpen

$0509 MSAMOpenNested

$050A MSAMClose

$050B MSAMGetAttributes

$050C MSAMGetRecipients

$050D MSAMGetContent

$050E MSAMGetEnclosure

$050F MSAMEnumerateBlocks

$0510 MSAMGetBlock

$0511 MSAMGetMsgHeader

$0512 MSAMnMarkRecipients

$0514 MSAMCreate

$0515 MSAMBeginNested

$0516 MSAMEndNested

$0517 MSAMSubmit

$0518 MSAMPutAttribute

$0519 MSAMPutRecipient

$051A MSAMPutContent

$051B MSAMPutEnclosure

$051C MSAMPutBlock

$051D MSAMPutMsgHeader

$051F MSAMCreateReport

C H A P T E R 2

Messaging Service Access Modules

2-294 Summary of the MSAM Interface

Result Codes

$0520 MSAMPutRecipientReport

$0521 PMSAMLogError

$0522 PMSAMCreateMsgSummary

$0523 SMSAMSetup

$0525 PMSAMPutMsgSummary

$0526 PMSAMGetMsgSummary

$0527 PMSAMSetStatus

$052B MailCreateMailSlot

$052C MailModifyMailSlot

noErr 0 No error
corErr –3 PowerShare mail server not running
dskFulErr –34 All allocation blocks on the volume are full
kOCEParamErr –50 Invalid parameter
memFullErr –108 Not enough memory
noRelErr –1101 Timer expired before MSAM responded
kOCEToolboxNotOpen –1500 Collaboration toolbox is shutting down
kOCEInvalidRef –1502 Invalid message reference number
kOCEBufferTooSmall –1503 Buffer is too small
kOCEVersionErr –1504 Wrong version of nested message
kOCEInternalErr –1506 Serious internal error
kOCEAlreadyExists –1510 Duplicate recipient type
kIPMMsgTypeReserved –1511 Message creator and/or type specified not allowed
kOCEInvalidRecipient –1514 Bad recipient
kOCERefIsClosing –1516 IPM Manager is shutting down the personal MSAM, or

server MSAM’s mail server is shutting down
kOCEWriteAccessDenied –1541 Identity lacks write access privileges
kOCETargetDirectoryInaccessible

–1613 Target catalog is not currently available
kOCENoSuchDNode –1615 Can’t find specified dNode
kOCENoDupAllowed –1641 Duplicate record name and type
kMailInvalidOrder –15040 Content already closed
kMailInvalidSeqNum –15041 Invalid message sequence number
kMailHdrAttrMissing –15043 Required attribute not added to message
kMailBadEnclLengthErr –15044 Invalid data length
kMailInvalidRequest –15045 Reference number invalid with this request
kMailInvalidPostItVersion

–15046 Message summary is wrong version
kMailNotASlotInQ –15047 Invalid value for a slot’s incoming queue
kMailIgnoredErr –15053 MSAM ignored high-level event
kMailLengthErr –15054 Error occurred in sending the event
kMailTooManyErr –15055 IPM Manager or MSAM too busy to handle event
kMailNoMSAMErr –15056 No such MSAM

Selector Routine

C H A P T E R 2

Messaging Service Access Modules

Summary of the MSAM Interface 2-295

kMailSlotSuspended –15058 Slot is suspended
kMailMSAMSuspended –15059 MSAM is suspended
kMailBadSlotInfo –15060 Invalid slot information
kMailMalformedContent –15061 Content data malformed
kMailNoSuchSlot –15062 No such slot
kMailBadMSAM –15066 MSAM unusable for unspecified reason
kMailBadState –15068 Invalid status setting
kIPMInvalidMsgType –15091 Only kIPMOSFormatType allowed when creating a letter
kIPMBlkNotFound –15107 No such block

Contents 3-1

C H A P T E R 3

Catalog Service Access

Contents

Modules

Introduction to Catalog Service Access Modules 3-3

Components of a CSAM 3-5

Writing a Driver Resource for a CSAM 3-7

Responding to the Catalog Manager 3-10

The Catalog Service Function 3-11

The Parse Function 3-13

Determining the Version of the Catalog Manager 3-16

Indicating the Features You Support 3-16

Human Interface Considerations 3-22

Supporting Records Having the Same Name and Type 3-23

Supporting Multiple Attribute Values of the Same Type 3-23

Supporting Browsing and Finding 3-24

Supporting Large Catalogs 3-24

Supporting Attribute Lookups 3-26

Providing Access Controls 3-26

Handling Application Completion Routines 3-27

Catalog Service Access Module Reference 3-28

CSAM Functions 3-29

Initializing a CSAM 3-29

Adding a CSAM and Its Catalogs 3-31

Removing a CSAM and Its Catalogs 3-35

Application-Defined Functions 3-37

Resources 3-40

The Driver Resource 3-40

Summary of Catalog Service Access Modules 3-42

C Summary 3-42

Data Types and Constants 3-42

C H A P T E R 3

3-2 Contents

CSAM Functions 3-45

Application-Defined Functions 3-46

Pascal Summary 3-46

Data Types and Constants 3-46

CSAM Functions 3-51

Application-Defined Functions 3-51

Assembly-Language Summary 3-51

Trap Macros 3-51

Result Codes 3-52

C H A P T E R 3

Introduction to Catalog Service Access Modules 3-3

Catalog Service Access Modules

This chapter describes how to write a catalog service access module (CSAM), a device

driver that gives PowerTalk users access to external catalogs. Read this chapter if you

want to integrate an external catalog into an AOCE system. You do not need to read this

chapter if you simply want to use the Standard Catalog Package or the Catalog Manager

to obtain catalog services.

To write a CSAM, you must already be familiar with the Catalog Manager application

program interface (API). It is essential that you read the chapters “AOCE Utilities” and

“Catalog Manager” in Inside Macintosh: AOCE Application Interfaces before reading this

chapter. This chapter assumes that you understand the Catalog Manager’s functions and

data types.

Because a CSAM is implemented as a Macintosh device driver, you also need to be

familiar with the Device Manager. For information about the Device Manager and

writing a device driver, see Inside Macintosh: Devices.

To allow the user to add and remove your CSAM and its catalogs from an AOCE system,

you need to provide an AOCE setup template. The chapter “AOCE Templates” in Inside
Macintosh: AOCE Application Interfaces describes how to write an AOCE template. The

chapter “Service Access Module Setup” in this book describes the setup template

specifically, including how the setup template adds and removes a CSAM and its

catalogs from the Setup catalog.

This chapter provides a brief introduction to CSAMs. Then it describes

■ the components of a CSAM

■ a CSAM’s driver resource, including the Open and Close driver subroutines

■ a CSAM’s catalog service and parse functions, which respond to requests from clients
of the Catalog Manager

■ the method of indicating the features a catalog can support

■ the impact of various catalog features on the user’s experience with a catalog

Introduction to Catalog Service Access Modules

The Catalog Manager provides a consistent interface for applications that use AOCE

catalog services, regardless of whether the catalog is external to or part of AOCE

software. Apple PowerShare catalogs and personal catalogs are part of AOCE software.

Any other type of catalog is referred to as an external catalog. An external catalog is

made available within an AOCE system by means of a CSAM, which supports the

Catalog Manager API.

A CSAM provides these basic functions:

■ accepting Catalog Manager requests

■ translating the requests into a form that its external catalog understands

■ processing the requests, including activities such as obtaining information from the
external catalog and adding information to the external catalog

C H A P T E R 3

Catalog Service Access Modules

3-4 Introduction to Catalog Service Access Modules

■ translating information for the Catalog Manager client into AOCE data formats such
as records and attributes

■ returning the information to the Catalog Manager

AOCE data formats are described in detail in the chapter “AOCE Utilities.” The Catalog

Manager API is described in the chapter “Catalog Manager.” Both chapters are in Inside
Macintosh: AOCE Application Interfaces.

A CSAM is not invoked directly by an application but indirectly through the Catalog

Manager. The CSAM hides any underlying differences in how data is accessed and

stored in its external catalog. For example, suppose an application wants to add a record

to a catalog. The application calls the DirAddRecord function. If the target catalog is an

external catalog, the Catalog Manager passes the request to the CSAM that supports that

catalog. The CSAM then adds the record to its catalog and provides the creation ID of the

new record. Thus, a Catalog Manager client can interact with all catalogs in the same

way and can use standard AOCE data types to manipulate data. Figure 3-1 shows the

relationship of an application, the Catalog Manager, a CSAM, and an external catalog.

Although the figure shows a single external catalog, a CSAM can actually support any

number of catalogs. The application and the Catalog Manager communicate through the

Catalog Manager API. The Catalog Manager and the CSAM communicate through the

CSAM’s catalog service and parse functions, which are introduced in the next section.

Figure 3-1 Relationship of an application, the Catalog Manager, and a CSAM

C H A P T E R 3

Catalog Service Access Modules

Components of a CSAM 3-5

Every CSAM should support Catalog Manager requests to

■ examine the contents of a dNode by real-time browsing, a search mechanism, or both

■ enumerate the attribute types within a record

■ look up attribute values

■ detect changes within a dNode or a record

■ get access controls for a dNode, record, or attribute type

A CSAM resides on a user’s Macintosh computer and provides personal access to an

external catalog. The catalog itself can exist anywhere—on the user’s Macintosh, on a

network server, or at a remote site accessed by a modem connection.

You can package a CSAM as a stand-alone driver file or as part of an AOCE messaging

service access module. A messaging service access module (MSAM) translates and

transfers messages between an AOCE messaging system and another messaging system.

If you choose the stand-alone option, you provide a file of type 'dsam' that contains the

resources described in the section “Writing a Driver Resource for a CSAM” beginning on

page 3-7. The file must also contain the resources that constitute your setup template. If

you package your CSAM with a messaging service access module, include your CSAM,

its setup template, and the MSAM in a file of type 'csam' (for “combined SAM”).

MSAMs are documented in the chapter “Messaging Service Access Modules” in this

book. The setup template resources are described in the chapter “Service Access Module

Setup” in this book.

Note

For historical reasons, the string dsam (or DSAM) rather than csam
(or CSAM) is often part of a function name, field name, or data type name
referring to a CSAM. ◆

Components of a CSAM

A CSAM consists of two main components: a driver resource that includes at least your

driver’s Open and Close subroutines, and the collection of functions that implement

Catalog Manager functions. In addition, you must provide an AOCE setup template that

allows the user to add, remove, and configure the CSAM and its catalogs. It can be

helpful to think of the template as the third component of a CSAM product.

The setup template consists of a set of associated resources that reside in the resource

fork of the CSAM file. A template code resource calls the Catalog Manager functions that

add, remove, and configure the CSAM and its catalogs. The setup template is described

in the chapter “Service Access Module Setup” in this book. Figure 3-2 shows the calling

relationships between an application, a setup template, the Catalog Manager, the Device

Manager, and a CSAM.

C H A P T E R 3

Catalog Service Access Modules

3-6 Components of a CSAM

Figure 3-2 Calling relationships

Requests for catalog services tend to be real-time in nature. Because Macintosh device

drivers lend themselves to implementing real-time responses, you implement a CSAM

as a Macintosh device driver.

A CSAM has two interfaces to Macintosh system software—one through the Device

Manager and the other through the Catalog Manager. For the Device Manager interface,

you must provide Open and Close driver subroutines. The Catalog Manager calls the

Device Manager to open and close your driver. The Device Manager, in turn, calls your

driver’s Open and Close subroutines. You may provide the Prime, Status, and Control

driver subroutines in accordance with the needs of your driver, but the Catalog Manager

does not call these subroutines to communicate with your driver. The Open and Close

driver subroutines are described in the section “Writing a Driver Resource for a CSAM”

beginning on page 3-7. The Prime, Status, and Control driver subroutines are described

in Inside Macintosh: Devices.

For the Catalog Manager interface, you provide a catalog service function and a parse

function. When an application calls a Catalog Manager function, the Catalog Manager

calls the CSAM’s catalog service or parse function and passes it the application’s catalog

service request. A catalog service function accepts requests for catalog services from the

Catalog Manager and calls CSAM-defined routines to implement those services. A parse
function accepts requests to parse data about the CSAM’s catalogs and their contents

and calls CSAM-defined routines to implement those services.

Figure 3-3 illustrates who calls your driver subroutines and your catalog service and

parse functions.

C H A P T E R 3

Catalog Service Access Modules

Writing a Driver Resource for a CSAM 3-7

Figure 3-3 Who calls the CSAM driver subroutines and the catalog service and
parse functions

The sections that follow describe the CSAM’s driver resource and the CSAM catalog

service and parse functions.

Writing a Driver Resource for a CSAM

This section provides information about the required resources that constitute your

CSAM’s device driver.

The driver resource that you must provide in your CSAM, like all resources, has a type, a

resource ID, a resource name, and resource attributes. The resource type is 'DRVR'. You

may set your 'DRVR' resource ID to any valid value. The Catalog Manager properly

installs your driver. The 'DRVR' resource name must be the same as the name of your

driver. This point is illustrated later in this section.

For your driver to work properly with the Catalog Manager, you must configure your

'DRVR' resource as follows:

■ Set the resSysHeap resource attribute to guarantee that your driver is loaded into
the system heap.

■ Set the resLocked resource attribute so that your driver is always available and
nonrelocatable in memory.

You may set other attributes needed for your CSAM. See Inside Macintosh: Devices for

more detailed information about the 'DRVR' resource. See the chapter “Resource Manager”

in Inside Macintosh: More Macintosh Toolbox for information on resource attributes.

C H A P T E R 3

Catalog Service Access Modules

3-8 Writing a Driver Resource for a CSAM

A resource of type 'DRVR' contains header information and the driver’s subroutines.

The header information specifies certain settings for the driver and the offsets of the

Open, Close, Status, Prime, and Control subroutines. The book Inside Macintosh: Devices

provides information on setting up the header information. The header is followed by

the driver subroutines themselves. Listing 3-1 illustrates the header of a sample CSAM’s

driver resource in Rez format.

Listing 3-1 A sample CSAM’s driver resource header

#define DriverID 0x0b // unused, placeholder value

resource 'DRVR' (DriverID, ".SampleCSAM", sysheap, locked)

{

/* driver flags */

needLock, dontNeedTime, dontNeedGoodbye, noStatusEnable,

ctlEnable, noWriteEnable, noReadEnable,

0, /* driver delay in ticks */

0, /* desk accessory mask */

0, /* desk accessory menu */

".SampleCSAM", /* driver name */

/* the driver code follows the header fields */

};

Your Open subroutine handles initialization functions. It must do the following:

■ Allocate and initialize any memory required. You need to allocate memory now
because you cannot do so when the Catalog Manager calls your catalog service or
parse function with an asynchronous request. Your CSAM must allocate its memory
in the system heap and store the handle to the memory in the dCtlstorage field of
the device control entry (DCtlEntry) structure.

■ Call the DirInstantiateDSAM function to provide the Catalog Manager with
pointers to your catalog service and parse functions. You can also provide a pointer to
your private data, which the Catalog Manager passes back to you when it calls your
catalog service and parse functions.

■ Do any other preparation required to make the CSAM ready to receive and process
service requests.

Your Open subroutine is always called synchronously.

In your Close subroutine, you should release any memory that you allocated in your

Open subroutine. The Close subroutine is always called synchronously.

C H A P T E R 3

Catalog Service Access Modules

Writing a Driver Resource for a CSAM 3-9

Depending on the needs of your driver, your Status, Prime, and Control subroutines may

perform some work or simply return if called.

Note

The Device Manager interface requires you to use some assembly
language. You can write your driver subroutines in a high-level
language if you provide a dispatching mechanism, written in assembly
language, between the Device Manager and the subroutines. See Inside
Macintosh: Devices for instructions on writing subroutines in a high-level
language and for detailed descriptions of all of the driver subroutines. ◆

When writing a device driver, you ordinarily write software that installs the driver in

the Device Manager’s unit table and opens the driver. For a CSAM, you do not need

to provide software to install and open your driver directly. Instead, an AOCE setup

template that you provide calls the DirAddDSAM function. This causes the Catalog

Manager to install and open your driver. (Setup templates are discussed in the chapter

“Service Access Module Setup” in this book.)

In addition to the 'DRVR' resource, you must also provide a resource of type 'STR '

containing a single string that is both the name of your driver and the name of your

'DRVR' resource. This string resource must have the resource name DashName. If you

use another name for the string resource, the Catalog Manager will not be able to install

your driver. Listing 3-2 illustrates the string resource. The name contained in this string

resource must be the same as the name of the 'DRVR' resource.

Listing 3-2 A CSAM’s driver name string resource

/* The Driver's name must be in the resource named DashName." */

 resource 'STR ' (128, "DashName", purgeable) {

".SampleCSAM"

};

Listing 3-1, Listing 3-2, and Figure 3-4 illustrate the following example. A file named

My CSAM File contains a CSAM. The filename can be any string and is editable by

a user. The file contains a 'STR ' resource named DashName that contains the

string .SampleCSAM. The file also contains a 'DRVR' resource whose resource name

is .SampleCSAM. The driver itself is also named .SampleCSAM. The content of the

string resource, the name of the 'DRVR' resource, and the name of the driver are all

the same.

Note that a driver name should always start with a period, followed by printable

uppercase or lowercase characters, not to exceed a total of 31 characters.

C H A P T E R 3

Catalog Service Access Modules

3-10 Responding to the Catalog Manager

Figure 3-4 Relationship of 'DRVR' and 'STR ' resources

Responding to the Catalog Manager

When an application makes a request for catalog services and specifies an external

catalog for which your CSAM is responsible, the Catalog Manager calls your CSAM’s

catalog service or parse function. The catalog service and parse functions are essentially

dispatching functions that receive all Catalog Manager requests. They in turn call other

functions that you provide to service the request.

A CSAM does not need to support every function in the Catalog Manager API.

The Catalog Manager itself handles calls to the DirGetDirectoryInfo,

DirGetExtendedDirectoriesInfo, DirEnumerateDirectoriesGet, and

DirEnumerateDirectoriesParse functions and, therefore, does not pass these

requests to a CSAM. Other Catalog Manager functions that are not passed to a

CSAM include

■ DirAddADAPDirectory

■ DirNetSearchADAPDirectoriesGet

■ DirNetSearchADAPDirectoriesParse

■ DirFindADAPDirectoryByNetSearch

■ DirCreatePersonalDirectory

■ DirOpenPersonalDirectory

■ DirClosePersonalDirectory

■ DirMakePersonalDirectoryRLI

■ DirGetOCESetupRefNum

C H A P T E R 3

Catalog Service Access Modules

Responding to the Catalog Manager 3-11

You must provide a dispatch function. You can provide both a catalog service function

and a parse function for this purpose. However, because Catalog Manager request codes

for catalog service and parse requests do not overlap, you can process all Catalog

Manager requests through a single dispatch function. To do this, specify the same

address for your catalog service function and your parse function when you call the

DirInstantiateDSAM function.

The Catalog Service Function
The Catalog Manager calls your catalog service function when an application calls a

Catalog Manager function (other than one of the parse functions) and specifies a catalog

that you support. Your catalog service function must determine the type of request that

the application is making and then service that request.

The catalog service function has the following declaration:

pascal OSErr MyDSAMDirProc (Ptr dsamData,

DirParamBlockPtr paramBlock,

Boolean async);

The dsamData parameter contains the private value that you provided to the

DirInstantiateDSAM function in the dsamData field of that function’s parameter

block. You define this value for your own use. Typically, it is a pointer to your private

data area. The paramBlock parameter contains a pointer to the DirParamBlock

parameter block that the application provided to the Catalog Manager when the

application made the service request. The async parameter is a Boolean value that

specifies if the request must be processed synchronously or asynchronously. If this

parameter is true, you must process the request asynchronously; otherwise, you

process the request synchronously.

You determine the type of request by examining the reqCode field of the

DirParamBlock parameter block. Requests for catalog services map one-to-one to

functions in the Catalog Manager API. The method by which you service the request (that

is, implement the Catalog Manager function) is up to you. See the section “Data Types

and Constants” beginning on page 3-42 for a complete list of request codes for Catalog

Manager requests. See the function descriptions in the chapter “Catalog Manager” in

Inside Macintosh: AOCE Application Interfaces for information on the type of service each

function performs, the behavior of the function, and the information it returns.

When an application calls a Catalog Manager function synchronously, the Catalog

Manager passes the request to your CSAM within the calling application’s context.

Therefore, the CSAM can allocate, move, or purge memory and can call any function.

The CSAM must process a synchronous request immediately. (See Inside Macintosh:
Processes for a discussion of application context.)

When an application calls a Catalog Manager function asynchronously, the Catalog

Manager passes the request to your CSAM at interrupt time. You cannot allocate, move,

or purge memory at interrupt time, nor can you call a function that allocates, moves, or

purges memory. If you can service the asynchronous request immediately—that is, if you

C H A P T E R 3

Catalog Service Access Modules

3-12 Responding to the Catalog Manager

can service the request without performing tasks that are likely to consume a relatively

large amount of time, such as an I/O operation—do so. Otherwise, your catalog service

function should place the request in a private queue that it maintains and return control

to the Catalog Manager with a result code of noErr. The Catalog Manager will already

have set the ioResult field of the DirParamBlock parameter block to 1 before passing

the asynchronous request to your catalog service function. As your function receives

time to execute, service the request.

The CSAM can defer processing an asynchronous request until it is convenient to

complete the request. It can install a VBL task, a Time Manager task, a Deferred Task

Manager task, or a Notification Manager task to ensure that it receives system time

at some point in the future. See Inside Macintosh: Processes for more information on

these topics.

Note

When you have insufficient memory to service an asynchronous request,
you should return an error. However, before returning, you can attempt
to acquire additional memory for future requests. Set the dNeedTime
flag in the dCtlflags field in your driver’s DCtlEntry structure.
Later, after a process calls the SystemTask or WaitNextEvent
function, the Device Manager calls your Control subroutine with the
accRun control code. At this time, you can safely allocate memory.

Do not queue an asynchronous request for which you have insufficient
memory in the hope that you can acquire the memory later and
successfully complete the request. This may result in a system freeze
condition. ◆

Your catalog service function returns both a function result and a value in the ioResult

field of the DirParamBlock parameter block to indicate the outcome of its handling of

the request. For each type of service request (function) that you process, you should

return only those result codes that are defined by the Catalog Manager for the function.

The description of each Catalog Manager function provides the result codes that a given

function can return.

If your function was called synchronously, set the ioResult field and return the

appropriate function result code when you finish servicing the request.

If your function was called asynchronously, do the following when you finish servicing

the request: Set the ioResult field to the appropriate result code. If the application

provided a completion routine (the value of the ioCompletion field of the

DirParamBlock parameter block is not nil), restore the application’s A5 register by

setting register A5 to the value of the saveA5 field of the DirParamBlock parameter

block and call the application’s completion routine; otherwise, return. When the

completion routine returns control to your catalog service function, you may service

another pending request or return.

Listing 3-3 is an example of a simple catalog service function, the DoMyDSAMDirProc

function, that determines the type of request and then calls another function to service

the request. DoMyDSAMDirProc passes the called function a pointer to the CSAM’s

global data area, myGlobalInfoPtr. This is the value the CSAM originally gave to the

C H A P T E R 3

Catalog Service Access Modules

Responding to the Catalog Manager 3-13

Catalog Manager when it called the DirInstantiateDSAM function. The Catalog

Manager passes the value back to the catalog service function to use in servicing the

request. In this example, the functions that service a particular catalog service request,

such as the DoProcessDirGetDNodeMetaInfoReqt function, set the ioResult field

of the DirParamBlock parameter block. Before returning, the DoMyDSAMDirProc

function calls the DoProcessCallCompletion function, which calls the completion

routine if the calling application specified one. See Listing 3-6 on page 3-28 for an

example of calling an application’s completion routine.

Listing 3-3 A catalog service function

pascal OSErr DoMyDSAMDirProc(

register Ptr myGlobalInfoPtr,

register DirParamBlockPtr myParamBlock,

Boolean async)

{

switch (myParamBlock->header.reqCode) { /* determine type of request */

case kDirGetDirectoryIcon:

DoProcessDirGetDirIconRequest(myGlobalInfoPtr, myParamBlock, async);

break;

case kDirGetDNodeMetaInfo:

DoProcessDirGetDNodeMetaInfoReqt(myGlobalInfoPtr, myParamBlock, async);

break;

case kDirGetRecordMetaInfo:

DoProcessDirGetRecrdMetaInfoReqt(myGlobalInfoPtr, myParamBlock, async);

break;

/* process other catalog service requests */

}

return (DoProcessCallCompletion(myParamBlock->header.ioResult, async));

}

The Catalog Manager defers calling your catalog service function until a time, sometimes

called deferred-task time, when your function will work properly if the Macintosh is using

virtual memory. See Inside Macintosh: Memory for information about memory

management issues, including virtual memory.

The Parse Function
The Catalog Manager calls your parse function each time an application makes a parse

request for a catalog that you support. A parse request corresponds to one of the Catalog

Manager’s parse functions, such as DirLookupParse, DirEnumerateParse, and so

forth. Your parse function must determine the type of parse request that the application

is making and then service that request.

C H A P T E R 3

Catalog Service Access Modules

3-14 Responding to the Catalog Manager

The parse function has the following declaration:

pascal OSErr MyDSAMDirParseProc (Ptr dsamData,

DirParamBlockPtr paramBlock,

Boolean async);

The information in the section “The Catalog Service Function” beginning on page 3-11

also applies to the parse function. That information is not repeated here.

When you service a Catalog Manager parse request, you return information to the

application by two methods. The first method, common to all Catalog Manager requests,

consists of storing information in the appropriate fields of the DirParamBlock

parameter block. The second, unique to parse requests, consists of passing data in

predefined units to an application’s callback routine.

It might be helpful to review here how Catalog Manager parse functions work. Each

Catalog Manager parse function is paired with an associated get function. The

DirEnumerateDirectoriesGet/DirEnumerateDirectoriesParse and

DirLookupGet/DirLookupParse functions are examples of the get/parse function

pairs in the Catalog Manager API. An application calls a Catalog Manager get function

to obtain information about catalogs, records, attribute types, and so forth. If the target

catalog is a catalog that you support, the Catalog Manager calls your CSAM’s catalog

service function to service the request. You place the requested data into a buffer

provided by the application. You can use any format you wish for the data in this buffer;

the data is therefore unreadable by the application. To retrieve the data from the buffer in

a format that it understands, the application calls the corresponding Catalog Manager

parse function, providing a pointer to a callback routine. The Catalog Manager, in turn,

calls your CSAM’s parse function. Your parse function passes data to the application

by repeatedly calling the application’s callback routine, each time passing it a defined

chunk of data. The chapter “Catalog Manager” in Inside Macintosh: AOCE Application
Interfaces provides descriptions of the application callback routines associated with

different Catalog Manager parse functions and the type of data you need to return

with each.

Note

Not all Catalog Manager get/parse function pairs work in exactly the
same way. For example, most support starting or continuing an
enumeration from a specified starting point, but some do not. Be sure to
read the Catalog Manager function descriptions carefully to make sure
your CSAM properly implements the Catalog Manager functions. ◆

You determine which Catalog Manager function the application has called by examining

the reqCode field of the DirParamBlock parameter block. Then you process the

request, just as you would when servicing a catalog service request. In addition, you call

the application’s callback routine as part of processing every parse request. You must set

the A5 register to the value of the saveA5 field of the DirParamBlock parameter block

before calling the callback routine. You typically restore your own A5 register when you

regain control.

C H A P T E R 3

Catalog Service Access Modules

Responding to the Catalog Manager 3-15

Listing 3-4 illustrates how you call an application’s callback routine. The

DoEnumerateParse function is called by another CSAM function in the course

of servicing the parse request that results from an application calling the

DirEnumerateParse function. The DoEnumerateParse function gets a pointer to

the DirEnumerateParse function’s parameter block and a pointer to the buffer

the CSAM previously filled in response to the DirEnumerateGet function. The

application’s callback routine expects to get a DirEnumSpec structure that provides

information about one record, alias, pseudonym, or child dNode in a given dNode.

Inside its main processing loop, the DoEnumerateParse function performs the

following tasks:

■ It initializes the dataLength fields inside the DirEnumSpec structure to the
maximum size RString that the CSAM supports.

■ It calls its DoFillEnumSpec function to extract data about one record, alias,
pseudonym, or child dNode from the buffer the CSAM previously filled and
stores the data in a DirEnumSpec structure. If this function does not return the
noErr result code, DoEnumerateParse exits the loop immediately, knowing it
has extracted all the data from the buffer or it has encountered an error.

■ It sets register A5 to the application’s register A5 so the callback routine can access the
application’s global variables and saves its own register A5 value.

■ It calls the application’s callback routine, passing it the value of the clientData field
from the DirEnumerateParse parameter block and the enumeration specification
just constructed.

■ It restores register A5 to its own register A5 value.

The DoEnumerateParse function continues to execute the loop until it runs out of data

to parse or encounters an error, or until the application’s callback routine returns true.

Listing 3-4 Calling an application’s callback routine

OSErr DoEnumerateParse (DirParamBlockPtr myParamBlock, Ptr buffer)

{

DirEnumSpec enumSpec;

RString64 name, type;

long oldA5, saveSeq;

Boolean done = false;

OSErr myErr = 0;

enumSpec.u.recordIdentifier.recordName = (RString*)&name;

enumSpec.u.recordIdentifier.recordType = (RString*)&type;

enumSpec.indexRatio = 0;

while(!done) {

name.dataLength = kRString64Size;

type.dataLength = kRString64Size;

C H A P T E R 3

Catalog Service Access Modules

3-16 Indicating the Features You Support

/* extract data from the buffer and fill enumSpec appropriately */

myErr = DoFillEnumSpec(buffer, &enumSpec);

if (myErr != noErr) /* if no more data in the buffer, exit the loop */

break;

/* save my A5 register and call application's callback routine */

oldA5 = SetA5(myParamBlock->enumerateParsePB.saveA5);

done = (*myParamBlock->enumerateParsePB.eachEnumSpec)

(myParamBlock->enumerateParsePB.clientData, &enumSpec);

/* restore my A5 register */

(void) SetA5(oldA5);

}

return myErr;

}

To avoid problems when virtual memory is in use, you must call an application’s

callback routine at deferred-task time. See the chapters “Virtual Memory Manager” in

Inside Macintosh: Memory and “Deferred Task Manager” in Inside Macintosh: Processes for

more information on the handling of virtual memory and deferred tasks.

Determining the Version of the Catalog Manager
To determine the version of the Catalog Manager that is available, call the Gestalt

function with the selector gestaltOCEToolboxVersion. The function returns the

version number of the Collaboration toolbox in the low-order word of the response

parameter. For example, a value of 0x0101 indicates version 1.0.1. If the Collaboration

toolbox is not present and available, the Gestalt function returns 0 for the version

number. You can use the constant gestaltOCETB for AOCE Collaboration toolbox

version 1.0.

Indicating the Features You Support

A catalog may not support all of the features of the Catalog Manager API. Therefore,

you must identify to the Catalog Manager the features supported by each catalog to

which your CSAM provides access. The Catalog Manager API defines the data type

DirGestalt that consists of bits that specify the features supported by a given catalog.

This section defines those bits, sometimes referred to as feature flags or capability flags. The

support or lack thereof for certain features affects the human interface of some

components of PowerTalk. The impact of various feature settings on the human interface

is discussed in “Human Interface Considerations” beginning on page 3-22.

C H A P T E R 3

Catalog Service Access Modules

Indicating the Features You Support 3-17

The features represented by the bits can be grouped into six general categories (the

corresponding bits are listed for each category):

■ supplying identifying information

■ kSupportsDNodeNumberBit

■ kSupportsRecordCreationIDBit

■ kSupportsAttributeCreationIDBit

■ kSupportsPartialPathNamesBit

■ pattern-matching for record names in an enumeration

■ kSupportsMatchAllBit

■ kSupportsBeginsWithBit

■ kSupportsExactMatchBit

■ kSupportsEndsWithBit

■ kSupportsContainsBit

■ ordering the results of an enumeration

■ kSupportsOrderedEnumerationBit

■ kCanSupportNameOrderBit

■ kCanSupportTypeOrderBit

■ kSupportSortBackwardsBit

■ kSupportIndexRatioBit

■ enumerating from a specified starting point

■ kSupportsEnumerationContinueBit

■ kSupportsLookupContinueBit

■ kSupportsEnumerateAttributeTypeContinueBit

■ kSupportsEnumeratePseudonymContinueBit

■ other capabilities

■ kSupportsFindRecordBit

■ kSupportsAliasesBit

■ kSupportsPseudonymsBit

■ reserved features

■ kSupportsAuthenticationBit

■ kSupportsProxiesBit

The bits in a variable of type DirGestalt are defined as follows:

enum {

kSupportsDNodeNumberBit = 0,

kSupportsRecordCreationIDBit = 1,

kSupportsAttributeCreationIDBit = 2,

kSupportsMatchAllBit = 3,

kSupportsBeginsWithBit = 4,

kSupportsExactMatchBit = 5,

C H A P T E R 3

Catalog Service Access Modules

3-18 Indicating the Features You Support

kSupportsEndsWithBit = 6,

kSupportsContainsBit = 7,

kSupportsOrderedEnumerationBit = 8,

kCanSupportNameOrderBit = 9,

kCanSupportTypeOrderBit = 10,

kSupportSortBackwardsBit = 11,

kSupportIndexRatioBit = 12,

kSupportsEnumerationContinueBit = 13,

kSupportsLookupContinueBit = 14,

kSupportsEnumerateAttributeTypeContinueBit= 15,

kSupportsEnumeratePseudonymContinueBit = 16,

kSupportsAliasesBit = 17,

kSupportsPseudonymsBit = 18,

kSupportsPartialPathNamesBit = 19,

kSupportsAuthenticationBit = 20,

kSupportsProxiesBit = 21,

kSupportsFindRecordBit = 22

};

Bit descriptions

kSupportsDNodeNumberBit
Set this bit if the catalog can identify a dNode by a dNode number.
All catalogs must be able to identify a dNode by its pathname.

kSupportsRecordCreationIDBit
Set this bit if a catalog can identify a record by a record creation ID.
If a catalog cannot identify a record by a record creation ID, you
must set any record creation IDs that you return to 0. All catalogs
must support identification of records by record name and record
type. If a catalog does not additionally support record creation IDs,
the record name and record type must be unique for each record.
Note that to assure the proper behavior of aliases, a record creation
ID must persist through system shutdown and startup.

kSupportsAttributeCreationIDBit
Set this bit if a catalog can identify an attribute value by specifying
its attribute creation ID and attribute type. All catalogs must be able
to identify an attribute value by specifying the attribute value and
attribute type.

kSupportsMatchAllBit
Set this bit if the catalog supports browsing of record names
and record types; that is, when an application calls the
DirEnumerateGet or DirFindRecordGet function, the catalog
can service a request to return information about all the records
in a dNode or catalog.

C H A P T E R 3

Catalog Service Access Modules

Indicating the Features You Support 3-19

kSupportsBeginsWithBit
Set this bit if the catalog supports a search for record names and
record types beginning with a certain string; that is, when an
application calls the DirEnumerateGet or DirFindRecordGet
function, the catalog can service a request to provide information
about all records whose record name or record type begins with the
string provided by the application.

kSupportsExactMatchBit
Set this bit if the catalog supports a search for a record based on an
exact match with the record name or record type; that is, when an
application calls the DirEnumerateGet or DirFindRecordGet
function, the catalog can service a request to provide information
about the record whose record name or record type is provided by
the application.

kSupportsEndsWithBit
Set this bit if the catalog supports a search for record names and
record types ending with a certain string; that is, when an
application calls the DirEnumerateGet or DirFindRecordGet
function, the catalog can service a request to provide information
about all records whose record name or record type ends with the
string provided by the application.

kSupportsContainsBit
Set this bit if the catalog supports a search for record names and
record types that contain a certain string; that is, when an
application calls the DirEnumerateGet or DirFindRecordGet
function, the catalog can service a request to provide information
about all records whose record name or record type contains the
string provided by the application.

kSupportsOrderedEnumerationBit
Set this bit if the catalog provides requested information in some
sorted order when an application calls the DirEnumerateGet
function. The catalog may provide the information in an
unspecified sorted order. If it returns the information sorted by
name or by type, set one or both of the two following bits.

kCanSupportNameOrderBit
Set this bit if the catalog supports the sorting by name option in the
DirEnumerateGet function. If you set this bit, you must also set
the kSupportsOrderedEnumerationBit bit.

kCanSupportTypeOrderBit
Set this bit if the catalog supports the sorting by type option in the
DirEnumerateGet function. If you set this bit, you must also set
the kSupportsOrderedEnumerationBit bit.

kSupportSortBackwardsBit
Set this bit if the catalog supports the backward sort direction
option in the DirEnumerateGet function; that is, the catalog
can provide entries preceding a certain point and sort those
entries in reverse order.

C H A P T E R 3

Catalog Service Access Modules

3-20 Indicating the Features You Support

kSupportIndexRatioBit
Set this bit if the catalog supports the index ratio feature in the
DirEnumerateGet function; that is, the catalog can provide the
approximate position of a record among all records in a dNode
as a percentile.

kSupportsEnumerationContinueBit
Set this bit if the catalog supports the continue feature in the
DirEnumerateGet function.

kSupportsLookupContinueBit
Set this bit if the catalog supports the continue feature in the
DirLookupGet function.

kSupportsEnumerateAttributeTypeContinueBit
Set this bit if the catalog supports the continue feature in the
DirEnumerateAttributeTypesGet function.

kSupportsEnumeratePseudonymContinueBit
Set this bit if the catalog supports the continue feature in the
DirEnumeratePseudonymGet function.

kSupportsAliasesBit
Set this bit if the catalog supports adding an alias with
the DirAddAlias function, deleting an alias with the
DirDeleteRecord function, and enumerating aliases with
the DirEnumerateGet function.

kSupportsPseudonymsBit
Set this bit if the catalog supports the DirAddPseudonym,
DirDeletePseudonym, and DirEnumeratePseudonymGet
functions, and if it supports enumerating pseudonyms with
the DirEnumerateGet function.

kSupportsPartialPathNamesBit
Set this bit if a catalog can specify a catalog node by using the
dNode number of an intermediate dNode and a partial pathname
starting from the intermediate dNode to the target dNode.

kSupportsAuthenticationBit
Reserved. Do not set this bit.

kSupportsProxiesBit
Reserved. Do not set this bit.

kSupportsFindRecordBit
Set this bit if the catalog supports the DirFindRecordGet and
DirFindRecordParse functions, that is, it can provide informa-
tion about records in the entire catalog, rather than in a given
dNode. The DirFindRecordGet function requests information
about records in an entire catalog; the DirEnumerateGet function
requests information about records in a particular dNode.

These bits are also described from the application’s perspective in the chapter “Catalog

Manager” in Inside Macintosh: AOCE Application Interfaces.

C H A P T E R 3

Catalog Service Access Modules

Indicating the Features You Support 3-21

You can use the following mask values to set the bits in a variable of type DirGestalt.

enum {

kSupportsDNodeNumberMask = 1L<<kSupportsDNodeNumberBit,

kSupportsRecordCreationIDMask = 1L<<kSupportsRecordCreationIDBit,

kSupportsAttributeCreationIDMask = 1L<<kSupportsAttributeCreationIDBit,

kSupportsMatchAllMask = 1L<<kSupportsMatchAllBit,

kSupportsBeginsWithMask = 1L<<kSupportsBeginsWithBit,

kSupportsExactMatchMask = 1L<<kSupportsExactMatchBit,

kSupportsEndsWithMask = 1L<<kSupportsEndsWithBit,

kSupportsContainsMask = 1L<<kSupportsContainsBit,

kSupportsOrderedEnumerationMask = 1L<<kSupportsOrderedEnumerationBit,

kCanSupportNameOrderMask = 1L<<kCanSupportNameOrderBit,

kCanSupportTypeOrderMask = 1L<<kCanSupportTypeOrderBit,

kSupportSortBackwardsMask = 1L<<kSupportSortBackwardsBit,

kSupportIndexRatioMask = 1L<<kSupportIndexRatioBit,

kSupportsEnumerationContinueMask = 1L<<kSupportsEnumerationContinueBit,

kSupportsLookupContinueMask = 1L<<kSupportsLookupContinueBit,

kSupportsEnumerateAttributeTypeContinueMask =

1L<<kSupportsEnumerateAttributeTypeContinueBit,

kSupportsEnumeratePseudonymContinueMask =

1L<<kSupportsEnumeratePseudonymContinueBit,

kSupportsAliasesMask = 1L<<kSupportsAliasesBit,

kSupportsPseudonymsMask = 1L<<kSupportsPseudonymsBit,

kSupportsPartialPathNamesMask = 1L<<kSupportsPartialPathNamesBit,

kSupportsAuthenticationMask = 1L<<kSupportsAuthenticationBit,

kSupportsProxiesMask = 1L<<kSupportsProxiesBit,

kSupportsFindRecordMask = 1L<<kSupportsFindRecordBit

};

You can define the features that a catalog supports by adding the values of the appro-

priate masks and storing the resulting value in the CSAM file, where it is available to

both your CSAM and your setup template. Listing 3-5 provides an example of specifying

the features that a given catalog supports.

Listing 3-5 Setting the feature flags for a catalog

#define kPDirFeatures(\

kSupportsRecordCreationIDMask\

+ kSupportsAttributeCreationIDMask \

+ kSupportsMatchAllMask \

+ kSupportsBeginsWithMask\

+ kSupportsExactMatchMask \

+ kSupportsOrderedEnumerationMask \

C H A P T E R 3

Catalog Service Access Modules

3-22 Human Interface Considerations

+ kCanSupportNameOrderMask \

+ kSupportSortBackwardsMask \

+ kSupportsEnumerationContinueMask \

+ kSupportsLookupContinueMask \

)

Once you define the features for a given catalog, your setup template passes that

information to the Catalog Manager when it calls the DirAddDSAMDirectory function

to add that catalog to the Setup catalog. The Catalog Manager, in turn, provides the

feature flags for a given catalog to an application when the application calls the

DirGetDirectoryInfo function for a given catalog.

Human Interface Considerations

Although a CSAM itself has no human interface, the features that its catalogs can

support affect the human interface provided for those catalogs by certain components

of PowerTalk system software. The following components of PowerTalk system software

make information in a catalog available to the user:

■ the Catalogs Extension (CE)

■ the Catalog-Browsing panel in the mailer

■ the Find panel in the mailer

■ the Find in Catalog command in the Apple menu

The mailer is described in the chapter “Standard Mail Package” in Inside Macintosh:
AOCE Application Interfaces. For a description of how these elements appear to the user,

see the book PowerTalk User’s Guide.

You need to understand how the settings of certain feature flags affect the user’s ability

to make use of the information in a catalog using the PowerTalk human interface

components. This section notes the capabilities a catalog must support to provide a

particular service to the user through the PowerTalk components and the implications of

not supporting those capabilities. Here are some service guidelines:

■ For catalogs that may contain multiple records with the same name and type, support
record creation IDs.

■ For catalogs that may contain more than one attribute value of a given attribute type,
support attribute creation IDs.

■ For a browsable catalog, support “match all” and “exact match” capabilities.

■ For proper searching of a catalog, support the “exact match” and “begins with”
capabilities and either the “match all” or “find record” capability.

■ For efficient handling of large catalogs, support “ordered enumeration,” “sort
backward,” and “enumeration continue” capabilities.

■ For best scrolling with large catalogs, support index ratios.

■ For efficient attribute lookups, support the “lookup continue” capability.

C H A P T E R 3

Catalog Service Access Modules

Human Interface Considerations 3-23

This information is based on release 1 of the PowerTalk components and is subject to

change in future releases.

Supporting Records Having the Same Name and Type
If a catalog allows multiple records to have the same name and type, then it must

support record creation IDs. Allowing more than one record with the same name and

type without support for record creation IDs creates problems with the CE’s user

interface. For instance, if a user opens such a catalog, the CE displays the records having

the same name and type. If the user then opens one of the records, it is indeterminate

which record’s attributes are shown to the user. Likewise, if the user makes an alias to

such a record, it is not guaranteed that the alias will resolve to the correct record.

Supporting Multiple Attribute Values of the Same Type
If a record in a catalog can contain more than one attribute value of a given attribute

type, then you need to support attribute creation IDs for that catalog. The CE requires an

attribute creation ID. In the absence of attribute creation IDs, the only way to distinguish

among attribute values of the same type is by specifying the attribute value itself. Since

attribute values may be as large as 64 KB, this is not efficient, and the attribute creation

ID is required for performance reasons. For instance, imagine a record that contains

many attributes whose type is Lyric and whose value is the lyric of a popular song. If a

user wants to view all of the lyrics, you might run out of buffer space while responding

to the DirLookupGet function. When the CE calls DirLookupGet again to continue

the enumeration, it needs a practical way to indicate from which point to continue the

enumeration.

If your catalog is unable to support a genuine attribute creation ID that permanently and

uniquely identifies an attribute value, then it must support for each attribute value a

unique identifier that persists from the time the CSAM is opened at system startup until

system shutdown. This unique identifier is called a pseudo-persistent attribute creation
ID. The pseudo-persistent attribute creation ID for a given attribute value is not, by

definition, consistent between one session and the next.

Because the CE requires an attribute creation ID when a catalog may contain

more than one attribute value of a given attribute type, you must set the

kSupportsAttributeCreationIDBit bit, regardless of whether the type of

attribute creation ID your catalog supports is genuine or pseudo-persistent.

It is desirable that you not reuse a value for a pseudo-persistent attribute creation ID

once a session has ended. One way of achieving this is to generate values that incor-

porate a number derived from the date and time of the session with an incrementing

number. This guarantees uniqueness both within and between sessions.

Note

If a catalog’s records contain only one attribute value per attribute type,
the CE does not require you to support attribute creation IDs. ◆

C H A P T E R 3

Catalog Service Access Modules

3-24 Human Interface Considerations

Supporting Browsing and Finding
If the user can view all of the records in a catalog through the CE or the Catalog-Browsing

panel in the mailer, the catalog is browsable. If the user cannot view a catalog’s contents,

the catalog is nonbrowsable.

A catalog is browsable when both the kSupportsMatchAllBit and

kSupportsExactMatchBit bits are set. A catalog with the “match all” capability

supports user browsing by servicing requests to return information on all the records in

a dNode or catalog. A browsable catalog must also support an “exact match” capability

because, while browsing, a user may make an alias for any object. The “exact match”

capability is needed to resolve an alias.

Finding or searching a catalog differs from browsing in that the user specifies, in whole

or in part, a particular record name as the target of interest. The Find panel in the mailer

and the Find in Catalog command in the Apple menu do not search a catalog unless the

following bits are set:

■ either the kSupportsMatchAllBit or the kSupportsFindRecordBit bit

■ the kSupportsExactMatchBit bit

■ the kSupportsBeginsWithBit bit

■ the kSupportsEnumerationContinue bit

Supporting Large Catalogs
The CE and the Catalog-Browsing panel in the mailer attempt to achieve efficiencies in

memory requirements and response time when dealing with large catalogs containing

many records. This behavior is called large-catalog mode.

The CE and the Catalog-Browsing panel in the mailer can operate in large-catalog mode

only if the catalog supports the following capabilities (the relevant bit that must be set

is in parentheses):

■ catalog can provide records in some sorted order
(kSupportsOrderedEnumerationBit)

■ catalog can provide, in reverse sorted order, the records preceding a specific point
(kSupportSortBackwardsBit)

■ catalog can continue an enumeration from a specified starting point
(kSupportsEnumerationContinueBit)

If your CSAM provides access to a large catalog that does not provide records in some

sorted and reverse sorted order and that cannot continue an enumeration from a

specified starting point, you should make the catalog nonbrowsable. This avoids

subjecting the user to heavy performance penalties and large memory requirements

when working with that catalog. For example, when the CE is not operating in large-

catalog mode, it attempts to enumerate all of the records in a given dNode of a catalog,

bring the records into memory, and then sort them in the user’s system script before

displaying any records to the user. If the DirEnumerateGet function returns the

kOCEMoreData result code, the CE calls the function again with a bigger buffer. It starts

C H A P T E R 3

Catalog Service Access Modules

Human Interface Considerations 3-25

the enumeration from the first record since the catalog does not support continuing the

enumeration from the last record read. The CE continues to re-enumerate with a bigger

buffer until the catalog dNode is completely enumerated or the Macintosh runs out of

memory. It could take an unacceptable amount of memory and an unacceptably long

time to open a catalog window for a large catalog that does not support large-catalog

mode. (When the CE is operating in large-catalog mode, it enumerates either 60 records

or three times the number of the records visible in the catalog window, whichever

is greater.)

A user can still search for specific records in a large catalog that does not support large-

catalog mode, although he or she is unable to view all of the records. The AppleLink

address list is an example of a searchable but nonbrowsable catalog.

With large catalogs (those setting the kSupportsOrderedEnumerationBit,

kSupportSortBackwardsBit, and kSupportsEnumerationContinueBit bits),

the CE and the Catalog-Browsing panel use three different methods of managing

scroll bars in a catalog window or panel:

■ ratio-approximation

■ letter-approximation

■ three-position-thumb

The choice of method depends on the capabilities of the catalog being displayed and

the script used in the catalog. If the catalog can provide the approximate position

of a record within a catalog as a percentile value (an index ratio), it sets the

kSupportIndexRatioBit bit. When this bit is set, the CE and the Catalog-Browsing

panel always use the ratio-approximation method. The ratio-approximation method

results in scroll bars that best indicate the true position of a record in a sorted catalog.

If a catalog cannot supply an index ratio, the scrolling method depends on whether the

catalog can provide records sorted by record name (kCanSupportNameOrderBit) and

whether the script used by the Macintosh system software matches the script used by

the catalog.

If the catalog can return records in name order and the same script is used by both

the catalog and the system software, the letter-approximation method is used. The

letter-approximation method uses a table that maps each letter or range of letters in

a given script to a number. After determining where the first visible record fits in the

complete range of letters, the thumb is set accordingly.

If the scripts differ, the CE and the Catalog-Browsing panel have no idea where the

record belongs within the range of letters in the catalog script. Therefore, they use the

three-position-thumb method. They also use this method if a catalog cannot provide

records sorted by record name. The three-position-thumb method is the least desirable

method. It provides a scroll bar having only three positions–at the top of the scroll bar,

at the bottom, and in the middle. These positions correspond to the first record in a

catalog, the last record, and any other record. Thus, it gives no real information about

the majority of records contained in a catalog. It is used as a last resort.

C H A P T E R 3

Catalog Service Access Modules

3-26 Providing Access Controls

Table 3-1 summarizes the factors that determine the scrolling method.

Supporting Attribute Lookups
When the user is looking up attribute values through the CE, the efficiency of the

operation depends a great deal on whether the catalog supports the continuation

of the attribute lookup (indicated by the kSupportsLookupContinueBit bit). If a

catalog does not support this feature and the DirLookupGet function returns the

kOCEMoreData result code, the CE calls the function again with a bigger buffer instead

of continuing the lookup from the last attribute. The CE continues to do this until all

attribute values are completely enumerated or the Macintosh runs out of memory.

Providing Access Controls

You may want to provide access controls to safeguard the content of the catalogs that

you support. If a catalog that you support already has its own system of controlling

access, you can translate AOCE access controls into those of the external catalog, and

vice versa. If a catalog has no access controls, you can implement them in your CSAM.

You may provide access controls at the dNode, record, and attribute-type level to limit

who may browse the contents of a dNode, record, or attribute type; who may modify the

contents; and so forth. See the chapter “Catalog Manager” in Inside Macintosh: AOCE

Application Interfaces for a complete description of access controls.

To implement access controls, you must know who is making a particular service

request. The identity field in the DirParamBlock parameter block indicates who is

making the service request. It may contain the local identity, a specific identity, or 0.

The local identity is a reference value that identifies the principal user of the Macintosh

computer on which your CSAM is installed. If your CSAM implements access controls,

you should obtain the local identity by calling the AuthGetLocalIdentity function.

When you receive requests for catalog service, compare the value in the identity field

Table 3-1 Determining the scrolling method for a catalog

Supports
index ratio

Supports
name order Scripts Scrolling method

Yes Not applicable Not applicable Ratio approximation

No Yes Match Letter-approximation

No Yes Do not match Three-position-thumb

No No Not applicable Three-position-thumb

C H A P T E R 3

Catalog Service Access Modules

Handling Application Completion Routines 3-27

in the DirParamBlock parameter block with the local identity. If the local identity is

making the request, you can then determine if the access privileges of the local identity

are sufficient to perform the requested operation.

If the identity field contains neither the local identity nor 0, it contains a specific

identity. A specific identity is a reference value that identifies a user, other than the

principal user, who has a PowerShare account. Your CSAM should take whatever action

is appropriate, depending on how you choose to handle specific identities. One option,

for example, is to treat a specific identity as a guest.

If the identity field contains 0, it indicates that a guest made the catalog service

request. A guest is anyone other than the principal user and alternate users with

PowerShare accounts. If the target catalog supports guest access, you can then determine

if the access privileges for a guest are sufficient to perform the requested operation.

See the chapter “Authentication Manager” in Inside Macintosh: AOCE Application
Interfaces for descriptions of the local identity, specific identities, and the

AuthGetLocalIdentity function.

Handling Application Completion Routines

An application may provide a pointer to a completion routine when it makes an

asynchronous Catalog Manager service request. The completion routine takes a single

parameter—a pointer to the parameter block associated with the request.

Your CSAM must call the completion routine that an application provides. You need to

■ push the pointer to the parameter block onto the stack (in case the completion routine
was written in C or Pascal)

■ store the pointer to the parameter block in register A0 (in case the completion routine
was written in assembly language)

■ store the result code for the function you just serviced in register D0 (in case the
completion routine was written in assembly language)

■ put the result code for the function in the ioResult field of the parameter block

After taking these steps, you set the A5 register to the value of the saveA5 field of the

DirParamBlock parameter block and call the completion routine.

You must call a completion routine at deferred-task time to avoid problems when virtual

memory may be in use. See the chapters “Virtual Memory Manager” in Inside Macintosh:
Memory and “Deferred Task Manager” in Inside Macintosh: Processes for more information

on the handling of virtual memory and deferred tasks.

C H A P T E R 3

Catalog Service Access Modules

3-28 Catalog Service Access Module Reference

Listing 3-6 illustrates how you can call an application’s completion routine.

Listing 3-6 Calling an application’s completion routine

DirParamHeader record 0 ; struct DirParamBlock {

qLink ds.l 1 ; Ptr qLink;

reserved_H1 ds.l 1 ; long reserved_H1;

reserved_H2 ds.l 1 ; long reserved_H2;

ioCompletion ds.l 1 ; ProcPtr ioCompletion;

ioResult ds.w 1 ; OSErr ioResult;

saveA5 ds.l 1 ; long saveA5;

reqCode ds.w 1 ; short reqCode;

endr ; };

CallCompletion proc export

with DirParamHeader

move.l 4(sp),a0 ;A0 -> parameter block

move.w ioResult(a0),d0 ;D0 == ioResult

move.l ioCompletion(a0),d1 ;get application completion

beq.s @1 ;exit if none

move.l a5,-(sp) ;save my A5

move.l saveA5(a0),a5 ;restore application A5

link a6,#0 ;establish new stack frame

move.l a0,-(sp) ;push param block on stack

move.l d1,a1 ;put completion routine in A1

tst.w d0 ;set condition codes

jsr (a1) ;call appl completion routine

unlk a6 ;clean out the stack

move.l (sp)+,a5 ;restore my A5

@1 rts ;exit from CallCompletion

endwith

endp

end

Catalog Service Access Module Reference

This section describes the Catalog Manager functions that a CSAM or its setup template

calls and the functions that a CSAM provides. The structures and data types used by

these functions are described in the chapters “AOCE Utilities” and “Catalog Manager”

in Inside Macintosh: AOCE Application Interfaces. The Catalog Manager functions that your

CSAM supports are described in the chapter “Catalog Manager.”

C H A P T E R 3

Catalog Service Access Modules

Catalog Service Access Module Reference 3-29

CSAM Functions

This section describes the Catalog Manager functions that you use to initialize a CSAM

and to add and remove a CSAM and the external catalogs that it supports.

All of these functions take a pointer to a catalog parameter block as input. Each

function description includes a list of the fields in the parameter block that are used

by the function.

To call a Catalog Manager function from assembly language, push the address of the

DirParamBlock parameter block and the async flag onto the stack using the Pascal

calling convention, and place the selector value for the _oceTBDispatch trap macro in

register D0. Each function description includes the selector value for that function. The

function returns its result code in the ioResult field of the parameter block. (The

DirParamBlock parameter block is described in the chapter “Catalog Manager” in

Inside Macintosh: AOCE Application Interfaces.)

A CSAM must support asynchronous requests. See the sections “The Catalog Service

Function” on page 3-11 and “The Parse Function” on page 3-13 for information on how

to support an asynchronous request.

Initializing a CSAM

A CSAM must call the DirInstantiateDSAM function before it can receive catalog

service requests.

DirInstantiateDSAM

The DirInstantiateDSAM function provides the Catalog Manager with the addresses

of a CSAM’s catalog service and parse functions.

pascal OSErr DirInstantiateDSAM (DirParamBlockPtr paramBlock);

paramBlock Pointer to a parameter block.

Parameter block

← ioResult OSErr Result code
→ dsamName RStringPtr CSAM name
→ dsamKind OCEDirectoryKind CSAM kind
→ dsamData Ptr CSAM private data
→ dsamDirProc ProcPtr CSAM’s catalog

service function
→ dsamDirParseProc ProcPtr CSAM’s parse function
→ dsamAuthProc ProcPtr Reserved; set to nil

C H A P T E R 3

Catalog Service Access Modules

3-30 Catalog Service Access Module Reference

Field descriptions

ioResult The result of the function.

dsamName A pointer to the name of the CSAM. You define the name of your
CSAM. Use the same name that your setup template provides to the
DirAddDSAM function.

dsamKind You define this field to identify your CSAM further. Typically,
you provide the signature of your CSAM. Use the same value that
your setup template provides to the DirAddDSAM function.

dsamData A pointer to data that is private to the CSAM. You provide this
pointer. The Catalog Manager passes this pointer to the CSAM’s
catalog service or parse function when an application calls a
Catalog Manager function and specifies a catalog that you support.

dsamDirProc A pointer to the CSAM’s catalog service function. The Catalog
Manager calls the CSAM’s catalog service function to process all
application requests for catalog services except parse requests. You
must provide this value.

dsamDirParseProc
A pointer to the CSAM’s parse function. The Catalog Manager
calls the CSAM’s parse function to process an application’s parse
request. You must provide this value. You can pass the same pointer
as you provided in the dsamDirProc field if you process all
Catalog Manager requests through a single function.

dsamAuthProc Reserved. Set this field to nil.

DESCRIPTION

Your CSAM’s Open subroutine must call the DirInstantiateDSAM function to

provide the Catalog Manager with the addresses of the CSAM’s catalog service and

parse functions. Until you do this, no application can use the services of the CSAM. Note

that the addresses (or entry points) can be identical if you simply dispatch the incoming

requests to other functions within your CSAM.

The DirInstantiateDSAM function is the only function in the Catalog Manager API

that is called exclusively by a CSAM.

If the values that you provide in the dsamName and dsamKind fields do not match

those provided by your setup template to the DirAddDSAM function, then the

DirInstantiateDSAM function returns the kOCEDSAMInstallErr result code. If

this occurs, the Catalog Manager never sends the CSAM any requests.

SPECIAL CONSIDERATIONS

This function is always executed synchronously.

ASSEMBLY-LANGUAGE INFORMATION

Trap macro Selector

_oceTBDispatch $0127

C H A P T E R 3

Catalog Service Access Modules

Catalog Service Access Module Reference 3-31

RESULT CODES

SEE ALSO

The DirAddDSAM function, described next, causes the Catalog Manager to install and

open a CSAM.

A CSAM’s catalog service and parse functions are described in the section

“Application-Defined Functions” beginning on page 3-37.

Application signatures are described in the chapter “Finder Interface” in Inside
Macintosh: Macintosh Toolbox Essentials.

Adding a CSAM and Its Catalogs

The Catalog Manager provides the DirAddDSAM and DirAddDSAMDirectory

functions so that your setup template can add a CSAM and the catalogs it supports

to a user’s Setup catalog.

DirAddDSAM

The DirAddDSAM function opens a CSAM that you specify and adds a record

representing the new CSAM to the Setup catalog.

pascal OSErr DirAddDSAM (DirParamBlockPtr paramBlock);

paramBlock Pointer to a parameter block.

Parameter block

Field descriptions

ioResult The result of the function.

dsamRecordCID The creation ID of the record that the function adds to the Setup
catalog. This record represents the CSAM. You pass the CSAM
record’s creation ID to the DirAddDSAMDirectory function when
you want to add a catalog that the CSAM supports.

noErr 0 No error
kOCELocalAuthenticationFail

–1561 User hasn’t entered Key Chain password
kOCEDSAMInstallErr –1628 Mismatch on CSAM name and kind
kOCEOCESetupRequired –1633 Local identity is not set up
kOCEDSAMRecordNotFound –1634 CSAM record not in Setup catalog

← ioResult OSErr Result code
← dsamRecordCID CreationID Creation ID of CSAM record
→ dsamName RStringPtr CSAM name
→ dsamKind OCEDirectoryKind CSAM kind
→ fsSpec FSSpecPtr CSAM file specification

C H A P T E R 3

Catalog Service Access Modules

3-32 Catalog Service Access Module Reference

dsamName A pointer to the name of the CSAM. You define the name of your
CSAM. Use the same name that your CSAM provides to the
DirInstantiateDSAM function.

dsamKind You define this field to further identify your CSAM. Typically, you
provide the signature of your CSAM. Use the same value that your
CSAM provides to the DirInstantiateDSAM function.

fsSpec A pointer to the file system specification structure that identifies the
file containing the CSAM.

DESCRIPTION

Your setup template calls the DirAddDSAM function to install a CSAM and make it

available to the user. You call this function before calling the DirAddDSAMDirectory

function.

The function installs the CSAM in the Device Manager’s unit table and opens the

driver. The function creates a record for the CSAM. The CSAM record name is the string

that you provide in the dsamName field; its record type is aoce DSAMxxxx, where xxxx

is the value you provide in the dsamKind field. The function then adds the new

CSAM record to the Setup catalog and returns the record’s creation ID.

The dsamName and dsamKind fields are provided to identify your CSAM. For example,

the name of an AppleLink CSAM might be AppleLink CSAM whereas its kind might be

ALNK. The combination of name and kind must be unique among CSAMs installed on

the computer.

If the CSAM is already installed, the function provides you with the creation ID of the

CSAM record and returns the kOCEDSAMRecordExists result code.

SPECIAL CONSIDERATIONS

If your CSAM is a component of a personal MSAM, your setup template calls the

DirAddDSAM function as part of the combined access module initialization procedure,

described in the chapter “Service Access Module Setup” in this book.

This function is always executed synchronously.

There is no registry to guarantee that your CSAM name and kind are unique. To ensure

uniqueness, set your CSAM name to your company name or product name and set your

CSAM kind to your CSAM’s signature that is registered with Macintosh Developer

Technical Services.

ASSEMBLY-LANGUAGE INFORMATION

Trap macro Selector

_oceTBDispatch $011D

C H A P T E R 3

Catalog Service Access Modules

Catalog Service Access Module Reference 3-33

RESULT CODES

SEE ALSO

The CreationID structure is described in the chapter “AOCE Utilities” in Inside
Macintosh: AOCE Application Interfaces.

The DirAddDSAMDirectory function is described next.

To remove a CSAM that you added, use the DirRemoveDSAM function (page 3-35).

For more information about the Setup catalog and the CSAM record, see the chapter

“Service Access Module Setup” in this book.

Application signatures are described in the chapter “Finder Interface” in Inside
Macintosh: Macintosh Toolbox Essentials.

DirAddDSAMDirectory

The DirAddDSAMDirectory function adds a record for an external catalog to the

Setup catalog.

pascal OSErr DirAddDSAMDirectory (DirParamBlockPtr paramBlock,

Boolean async);

paramBlock Pointer to a parameter block.

async A Boolean value that specifies if the function is to be executed
asynchronously. Set async to true if you want the function to be
executed asynchronously.

Parameter block

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kOCELocalAuthenticationFail

–1561 User hasn’t entered Key Chain password
kOCEDSAMInstallErr –1628 CSAM could not be installed
kOCEDSAMRecordExists –1636 CSAM record is already in Setup catalog

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ clientData long You define this field
→ dsamRecordCID CreationID Creation ID of CSAM record
→ directoryName DirectoryNamePtr Name of the catalog
→ discriminator DirDiscriminator Discriminator value
→ features DirGestalt Feature flags
→ directoryRecordCID

CreationID Creation ID of Catalog record

C H A P T E R 3

Catalog Service Access Modules

3-34 Catalog Service Access Module Reference

Field descriptions

ioCompletion A pointer to a completion routine that you can provide. If you call
this function asynchronously, it calls your completion routine when
it completes execution. Set this field to nil if you don’t provide a
completion routine. The function ignores this field if you call it
synchronously.

ioResult The result of the function. When you execute the function asynchro-
nously, the function sets this field to 1 as soon as the function has
been queued for execution. When the function completes execution,
it sets this field to the actual function result code.

clientData Reserved for your use. If you call the DirAddDSAMDirectory
function asynchronously, you can use this field to pass a private
value to your completion routine.

dsamRecordCID The creation ID of the record representing the CSAM associated
with the catalog you want to add. You can obtain the CSAM’s
record creation ID from the DirAddDSAM function.

directoryName A pointer to the name of the catalog that you want to add.

discriminator A value that distinguishes between two or more catalogs with the
same name. You define this value for the catalog you want to add.

features The set of feature flags for the catalog you want to add. The flags
are described in the section “Indicating the Features You Support”
beginning on page 3-16.

directoryRecordCID
The creation ID of the record for the catalog that you want to add.
You obtain the creation ID by using the CallBackDET macro to call
the kDETcmdGetDSSpec callback routine. This provides you with
the Catalog record’s complete record ID, from which you can
extract the creation ID.

DESCRIPTION

Your setup template calls the DirAddDSAMDirectory function to add to the Setup

catalog a Catalog record for an external catalog that you specify. Once the function

successfully completes execution, the external catalog is accessible to the user.

When you add a record for an external catalog, the catalog becomes visible to the

DirEnumerateDirectoriesGet function. The catalog remains visible and available

for use with other Catalog Manager functions until its Catalog record is explicitly

removed from the Setup catalog by the DirRemoveDirectory function.

(AOCE software creates the Catalog record whose creation ID you provide in the

directoryRecordCID field. It does this when the user adds a catalog to his or her

available catalog services.)

ASSEMBLY-LANGUAGE INFORMATION

Trap macro Selector

_oceTBDispatch $0133

C H A P T E R 3

Catalog Service Access Modules

Catalog Service Access Module Reference 3-35

RESULT CODES

SEE ALSO

The DirRemoveDirectory function is described on page 3-37.

The DirEnumerateDirectoriesGet function is described in the chapter “Catalog

Manager” in Inside Macintosh: AOCE Application Interfaces.

The DirAddDSAM function is described on page 3-31.

For more information about the Setup catalog and the Catalog record, see the chapter

“Service Access Module Setup” in this book.

Catalog feature flags are described in the section “Indicating the Features You Support”

beginning on page 3-16.

The CallBackDET macro and the kDETcmdGetDSSpec callback routine are described

in the chapter “AOCE Templates” in Inside Macintosh: AOCE Application Interfaces.

Removing a CSAM and Its Catalogs

The Catalog Manager provides the DirRemoveDSAM and DirRemoveDirectory

functions. Your template uses these functions to remove records for CSAMs and external

catalogs from the Setup catalog.

DirRemoveDSAM

The DirRemoveDSAM function removes a record for a specific CSAM from the

Setup catalog.

pascal OSErr DirRemoveDSAM (DirParamBlockPtr paramBlock);

paramBlock Pointer to a parameter block.

Parameter block

noErr 0 No error
kOCEAlreadyExists –1510 Catalog with same name and kind

already exists
kOCELocalAuthenticationFail

–1561 User hasn’t entered Key Chain password
kOCEDSAMInstallErr –1628 CSAM doesn’t exist
kOCEDSAMNotInstantiated –1635 CSAM is not instantiated

← ioResult OSErr Result code
→ dsamRecordCID CreationID Creation ID of CSAM record

C H A P T E R 3

Catalog Service Access Modules

3-36 Catalog Service Access Module Reference

Field descriptions

ioResult The result of the function.

dsamRecordCID The creation ID of the CSAM record in the Setup catalog for the
CSAM that you want to remove. This creation ID is stored in the
kParentDSAMAttrTypeNum attribute type in the template’s record.

DESCRIPTION

Your setup template calls the DirRemoveDSAM function to remove a CSAM record from

the Setup catalog. The function also closes the CSAM driver and removes from the Setup

catalog all Catalog records for catalogs supported by the CSAM.

You can obtain the creation ID of the CSAM record by using the CallBackDET macro

to call the kDETcmdGetDSSpec callback routine. Specify kDETSelf as the target to

retrieve the DSSpec structure that identifies your template record. Then pass that DSSpec

structure to the DirLookupGet function to read the kParentDSAMAttrTypeNum

attribute type.

Once a CSAM’s record is removed from the Setup catalog, the catalogs it serves are

unavailable.

Ordinarily, you do not call this function. It is included to provide setup templates with

flexibility in handling the CSAM record. For instance, if a user deletes all of the catalogs

a CSAM supports, its setup template may remove the CSAM.

SPECIAL CONSIDERATIONS

This function is always executed synchronously.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The CreationID structure is described in the chapter “AOCE Utilities” in Inside
Macintosh: AOCE Application Interfaces.

For more information about the Setup catalog, see the chapter “Service Access Module

Setup” in this book.

You can add a CSAM to the Setup catalog by calling the DirAddDSAM function

(page 3-31).

Trap macro Selector

_oceTBDispatch $0120

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kOCEDSAMInstallErr –1628 CSAM doesn’t exist

C H A P T E R 3

Catalog Service Access Modules

Catalog Service Access Module Reference 3-37

For information about the CallBackDET macro and the kDETcmdGetDSSpec callback

routine, see the chapter “AOCE Templates” in Inside Macintosh: AOCE Application
Interfaces.

The DirLookupGet function is described in the chapter “Catalog Manager” in Inside
Macintosh: AOCE Application Interfaces.

DirRemoveDirectory

The DirRemoveDirectory function removes from the Setup catalog a record that

represents a catalog.

Because the function is not limited to removing external catalogs, it is described in the

chapter “Catalog Manager” in Inside Macintosh: AOCE Application Interfaces.

Application-Defined Functions

You provide the catalog service and parse functions described in this section. You pass

their addresses to the Catalog Manager when you call the DirInstantiateDSAM

function. The Catalog Manager calls your functions when an application requests a

service from an external catalog that you support. It is through these functions that you

supply catalog services.

MyDSAMDirProc

The MyDSAMDirProc function accepts and processes Catalog Manager requests for

catalog services. You must provide this function as part of your CSAM.

pascal OSErr MyDSAMDirProc (Ptr dsamData,

DirParamBlockPtr paramBlock,

Boolean async);

dsamData A pointer to the CSAM’s private data. This is the value that you
previously passed to the DirInstantiateDSAM function in the
dsamData field of its DirParamBlock parameter block.

paramBlock A pointer to the parameter block that the application passed to the
Catalog Manager when the application called a Catalog Manager
function.

async A Boolean value that specifies if the request must be processed synchro-
nously or asynchronously. If this field is set to true, you must process the
request asynchronously.

C H A P T E R 3

Catalog Service Access Modules

3-38 Catalog Service Access Module Reference

DESCRIPTION

The Catalog Manager calls your catalog service function when an application requests

a service, other than parse, from a catalog supported by your CSAM. You determine

the type of request by examining the reqCode field in the DirParamBlock parameter

block. Each possible value of the reqCode field corresponds to a Catalog Manager

function. You then process the request and return the necessary information in the fields

of the paramBlock parameter block.

RESULT CODES

Each type of service request that you may receive corresponds to a single Catalog

Manager function. For each type of service request that you process, you should return

only those result codes that are defined by the Catalog Manager for the corresponding

function. See the description of each Catalog Manager function for the list of result codes

you can return for that function.

SEE ALSO

The section “The Catalog Service Function” on page 3-11 provides general information

on the actions that your MyDSAMDirProc function should take while servicing a request

for catalog services. You decide how to implement a given Catalog Manager function for

the catalog that you support.

The DirInstantiateDSAM function is described on page 3-29.

The chapter “Catalog Manager” in Inside Macintosh: AOCE Application Interfaces contains

descriptions of each Catalog Manager function.

The request codes that may appear in the reqCode field in the DirParamBlock

parameter block are listed in “Data Types and Constants” beginning on page 3-42.

MyDSAMDirParseProc

The MyDSAMDirParseProc function accepts and processes Catalog Manager parse

requests. You may provide this function as part of your CSAM.

pascal OSErr MyDSAMDirParseProc (Ptr dsamData,

DirParamBlockPtr paramBlock,

Boolean async);

dsamData A pointer to the CSAM’s private data. This is the value that you
previously passed to the DirInstantiateDSAM function in the
dsamData field of its DirParamBlock parameter block.

C H A P T E R 3

Catalog Service Access Modules

Catalog Service Access Module Reference 3-39

paramBlock A pointer to the parameter block that the application provided to the
Catalog Manager when the application made a parse request.

async A Boolean value that specifies if the request must be processed synchro-
nously or asynchronously. If this field is set to true, you must process the
request asynchronously.

DESCRIPTION

The Catalog Manager calls your parse function when an application makes a parse

request and specifies a catalog that your CSAM supports. You determine the specific

type of parse request by examining the reqCode field in the DirParamBlock

parameter block. Each possible value of the reqCode field corresponds to a Catalog

Manager function. You then process the request by returning the necessary information

in the fields of the parameter block and calling the application’s callback routine.

SPECIAL CONSIDERATIONS

You can choose to dispatch all service requests through a single function. In that case,

you don’t provide a separate and distinct parse function. Instead, you pass the same

address to the DirInstantiateDSAM function in both the dsamDirProc and

dsamDirParseProc fields.

RESULT CODES

Each type of parse request that you may receive corresponds to a single Catalog

Manager function. For each type of parse request that you process, you should return

only those result codes that are defined by the Catalog Manager for the corresponding

function. See the description of each Catalog Manager function for the list of result codes

you can return for that function.

SEE ALSO

The sections “The Catalog Service Function” on page 3-11 and “The Parse Function” on

page 3-13 provide general information on the actions that your MyDSAMDirParseProc

function should take while servicing a parse request. You decide how to implement a

given Catalog Manager parse function for the catalog that you support.

The chapter “Catalog Manager” in Inside Macintosh: AOCE Application Interfaces contains

descriptions of each Catalog Manager function.

The request codes that may appear in the reqCode field in the DirParamBlock

parameter block are listed in the section “Data Types and Constants” beginning on

page 3-42.

C H A P T E R 3

Catalog Service Access Modules

3-40 Catalog Service Access Module Reference

Resources

This section describes the 'DRVR' resource type that you provide in a CSAM.

The Driver Resource

The driver resource contains the executable code that implements support for the

Catalog Manager API. Listing 3-7 shows the Rez definition of the 'DRVR' resource type.

Listing 3-7 'DRVR' resource definition

type 'DRVR' {

boolean = 0; /* unused */

boolean dontNeedLock, needLock; /* lock driver in memory */

boolean dontNeedTime, needTime; /* for periodic action */

boolean dontNeedGoodbye,needGoodbye; /* call before heap reinit */

boolean noStatusEnable, statusEnable; /* responds to Status */

boolean noCtlEnable, ctlEnable; /* responds to Control */

boolean noWriteEnable, writeEnable; /* responds to Write */

boolean noReadEnable, readEnable; /* responds to Read */

byte = 0; /* unused */

unsigned integer; /* driver delay (ticks) */

integer; /* DA event mask */

integer; /* driver menu ID */

unsigned integer = 50; /* offset to DRVRRuntime Open */

unsigned integer = 54; /* offset to DRVRRuntime Prime */

unsigned integer = 58; /* offset to DRVRRuntime Control */

unsigned integer = 62; /* offset to DRVRRuntime Status */

unsigned integer = 66; /* offset to DRVRRuntime Close */

pstring[31]; /* driver name */

hex string; /* driver code */

};

The driver resource contains the following fields:

■ An unused Boolean value.

■ A Boolean value that indicates if your driver should be locked in memory. You must
set this to needLock for a CSAM.

■ A Boolean value that indicates if your driver should receive processor time
periodically. Set this according to the needs of your CSAM.

■ A Boolean value that indicates if your driver should be notified before the application
heap is reinitialized. Because your CSAM driver must reside in the system heap, this
Boolean value is irrelevant.

C H A P T E R 3

Catalog Service Access Modules

Catalog Service Access Module Reference 3-41

■ A Boolean value that indicates if your driver responds to Status calls from the
Device Manager.

■ A Boolean value that indicates if your driver responds to Control calls from the
Device Manager.

■ A Boolean value that indicates if your driver responds to Write calls from the
Device Manager.

■ A Boolean value that indicates if your driver responds to Read calls from the
Device Manager.

■ An unused value.

■ A value that indicates the number of ticks between your periodic time intervals. If you
have already specified the Boolean value needTime, set this according to the needs
of your CSAM.

■ A value for desk accessories. It is irrelevant to a CSAM.

■ A value for desk accessories. It is irrelevant to a CSAM.

■ Five 4-byte values that specify the offsets to your Open, Prime, Control, Status, and
Close driver subroutines, respectively.

■ The name of your CSAM driver. You can use uppercase and lowercase letters when
naming your driver, but the first character must be a period.

■ The hexadecimal representation of your executable code. Your driver subroutines
must be aligned on a word boundary.

C H A P T E R 3

Catalog Service Access Modules

3-42 Summary of Catalog Service Access Modules

Summary of Catalog Service Access Modules

C Summary

Data Types and Constants

enum { /* feature flag bits */

kSupportsDNodeNumberBit = 0,

kSupportsRecordCreationIDBit = 1,

kSupportsAttributeCreationIDBit = 2,

kSupportsMatchAllBit = 3,

kSupportsBeginsWithBit = 4,

kSupportsExactMatchBit = 5,

kSupportsEndsWithBit = 6,

kSupportsContainsBit = 7,

kSupportsOrderedEnumerationBit = 8,

kCanSupportNameOrderBit = 9,

kCanSupportTypeOrderBit = 10,

kSupportSortBackwardsBit = 11,

kSupportIndexRatioBit = 12,

kSupportsEnumerationContinueBit = 13,

kSupportsLookupContinueBit = 14,

kSupportsEnumerateAttributeTypeContinueBit= 15,

kSupportsEnumeratePseudonymContinueBit = 16,

kSupportsAliasesBit = 17,

kSupportsPseudonymsBit = 18,

kSupportsPartialPathNamesBit = 19,

kSupportsAuthenticationBit = 20,

kSupportsProxiesBit = 21,

kSupportsFindRecordBit = 22

};

enum { /* feature flag masks */

kSupportsDNodeNumberMask = 1L<<kSupportsDNodeNumberBit,

kSupportsRecordCreationIDMask = 1L<<kSupportsRecordCreationIDBit,

kSupportsAttributeCreationIDMask = 1L<<kSupportsAttributeCreationIDBit,

kSupportsMatchAllMask = 1L<<kSupportsMatchAllBit,

kSupportsBeginsWithMask = 1L<<kSupportsBeginsWithBit,

kSupportsExactMatchMask = 1L<<kSupportsExactMatchBit,

C H A P T E R 3

Catalog Service Access Modules

Summary of Catalog Service Access Modules 3-43

kSupportsEndsWithMask = 1L<<kSupportsEndsWithBit,

kSupportsContainsMask = 1L<<kSupportsContainsBit,

kSupportsOrderedEnumerationMask = 1L<<kSupportsOrderedEnumerationBit,

kCanSupportNameOrderMask = 1L<<kCanSupportNameOrderBit,

kCanSupportTypeOrderMask = 1L<<kCanSupportTypeOrderBit,

kSupportSortBackwardsMask = 1L<<kSupportSortBackwardsBit,

kSupportIndexRatioMask = 1L<<kSupportIndexRatioBit,

kSupportsEnumerationContinueMask = 1L<<kSupportsEnumerationContinueBit,

kSupportsLookupContinueMask = 1L<<kSupportsLookupContinueBit,

kSupportsEnumerateAttributeTypeContinueMask =

1L<<kSupportsEnumerateAttributeTypeContinueBit,

kSupportsEnumeratePseudonymContinueMask =

1L<<kSupportsEnumeratePseudonymContinueBit,

kSupportsAliasesMask = 1L<<kSupportsAliasesBit,

kSupportsPseudonymsMask = 1L<<kSupportsPseudonymsBit,

kSupportsPartialPathNamesMask = 1L<<kSupportsPartialPathNamesBit,

kSupportsAuthenticationMask = 1L<<kSupportsAuthenticationBit,

kSupportsProxiesMask = 1L<<kSupportsProxiesBit,

kSupportsFindRecordMask = 1L<<kSupportsFindRecordBit

};

/* request codes for Catalog Manager functions */
#define kDirEnumerateParse 0x101

#define kDirLookupParse 0x102

#define kDirEnumerateAttributeTypesParse 0x103

#define kDirEnumeratePseudonymParse 0x104
#define kDirNetSearchADAPDirectoriesParse 0x105

#define kDirEnumerateDirectoriesParse 0x106

#define kDirFindADAPDirectoryByNetSearch 0x107

#define kDirNetSearchADAPDirectoriesGet 0x108
#define kDirAddRecord 0x109

#define kDirDeleteRecord 0x10A

#define kDirAddAttributeValue 0x10B

#define kDirDeleteAttributeValue 0x10C
#define kDirChangeAttributeValue 0x10D

#define kDirVerifyAttributeValue 0x10E

#define kDirAddPseudonym 0x10F

#define kDirDeletePseudonym 0x110
#define kDirEnumerateGet 0x111

#define kDirEnumerateAttributeTypesGet 0x112

#define kDirEnumeratePseudonymGet 0x113

#define kDirGetNameAndType 0x114
#define kDirSetNameAndType 0x115

#define kDirGetRecordMetaInfo 0x116

C H A P T E R 3

Catalog Service Access Modules

3-44 Summary of Catalog Service Access Modules

#define kDirLookupGet 0x117
#define kDirGetDNodeMetaInfo 0x118

#define kDirGetDirectoryInfo 0x119

#define kDirEnumerateDirectoriesGet 0x11A

#define kDirAbort 0x11B
#define kDirAddAlias 0x11C

#define kDirAddDSAM 0x11D

#define kDirOpenPersonalDirectory 0x11E

#define kDirCreatePersonalDirectory 0x11F
#define kDirRemoveDSAM 0x120

#define kDirGetDirectoryIcon 0x121

#define kDirMapPathNameToDNodeNumber 0x122

#define kDirMapDNodeNumberToPathName 0x123
#define kDirGetLocalNetworkSpec 0x124

#define kDirGetDNodeInfo 0x125

#define kDirFindValue 0x126

#define kDirInstantiateDSAM 0x127
#define kDirGetOCESetupRefNum 0x128

#define kDirGetDNodeAccessControlGet 0x12A

#define kDirGetRecordAccessControlGet 0x12C

#define kDirGetAttributeAccessControlGet 0x12E
#define kDirGetDNodeAccessControlParse 0x12F

#define kDirDeleteAttributeType 0x130

#define kDirClosePersonalDirectory 0x131

#define kDirMakePersonalDirectoryRLI 0x132
#define kDirAddDSAMDirectory 0x133

#define kDirGetRecordAccessControlParse 0x134

#define kDirRemoveDirectory 0x135

#define kDirGetExtendedDirectoriesInfo 0x136
#define kDirAddADAPDirectory 0x137

#define kDirGetAttributeAccessControlParse 0x138

#define kDirFindRecordGet 0x140

#define kDirFindRecordParse 0x141

struct DirInstantiateDSAMPB {

AuthDirParamHeader /* parameter block header */
RStringPtr dsamName; /* CSAM name */

OCEDirectoryKind dsamKind; /* CSAM kind */
Ptr dsamData; /* CSAM private data */

ProcPtr dsamDirProc; /* catalog service function */
ProcPtr dsamDirParseProc; /* parse function */

ProcPtr dsamAuthProc; /* reserved, set to nil */
};

typedef struct DirInstantiateDSAMPB DirInstantiateDSAMPB;

C H A P T E R 3

Catalog Service Access Modules

Summary of Catalog Service Access Modules 3-45

struct DirAddDSAMPB {

AuthDirParamHeader /* parameter block header */

CreationID dsamRecordCID; /* CSAM record creation ID */

RStringPtr dsamName; /* CSAM name */

OCEDirectoryKind dsamKind; /* CSAM kind */

FSSpecPtr fsSpec; /* CSAM's file specification */

};

typedef struct DirAddDSAMPB DirAddDSAMPB;

struct DirAddDSAMDirectoryPB {

AuthDirParamHeader /* parameter block header */

CreationID dsamRecordCID; /* CSAM record creation ID */

DirectoryNamePtr directoryName; /* catalog name */

DirDiscriminator discriminator; /* catalog discriminator value */

DirGestalt features; /* feature flags for the catalog */

CreationID directoryRecordCID;

/* Catalog record creation ID */

};

typedef struct DirAddDSAMDirectoryPB DirAddDSAMDirectoryPB;

struct DirRemoveDSAMPB {

AuthDirParamHeader /* parameter block header */

CreationID dsamRecordCID; /* CSAM record creation ID */

};

typedef struct DirRemoveDSAMPB DirRemoveDSAMPB;

CSAM Functions

Initializing a CSAM

pascal OSErr DirInstantiateDSAM
(DirParamBlockPtr paramBlock);

Adding a CSAM and Its Catalogs

pascal OSErr DirAddDSAM (DirParamBlockPtr paramBlock);

pascal OSErr DirAddDSAMDirectory
(DirParamBlockPtr paramBlock, Boolean async);

Removing a CSAM and Its Catalogs

pascal OSErr DirRemoveDSAM (DirParamBlockPtr paramBlock);

C H A P T E R 3

Catalog Service Access Modules

3-46 Summary of Catalog Service Access Modules

Application-Defined Functions

pascal OSErr MyDSAMDirProc (Ptr dsamData, DirParamBlockPtr paramBlock,
Boolean async);

pascal OSErr MyDSAMDirParseProc
(Ptr dsamData, DirParamBlockPtr paramBlock,
Boolean async);

Pascal Summary

Data Types and Constants

CONST

{ feature flag bits }

kSupportsDNodeNumberBit = 0;

kSupportsRecordCreationIDBit = 1;

kSupportsAttributeCreationIDBit = 2;

kSupportsMatchAllBit = 3;

kSupportsBeginsWithBit = 4;

kSupportsExactMatchBit = 5;

kSupportsEndsWithBit = 6;

kSupportsContainsBit = 7;

kSupportsOrderedEnumerationBit = 8;

kCanSupportNameOrderBit = 9;

kCanSupportTypeOrderBit = 10;

kSupportSortBackwardsBit = 11;

kSupportIndexRatioBit = 12;

kSupportsEnumerationContinueBit = 13;

kSupportsLookupContinueBit = 14;

kSupportsEnumerateAttributeTypeContinueBit = 15;

kSupportsEnumeratePseudonymContinueBit = 16;

kSupportsAliasesBit = 17;

kSupportsPseudonymsBit = 18;

kSupportsPartialPathNamesBit = 19;

kSupportsAuthenticationBit = 20;

kSupportsProxiesBit = 21;

kSupportsFindRecordBit = 22;

{ feature flag masks }

kSupportsDNodeNumberMask = $00000001;

kSupportsRecordCreationIDMask = $00000002;

kSupportsAttributeCreationIDMask = $00000004;

C H A P T E R 3

Catalog Service Access Modules

Summary of Catalog Service Access Modules 3-47

kSupportsMatchAllMask = $00000008;

kSupportsBeginsWithMask = $00000010;

kSupportsExactMatchMask = $00000020;

kSupportsEndsWithMask = $00000040;

kSupportsContainsMask = $00000080;

kSupportsOrderedEnumerationMask = $00000100;

kCanSupportNameOrderMask = $00000200;

kCanSupportTypeOrderMask = $00000400;

kSupportSortBackwardsMask = $00000800;

kSupportIndexRatioMask = $00001000;

kSupportsEnumerationContinueMask = $00002000;

kSupportsLookupContinueMask = $00004000;

kSupportsEnumerateAttributeTypeContinueMask = $00008000;

kSupportsEnumeratePseudonymContinueMask = $00010000;

kSupportsAliasesMask = $00020000;

kSupportsPseudonymsMask = $00040000;

kSupportsPartialPathNamesMask = $00080000;

kSupportsAuthenticationMask = $00100000;

kSupportsProxiesMask = $00200000;

kSupportsFindRecordMask = $00400000;

{ request codes for Catalog Manager requests }

kDirEnumerateParse $101

kDirLookupParse $102

kDirEnumerateAttributeTypesParse $103

kDirEnumeratePseudonymParse $104

kDirNetSearchADAPDirectoriesParse $105

kDirEnumerateDirectoriesParse $106

kDirFindADAPDirectoryByNetSearch $107

kDirNetSearchADAPDirectoriesGet $108

kDirAddRecord $109

kDirDeleteRecord $10A

kDirAddAttributeValue $10B

kDirDeleteAttributeValue $10C

kDirChangeAttributeValue $10D

kDirVerifyAttributeValue $10E

kDirAddPseudonym $10F

kDirDeletePseudonym $110

kDirEnumerateGet $111

kDirEnumerateAttributeTypesGet $112

kDirEnumeratePseudonymGet $113

kDirGetNameAndType $114

kDirSetNameAndType $115

kDirGetRecordMetaInfo $116

C H A P T E R 3

Catalog Service Access Modules

3-48 Summary of Catalog Service Access Modules

kDirLookupGet $117

kDirGetDNodeMetaInfo $118

kDirGetDirectoryInfo $119

kDirEnumerateDirectoriesGet $11A

kDirAbort $11B

kDirAddAlias $11C

kDirAddDSAM $11D

kDirOpenPersonalDirectory $11E

kDirCreatePersonalDirectory $11F

kDirRemoveDSAM $120

kDirGetDirectoryIcon $121

kDirMapPathNameToDNodeNumber $122

kDirMapDNodeNumberToPathName $123

kDirGetLocalNetworkSpec $124

kDirGetDNodeInfo $125

kDirFindValue $126

kDirInstantiateDSAM $127

kDirGetOCESetupRefNum $128

kDirGetDNodeAccessControlGet $12A

kDirGetRecordAccessControlGet $12C

kDirGetAttributeAccessControlGet $12E

kDirGetDNodeAccessControlParse $12F

kDirDeleteAttributeType $130

kDirClosePersonalDirectory $131

kDirMakePersonalDirectoryRLI $132

kDirAddDSAMDirectory $133

kDirGetRecordAccessControlParse $134

kDirRemoveDirectory $135

kDirGetExtendedDirectoriesInfo $136

kDirAddADAPDirectory $137

kDirGetAttributeAccessControlParse $138

kDirFindRecordGet $140

kDirFindRecordParse $141

DirInstantiateDSAMPB = RECORD

qLink: Ptr; { reserved }

reserved1: LONGINT; { reserved }

reserved2: LONGINT; { reserved }

ioCompletion: ProcPtr; { your completion routine }

ioResult: OSErr; { result code }

saveA5: LONGINT; { reserved }

reqCode: INTEGER; { Catalog Manager function request code }

reserved: ARRAY[1..2] OF LONGINT;

{ reserved }

C H A P T E R 3

Catalog Service Access Modules

Summary of Catalog Service Access Modules 3-49

serverHint: AddrBlock; { PowerShare server’s AppleTalk address }

dsRefNum: INTEGER; { personal catalog reference number }

callID: LONGINT; { reserved }

identity: AuthIdentity; { requestor’s authentication identity }

gReserved1: LONGINT; { reserved }

gReserved2: LONGINT; { reserved }

gReserved3: LONGINT; { reserved }

clientData: LONGINT; { you define this field }

dsamName: RStringPtr; { CSAM name }

dsamKind: OCEDirectoryKind;

{ CSAM kind }

dsamData: Ptr; { CSAM private data }

dsamDirProc: ProcPtr; { CSAM’s catalog service routine }

dsamDirParseProc: ProcPtr; { CSAM’s parse routine }

dsamAuthProc: ProcPtr; { reserved }

END;

DirAddDSAMPB = RECORD

qLink: Ptr; { reserved }

reserved1: LONGINT; { reserved }

reserved2: LONGINT; { reserved }

ioCompletion: ProcPtr; { your completion routine }

ioResult: OSErr; { result code }

saveA5: LONGINT; { reserved }

reqCode: INTEGER; { Catalog Manager function request code }

reserved: ARRAY[1..2] OF LONGINT;

{ reserved }

serverHint: AddrBlock; { PowerShare server’s AppleTalk address }

dsRefNum: INTEGER; { personal catalog reference number }

callID: LONGINT; { reserved }

identity: AuthIdentity; { requestor’s authentication identity }

gReserved1: LONGINT; { reserved }

gReserved2: LONGINT; { reserved }

gReserved3: LONGINT; { reserved }

clientData: LONGINT; { you define this field }

dsamRecordCID: CreationID; { creation ID of CSAM record }

dsamName: RStringPtr; { CSAM name }

dsamKind: OCEDirectoryKind;

{ CSAM kind }

fsSpec: FSSpecPtr; { CSAM file specification }

END;

C H A P T E R 3

Catalog Service Access Modules

3-50 Summary of Catalog Service Access Modules

DirAddDSAMDirectoryPB = RECORD
qLink: Ptr; { reserved }

reserved1: LONGINT; { reserved }

reserved2: LONGINT; { reserved }

ioCompletion: ProcPtr; { your completion routine }
ioResult: OSErr; { result code }

saveA5: LONGINT; { reserved }

reqCode: INTEGER; { Catalog Manager function request code }

reserved: ARRAY[1..2] OF LONGINT;
{ reserved }

serverHint: AddrBlock; { PowerShare server’s AppleTalk address }

dsRefNum: INTEGER; { personal catalog reference number }

callID: LONGINT; { reserved }
identity: AuthIdentity; { requestor’s authentication identity }

gReserved1: LONGINT; { reserved }

gReserved2: LONGINT; { reserved }

gReserved3: LONGINT; { reserved }
clientData: LONGINT; { you define this field }

dsamRecordCID: CreationID; { creation ID of CSAM record }

directoryName: DirectoryNamePtr; { catalog name }

discriminator: DirDiscriminator; { discriminator value }
features: DirGestalt; { feature flags for the catalog }

directoryRecordCID: CreationID; { creation ID of catalog record }

END;

DirRemoveDSAMPB = RECORD
qLink: Ptr; { reserved }

reserved1: LONGINT; { reserved }
reserved2: LONGINT; { reserved }

ioCompletion: ProcPtr; { your completion routine }
ioResult: OSErr; { result code }

saveA5: LONGINT; { reserved }
reqCode: INTEGER; { Catalog Manager function request code }

reserved: ARRAY[1..2] OF LONGINT;
{ reserved }

serverHint: AddrBlock; { PowerShare server’s AppleTalk address }
dsRefNum: INTEGER; { personal catalog reference number }

callID: LONGINT; { reserved }
identity: AuthIdentity; { requestor’s authentication identity }

gReserved1: LONGINT; { reserved }
gReserved2: LONGINT; { reserved }

gReserved3: LONGINT; { reserved }
clientData: LONGINT; { you define this field }

dsamRecordCID: CreationID; { creation ID of CSAM record }
END;

C H A P T E R 3

Catalog Service Access Modules

Summary of Catalog Service Access Modules 3-51

CSAM Functions

Initializing a CSAM

FUNCTION DirInstantiateDSAM (paramBlock: DirParamBlockPtr): OSErr;

Adding a CSAM and Its Catalogs

FUNCTION DirAddDSAM (paramBlock: DirParamBlockPtr): OSErr;

FUNCTION DirAddDSAMDirectory(paramBlock: DirParamBlockPtr;
async: BOOLEAN): OSErr;

Removing a CSAM and Its Catalogs

FUNCTION DirRemoveDSAM (paramBlock: DirParamBlockPtr): OSErr;

Application-Defined Functions

FUNCTION MyDSAMDirFunc (dsamData: Ptr; paramBlock: DirParamBlockPtr;
async: BOOLEAN): OSErr;

FUNCTION MyDSAMDirParseFunc (dsamData: Ptr; paramBlock: DirParamBlockPtr;
async: BOOLEAN): OSErr;

Assembly-Language Summary

Trap Macros

Trap Macros Requiring Routine Selectors

_oceTBDispatch

Selector Routine

0$127 DirInstantiateDSAM

0$11D DirAddDSAM

0$133 DirAddDSAMDirectory

0$120 DirRemoveDSAM

0$135 DirRemoveDirectory

C H A P T E R 3

Catalog Service Access Modules

3-52 Summary of Catalog Service Access Modules

Result Codes
noErr 0 No error
kOCEParamErr –50 Invalid parameter
kOCEAlreadyExists –1510 Catalog with same name and kind already exists
kOCELocalAuthenticationFail

–1561 User hasn’t entered Key Chain password
kOCEDSAMInstallErr –1628 CSAM could not be installed or doesn’t exist
kOCEOCESetupRequired –1633 Local identity is not set up
kOCEDSAMRecordNotFound –1634 CSAM record not in Setup catalog
kOCEDSAMNotInstantiated –1635 CSAM is not instantiated
kOCEDSAMRecordExists –1636 CSAM record is already in Setup catalog

Contents 4-1

C H A P T E R 4

Contents

Service Access Module Setup

Introduction to SAM Setup 4-3

About Personal MSAMs and Addresses 4-4

Adding Catalog and Mail Services 4-5

Adding a Combined Service 4-6

Adding the Catalog Service 4-10

Adding the Mail Service 4-12

Adding a Mail Service Only 4-22

Setting Up the Associated Catalog Service 4-27

Setting Up the Mail Service 4-28

Adding a Catalog Service Only 4-28

Modifying an Existing Service 4-30

Writing and Modifying Addresses 4-30

Writing an Address Template 4-31

Writing an Address Template Code Resource 4-41

Main Routines for the Address Template Code Resource 4-41

Data Input Subroutines for the Address Template 4-47

Data Output Subroutines for the Address Template 4-51

Miscellaneous Subroutines 4-57

SAM Setup Reference 4-63

The PowerTalk Setup Catalog 4-63

The Setup Record 4-64

The MSAM Record 4-64

The CSAM Record 4-65

The Mail Service Record 4-66

The Catalog Record 4-67

The Combined Record 4-70

The Setup Template Resources 4-73

The Address Template 4-80

C H A P T E R 4

Introduction to SAM Setup 4-3

Service Access Module Setup

This chapter describes how you install and configure an Apple Open Collaboration

Environment (AOCE) catalog service access module (CSAM) and a personal messaging

service access module (personal MSAM). It also describes how any messaging service

access module, either personal or server type, obtains address information from a user.

You need to read this chapter if you are developing a catalog service access module or a

personal messaging service access module to work with the PowerTalk software. For

information on initializing a server MSAM, see the chapter “Messaging Service Access

Modules” in this book and the PowerShare System Manager’s Guide.

This chapter assumes you have already read one or both of the chapters that describe

service access modules, “Catalog Service Access Modules” and “Messaging Service

Access Modules,” both in this book. To use this chapter, you must also know how to

write an AOCE template. The chapter “AOCE Templates” in Inside Macintosh: AOCE
Application Interfaces describes how to write an AOCE template. In addition, you must

have a general understanding of AOCE catalogs and the Catalog Manager application

programming interface (API). See the chapter “Catalog Manager” in Inside Macintosh:
AOCE Application Interfaces for information about AOCE catalogs.

This chapter begins with a brief introduction to the setup process. It then describes the

types of records in the PowerTalk Setup catalog and the setup and address AOCE

templates. Then it explains how you can

■ set up a combined CSAM/MSAM

■ set up a CSAM

■ set up an MSAM

■ modify existing CSAM or MSAM configuration information

■ add, modify, and remove address information

Introduction to SAM Setup

A user of PowerTalk software who wants to add a catalog or messaging service uses the

PowerTalk Key Chain to add and configure the service. The PowerTalk Key Chain, in

turn, uses special AOCE templates that you provide with your service access module to

supply information pages that let the user enter and modify setup information.

Each CSAM or personal MSAM requires a setup template. A setup template is a set of

AOCE templates that allow a user to install and configure a service access module. In

addition, both personal and server MSAMs require an address template that allows a

user to enter address information into a User record.

The templates provide the only human interface for CSAMs and personal MSAMs.

Server MSAMs, being foreground applications, have their own user interface. However,

the address template is the mechanism through which a server MSAM obtains the

address information that it requires.

C H A P T E R 4

Service Access Module Setup

4-4 About Personal MSAMs and Addresses

There are three types of CSAM and personal MSAM files:

■ CSAM only, or stand-alone CSAM (file type 'dsam')

■ MSAM only, or stand-alone MSAM (file type 'msam')

■ combined CSAM/MSAM (file type 'csam')

Note

The abbreviation “dsam”—found in the 'dsam' file type and in
function names and data structures in the AOCE interface files—stands
for “directory service access module,” the name used for catalog service
access modules in early versions of the AOCE software. The 'csam' file
type is so named because it implements a “combined service access
module.” Therefore, a file of type 'dsam' implements a CSAM, and a
file of type'csam' implements both a CSAM and an MSAM. ◆

A CSAM-only file contains the CSAM driver and a setup template. It might also contain

additional templates to allow items in its catalogs to be viewed in the Finder. An

MSAM-only file contains a background application (the MSAM itself), a setup template,

and an address template. A combined CSAM/MSAM file contains a CSAM driver,

an MSAM background application, a setup template, and an address template (and

possibly other templates to allow items in its catalogs to be viewed in the Finder).

A server MSAM application file (file type 'APPL') contains an address template among

its resources.

The setup templates add information to the PowerTalk Setup catalog. The PowerTalk
Setup catalog is a personal catalog named “PowerTalk Setup Preferences” and kept in

the Preferences folder in the System Folder. The Setup catalog stores information about

the catalog and messaging services that are available to the principal user of a given

Macintosh computer.

The following sections describe how you use routines from the MSAM and Catalog

Manager APIs and AOCE utility routines to install and configure a service access

module. The reference section describes the records in the PowerTalk Setup catalog, the

AOCE templates that create and modify those records, and the resources required for

these templates.

About Personal MSAMs and Addresses

When a user sends an AppleMail letter, the AOCE software examines the recipients in

the mailer and determines how to route the letter based on the catalog names in the

recipient addresses. For example, if an address contains the name of a PowerShare

catalog, the AOCE toolbox hands the letter to the PowerShare router. For this reason,

every personal MSAM must have an associated catalog name, even if there is no CSAM

associated with the MSAM. A CSAM provides the user with the ability to browse an

external catalog. The catalog name associated with an MSAM, by contrast, is used by the

AOCE software for routing the letter. It can be the name of an external catalog for which

the user has a CSAM, but need not be.

C H A P T E R 4

Service Access Module Setup

Adding Catalog and Mail Services 4-5

Note
In the current version of the PowerTalk system software, each personal
MSAM must be associated with a unique catalog name. In future
versions of PowerTalk, two or more personal MSAMs may be able to use
the same catalog name for routing purposes. In that case, the AOCE
software would look at the extension type in the address as well as the
catalog name. (Addresses and address extension types are described in
the chapter “Messaging Service Access Modules” in this book.) ◆

Your address template must allow the user to enter addressing information and be

capable of formulating an address in the format required by AOCE.

For incoming mail, the personal MSAM has no responsibility to forward mail to other

recipients. However, to be most useful to the user, your personal MSAM should translate

the addresses from its own external messaging system into addresses intelligible to

AOCE, including the catalog name and the address extension information, and place

them in the mailer. Then the user can use these addresses for replies to the letter and can

drag them out of the mailer into a personal catalog or information card for future use.

Adding Catalog and Mail Services

This section describes what your setup template must do to add catalog and mail

services to a user’s AOCE system. It first discusses what your setup template must do

when you provide a combined CSAM/MSAM. Then it explains what the setup template

must do when you provide only a CSAM or an MSAM, but not both.

The process of adding a service requires actions from the user, the PowerTalk Key Chain,

and your setup template. This section describes the user and Key Chain actions only to

the extent that it clarifies the actions your setup template must take. If you want more

detail on the user actions, see the PowerTalk User’s Guide.

As you will see in the following sections, before you can add a service of any type

(catalog, mail, or combined), you must have added the SAM itself. The procedure for

adding a SAM is covered in the description of adding the relevant service.

Each section identifies the records and attributes in the PowerTalk Setup catalog that

your setup template creates or manipulates in the course of adding a given service, and

it identifies the functions you use to do that. Some of these functions are described in the

other chapters in this book. Others are described in the chapters “AOCE Utilities,”

“AOCE Templates,” “Catalog Manager,” and “Authentication Manager” in Inside
Macintosh: AOCE Application Interfaces.

AOCE record and attribute types that are discussed in this section are often identified by

an index constant. See the chapter “AOCE Utilities” for an explanation of indexed record

and attribute types.

C H A P T E R 4

Service Access Module Setup

4-6 Adding Catalog and Mail Services

Adding a Combined Service
This section tells you how to add a combined catalog and mail service. Read this section

if you are providing both a CSAM and an MSAM. It explains what your setup template

must do to allow a user to add and configure a combined mail and catalog service.

The setup template for a combined MSAM and CSAM includes a main aspect template

for a Combined record. Your code resource for the Combined record must create a

CSAM record and check whether an MSAM record already exists. If the MSAM record

does not exist, the template’s code resource must create that record as well.

Listing 4-1 illustrates a setup template for a combined catalog and mail service.

Listing 4-1 Combined catalog and mail service setup template

#define SystemSevenOrLater 1

#include "Types.r"

#include "OCETemplates.h"

#include "OCE.r"

#define kSurfWriterAspect 1000

#define kSurfWriterInfoPage 1250

#define kSignature 'WAVE'

#define kServiceRecordType kCombinedRecTypeBody "WAVE"

#define kAspectName "SurfWriter_Service_Aspect"

#define kInfoPageName "SurfWriter_Service_Info_Page"

#define kWindowWidth 259

#define kWindowHeight 200

#define kZeroRect {0, 0, 0, 0}

#define kDoubleLineLeft kDETSubpageIconLeft

#define kDoubleLineRight kWindowWidth - kDETSubpageIconLeft

#define kDoubleLineTop kTopBorder + kFieldHeight + 8

#define kDoubleLineBottom kDoubleLineTop + 1

#define kDoubleLineRect {kDoubleLineTop, kDoubleLineLeft,\

kDoubleLineBottom, kDoubleLineRight}

resource 'deta' (kSurfWriterAspect,purgeable)

{

0, dropCheckConflicts, isMainAspect

};

C H A P T E R 4

Service Access Module Setup

Adding Catalog and Mail Services 4-7

resource 'rstr' (kSurfWriterAspect + kDETTemplateName, purgeable)

{

kAspectName

};

resource 'rstr' (kSurfWriterAspect + kDETRecordType, purgeable)

{

kServiceRecordType

};

resource 'rstr' (kSurfWriterAspect + kSAMAspectKind, purgeable)

{

"Full SurfWriter Service"

};

resource 'rstr' (kSurfWriterAspect + kDETAspectKind, purgeable)

{

"Combined SurfWriter Service"

};

resource 'rstr' (kSurfWriterAspect + kDETAspectName, purgeable) {

"unconfigured SurfWriter Service"

};

resource 'rstr' (kSurfWriterAspect + kSAMAspectUserName, purgeable) {

"SurfWriter User"

};

resource 'sami' (kSurfWriterAspect + kSAMAspectSlotCreationInfo, purgeable)

{

2, // max number of catalogs/slots

kSignature, // catalog signature, MSAM type

servesMSAM, // an MSAM template

servesDSAM, // a CSAM template

"SurfWriter Combined Service ", // display when user clicks Add

"untitled combined SurfWriter Service" // new record name

};

C H A P T E R 4

Service Access Module Setup

4-8 Adding Catalog and Mail Services

// Custom window

resource 'detw' (kSurfWriterAspect + kDETAspectInfoPageCustomWindow,

purgeable)

{

{-1, -1, kWindowHeight, kWindowWidth},

includePopup

};

// Include code resource

include "SurfWriterCode" 'detc'(0) as

 'detc'(kSurfWriterAspect+kDETAspectCode, purgeable);

// Include icons

include "SurfWriterIcons" 'ICN#'(0) as

'ICN#'(kSurfWriterAspect+kDETAspectMainBitmap, purgeable);

include "SurfWriterIcons" 'icl4'(0) as

'icl4'(kSurfWriterAspect+kDETAspectMainBitmap, purgeable);

include "SurfWriterIcons" 'icl8'(0) as

'icl8'(kSurfWriterAspect+kDETAspectMainBitmap, purgeable);

include "SurfWriterIcons" 'ics#'(0) as

'ics#'(kSurfWriterAspect+kDETAspectMainBitmap, purgeable);

include "SurfWriterIcons" 'ics4'(0) as

'ics4'(kSurfWriterAspect+kDETAspectMainBitmap, purgeable);

include "SurfWriterIcons" 'ics8'(0) as

'ics8'(kSurfWriterAspect+kDETAspectMainBitmap, purgeable);

include "SurfWriterIcons" 'SICN'(0) as

'SICN'(kSurfWriterAspect+kDETAspectMainBitmap, purgeable);

//---

// Info-page

resource 'deti' (kSurfWriterInfoPage, purgeable)

{

kDefaultSortIndex,

kZeroRect,

noSelectFirstText,

{

kDETNoProperty, kDETNoProperty, kSurfWriterInfoPage;

},

{

C H A P T E R 4

Service Access Module Setup

Adding Catalog and Mail Services 4-9

}

};

resource 'rstr' (kSurfWriterInfoPage + kDETTemplateName, purgeable) {

kInfoPageName

};

resource 'rstr' (kSurfWriterInfoPage + kDETRecordType, purgeable) {

kServiceRecordType

};

resource 'rstr' (kSurfWriterInfoPage + kDETInfoPageName, purgeable) {

"SurfWriter Combined Service"

};

resource 'rstr' (kSurfWriterInfoPage + kDETInfoPageMainViewAspect,

purgeable) {

kAspectName

};

resource 'detv' (kSurfWriterInfoPage, "subpageview", purgeable)

{

{

kDoubleLineRect, kDETNoFlags, kDETNoProperty,

Box { kDETBoxIsGrayed };

kDETSubpageIconRect, kDETNoFlags, kDETAspectMainBitmap,

Bitmap { kDETLargeIcon };

};

};

During system initialization, the Key Chain loads all setup templates. As specified by the

'sami' resource in Listing 4-1, the Key Chain offers the user the choice “SurfWriter

Combined Service” when the user clicks the Add button. When the user selects this

choice, the Key Chain adds a new record to the PowerTalk Setup catalog. As specified by

Listing 4-1, this record’s name is “untitled combined SurfWriter Service,” and its type

is “aoce CombinedWAVE”. The Key Chain also writes four attributes into this record,

as follows:

■ An associated catalog attribute that points to the record that contains information
about the catalog associated with this service. In the case of a combined service, this
attribute points back to the Combined record itself.

■ An associated mail service attribute that points to the record that contains information
about the mail slot associated with this service. In the case of a combined service,
this attribute points back to the Combined record itself.

C H A P T E R 4

Service Access Module Setup

4-10 Adding Catalog and Mail Services

■ An attribute of type “aoce Unconfigured” (attribute type index
kUnconfiguredAttrTypeNum) indicating that the service has not
yet been set up.

■ A version attribute that contains the version number of the Key Chain at the time it
created the record.

The Key Chain adds a line to the Key Chain window representing the new record. The

line includes the key icon used by the Key Chain, the service name you specified in the

kDETAspectName resource (“unconfigured SurfWriter Service” in Listing 4-1), and

whatever default values your template provides for the Name and Kind fields in the

kSAMAspectUserName and kSAMAspectKind resources (“SurfWriter User” and “Full

SurfWriter Service” in Listing 4-1).

Your code resource should create no new records or attributes at this time. However,

when the user opens the Key Chain entry, the Key Chain opens your information page

and calls your code resource with the kDETcmdInstanceInit routine selector. Your

setup template must follow the steps in the following two sections in order to set up a

combined mail and catalog service.

Adding the Catalog Service

To add a catalog service to a combined service, you must write certain attributes and also

activate the catalog. The attributes in the Combined record are summarized in Table 4-6

on page 4-70. Use the Catalog Manager function DirAddAttributeValue to add

attributes to a record. The function is described in the chapter “Catalog Manager” in

Inside Macintosh: AOCE Application Interfaces; see the DoAddAttribute function on

page 4-18 in Listing 4-2 for an example of its use.

Note

If you are adding a catalog service only, you follow these same steps but
add and modify attributes in the Catalog record rather than in the
Combined record. See “Adding a Catalog Service Only” beginning on
page 4-28 for more information. ◆

1. Write the comment attribute. This is a string that you can use for any purpose.
An application or template code resource can read this string by calling the
DirGetExtendedDirectoriesInfo function; see the chapter “Catalog Manager”
in Inside Macintosh: AOCE Application Interfaces for a description of this function.

2. Write the real name attribute, containing the external name of the catalog. This name
is for your own use; it is not read by the AOCE software. An application or template
code resource can read this name by calling the DirGetExtendedDirectoriesInfo
function. Whereas the catalog name you provide to the DirAddDSAMDirectory
function (see step 5) must be unique within the AOCE system, the “real” name need
not be. For example, the user might have accounts on two different SurfWriter mail
servers. Each would have to have a distinct name for display in the Key Chain, but
the Combined records for both could contain the name “SurfWriter Mail” for the real
name attribute.

C H A P T E R 4

Service Access Module Setup

Adding Catalog and Mail Services 4-11

3. If you wish, you can write a private data attribute. This attribute can contain binary
data of any length (up to the maximum length of an attribute) and is for your own
use. For example, you can store information about address formats for use by your
address template. Your application or template code resource can read this data by
calling the DirGetExtendedDirectoriesInfo function.

4. Call the DirAddDSAM function, passing it the CSAM’s name and signature and the file
system specification of the CSAM file. You can use the kDETcmdGetTemplateFSSpec
template callback function to obtain the file system specification. (Template callback
functions are described in “AOCE Templates” in Inside Macintosh: AOCE Application
Interfaces.) The DirAddDSAM function creates a CSAM record, starts the CSAM driver
(if it’s not already running), and returns the creation ID of the CSAM record. Your
CSAM driver’s Open routine should call the DirInstantiateDSAM function at this
time, providing it the entry point into your CSAM.

5. Determine the name and discriminator of the catalog and then call the
DirAddDSAMDirectory function, passing it the CSAM record’s creation ID, the
Combined record’s creation ID, the catalog’s name and discriminator, and the
capability flags that indicate the abilities of the catalog and CSAM. The catalog name
must be unique; the record name is the same as the catalog name and cannot be
changed. You can use the kDETcmdGetDSSpec template callback function to
determine the creation ID of the Combined record. The DirAddDSAMDirectory
function writes to your Combined record the capability flags, catalog discriminator,
and parent CSAM attributes. It then calls your CSAM’s catalog service routine
with the kDirAddDSAMDirectory request code so that the CSAM receives all
the information about the catalog that you passed to the DirAddDSAMDirectory
function. The CSAM can use the record’s creation ID to read any of the attributes in
the Combined record.

6. If the catalog requires a user name and password, call the
OCESetupAddDirectoryInfo function to add that information to the Combined
record. You provide the Combined record’s creation ID, the record ID that represents
the user, and the password. The function encrypts the password. You can change this
information later by calling the OCESetupChangeDirectoryInfo function and
extract it by calling the OCESetupGetDirectoryInfo function. These functions are
described in the chapter “Authentication Manager” in Inside Macintosh: AOCE
Application Interfaces.

7. If the name of the User record does not correspond to the user’s account name in the
external catalog, you can also call the DirAddAttributeValue function to add a
native name attribute. This attribute contains the user’s name or account name in the
external catalog. This name is for your own use; it is not read by the AOCE software.
An application or template code resource can read this name by calling the
OCESetupGetDirectoryInfo function.

C H A P T E R 4

Service Access Module Setup

4-12 Adding Catalog and Mail Services

Adding the Mail Service

Once you’ve added the catalog service, you can add the mail service. Perform the

following steps to do so.

8. Determine if an MSAM record exists for your MSAM. You can do this by comparing
your MSAM file’s file ID with the file ID stored in the gateway file ID attribute in each
MSAM record currently in the PowerTalk Setup catalog.

9. If no MSAM record exists for your MSAM, create one and add a version attribute and
a gateway file ID attribute to it.

Listing 4-2 shows a function that compares file IDs, creates the MSAM record if
necessary (adding the two attributes), and returns the record’s creation ID.

Listing 4-2 Matching an MSAM file ID

#define kEnumBufferSize 1024

#define kInitialLookupBuffer 256

struct LookupInfo {

unsigned long fileID;

Boolean found;

};

#ifndef __cplusplus

typedef struct LookupInfo LookupInfo;

#endif

struct EnumInfo {

short setupRef;

unsigned long fileID;

CreationID msamCID;

DirEnumSpec lastEnumSpec;

RString name;

RString type;

};

#ifndef __cplusplus

typedef struct EnumInfo EnumInfo;

#endif

/* Return the given file's file ID. */

OSErr DoGetIDFromFSSpec(const FSSpec *spec, unsigned long *id)

{

OSErr err;

C H A P T E R 4

Service Access Module Setup

Adding Catalog and Mail Services 4-13

CInfoPBRec pb;

pb.dirInfo.ioCompletion = nil;

pb.dirInfo.ioVRefNum = spec->vRefNum;

pb.dirInfo.ioNamePtr = spec->name;

pb.dirInfo.ioFDirIndex = 0;

pb.dirInfo.ioDrDirID = spec->parID;

err = PBGetCatInfoSync(&pb);

if (err == noErr)

{

*id = pb.dirInfo.ioDrDirID;

}

return err;

}

/* Return the dsRefNum of the Setup catalog. */

OSErr DoGetSetupDirectoryRefNum(short *refNum)

{

OSErr err;

DirParamBlock dspb;

err = DirGetOCESetupRefNum(&dspb, false);

if (err == noErr)

{

*refNum = dspb.header.dsRefNum;

}

return err;

}

/* Does this record have the matching file ID as an attribute? */

pascal Boolean DoLookupCB(long lInfo, const Attribute *thisAttribute)

{

LookupInfo* info = (LookupInfo*) lInfo;

if (info->fileID == * (long*) thisAttribute->value.bytes)

{

info->found = true;

}

C H A P T E R 4

Service Access Module Setup

4-14 Adding Catalog and Mail Services

/* Stop the parse once you find an attribute value with the matching

file ID. */

return info->found;

}

/* Do a lookup into the given record in the Setup catalog to

 see if its kGatewayFileIDAttrTypeNum attribute stores the given

 file ID. */

Boolean DoRecordHasFileID(const LocalRecordID *lrid, short setupRef,

unsigned long fileID)

{

OSErr err;

LookupInfo info;

DirParamBlock dspb;

RecordID rid;

RecordIDPtr recordList[1];

AttributeTypePtr attrTypeList[1];

Boolean includeStartingPoint = false;

unsigned long bufferSize = kInitialLookupBuffer;

void *dataBuffer;

info.fileID = fileID;

info.found = false;

rid.local = *lrid; /* The lookup requires a RID, not a local RID. */

rid.rli = nil;

recordList[0] = &rid;

attrTypeList[0] = OCEGetIndAttributeType(kGatewayFileIDAttrTypeNum);

/* Create a buffer that's big enough to get at least one attribute value. */

dataBuffer = NewPtr(bufferSize);

err = MemError();

if (err == noErr)

{

*(long *)&dspb.lookupGetPB.serverHint = 0;

dspb.lookupGetPB.dsRefNum = setupRef;

dspb.lookupGetPB.aRecordList = recordList;

dspb.lookupGetPB.attrTypeList = attrTypeList;

dspb.lookupGetPB.recordIDCount = 1;

C H A P T E R 4

Service Access Module Setup

Adding Catalog and Mail Services 4-15

dspb.lookupGetPB.attrTypeCount = 1;

dspb.lookupGetPB.includeStartingPoint = false;

dspb.lookupGetPB.getBuffer = dataBuffer;

dspb.lookupGetPB.getBufferSize = bufferSize;

dspb.lookupGetPB.startingRecordIndex = 1;

dspb.lookupGetPB.startingAttrTypeIndex = 1;

OCESetCreationIDtoNull(&dspb.lookupGetPB.startingAttribute.cid);

dspb.lookupParsePB.clientData = &info;

dspb.lookupParsePB.eachRecordID = nil;

dspb.lookupParsePB.eachAttrType = nil;

dspb.lookupParsePB.eachAttrValue = DoLookupCB;

do

{

err = DirLookupGet(&dspb,false);

if ((err == noErr) || (err == kOCEMoreData))

{

err = DirLookupParse(&dspb,false);

}

} while (err == kOCEMoreData);

DisposePtr((Ptr) dataBuffer);

}

return info.found;

}

/* Check whether the current record is your MSAM record. To do so, check

whether the current record's kGatewayFileIDAttrTypeNum attribute matches

the file ID of your MSAM file. */

pascal Boolean DoEnumCB(long eData, const DirEnumSpec *enumSpecPtr)

{

Boolean found;

EnumInfo* enumData = (EnumInfo*) eData;

/* First save your current DirEnumSpec so that you can continue

 if the buffer couldn't hold all the records. */

BlockMove(enumSpecPtr, &enumData->lastEnumSpec, sizeof(DirEnumSpec));

OCECopyRString(enumSpecPtr->u.recordIdentifier.recordName,

C H A P T E R 4

Service Access Module Setup

4-16 Adding Catalog and Mail Services

 &enumData->name, kRStringMaxBytes);

OCECopyRString(enumSpecPtr->u.recordIdentifier.recordType,

 &enumData->type, kRStringMaxBytes);

enumData->lastEnumSpec.u.recordIdentifier.recordName = &enumData->name;

enumData->lastEnumSpec.u.recordIdentifier.recordType = &enumData->type;

/* Does this record have the matching file ID? */

found = DoRecordHasFileID(&enumSpecPtr->u.recordIdentifier,

 enumData->setupRef, enumData->fileID);

/* If so, save its creation ID. */

if (found)

{

OCECopyCreationID(&enumSpecPtr->u.recordIdentifier.cid,

 &enumData->msamCID);

}

/* Stop the parse once you find a record with the matching file ID. */

return found;

}

/* Enumerate all MSAM records in the Setup catalog, looking

 for one that corresponds to the MSAM with the given file ID. */

OSErr DoFindMSAMRecordWithFileID(short setupRef, unsigned long fileID,

 CreationID *msamCID)

{

OSErr err;

DirParamBlock dspb;

void *buffer;

RString *recordType;

EnumInfo enumData;

buffer = NewPtr(kEnumBufferSize);

err = MemError();

if (err == noErr)

{

recordType = OCEGetIndRecordType(kMSAMRecTypeNum);

enumData.fileID = fileID;

enumData.setupRef = setupRef;

OCESetCreationIDtoNull(&enumData.msamCID);

C H A P T E R 4

Service Access Module Setup

Adding Catalog and Mail Services 4-17

*(long *)&dspb.enumerateGetPB.serverHint = 0;

dspb.enumerateGetPB.dsRefNum = setupRef;

dspb.enumerateGetPB.clientData = &enumData;

dspb.enumerateGetPB.aRLI = nil;

dspb.enumerateGetPB.startingPoint = nil;

dspb.enumerateGetPB.sortBy = kSortByName;

dspb.enumerateGetPB.sortDirection = kSortForwards;

dspb.enumerateGetPB.nameMatchString = nil;

dspb.enumerateGetPB.typesList = &recordType;

dspb.enumerateGetPB.typeCount = 1;

dspb.enumerateGetPB.enumFlags = kEnumDistinguishedNameMask;

dspb.enumerateGetPB.includeStartingPoint = false;

dspb.enumerateGetPB.matchNameHow = kMatchAll;

dspb.enumerateGetPB.matchTypeHow = kExactMatch;

dspb.enumerateGetPB.getBuffer = buffer;

dspb.enumerateGetPB.getBufferSize = kEnumBufferSize;

dspb.enumerateParsePB.eachEnumSpec = DoEnumCB;

do

{

err = DirEnumerateGet(&dspb, false);

if ((err == noErr) || (err == kOCEMoreData))

{

err = DirEnumerateParse(&dspb, false);

}

dspb.enumerateGetPB.startingPoint = &enumData.lastEnumSpec;

} while (err == kOCEMoreData);

DisposPtr((Ptr) buffer);

}

OCECopyCreationID(&enumData.msamCID, msamCID);

return err;

}

/* Create an MSAM record, returning the record's creation ID. */

OSErr DoCreateMSAMRecord(short setupRef, CreationID *msamCID)

{

OSErr err;

RString name;

C H A P T E R 4

Service Access Module Setup

4-18 Adding Catalog and Mail Services

RecordID rid;

DirParamBlock dspb;

OCEPToRString("\pMy MSAM", smRoman, &name, kRStringMaxBytes);

rid.local.recordName = &name;

rid.local.recordType = OCEGetIndRecordType(kMSAMRecTypeNum);

OCESetCreationIDtoNull(&rid.local.cid);

rid.rli = nil;

*(long *)&dspb.addRecordPB.serverHint = 0;

dspb.addRecordPB.dsRefNum = setupRef;

dspb.addRecordPB.aRecord = &rid;

dspb.addRecordPB.allowDuplicate = true;

err = DirAddRecord(&dspb, false);

OCECopyCreationID(&rid.local.cid, msamCID);

return err;

}

/* Add an attribute value to the given record in the Setup catalog. */

OSErr DoAddAttribute(short setupRef,

const CreationID *recordCID,

const AttributeType *attrType,

unsigned long length,

Ptr bytes)

{

OSErr err;

RecordID rid;

Attribute attr;

DirParamBlock dspb;

rid.local.recordName = nil;

rid.local.recordType = nil;

OCECopyCreationID(recordCID, &rid.local.cid);

rid.rli = nil;

OCECopyRString((RString*) attrType, (RString*) &attr.attributeType,

kAttributeTypeMaxBytes);

OCESetCreationIDtoNull(&attr.cid);

attr.value.tag = typeBinary;

C H A P T E R 4

Service Access Module Setup

Adding Catalog and Mail Services 4-19

attr.value.dataLength = length;

attr.value.bytes = bytes;

*(long *)&dspb.addAttributeValuePB.serverHint = 0;

dspb.addAttributeValuePB.dsRefNum = setupRef;

dspb.addAttributeValuePB.aRecord = &rid;

dspb.addAttributeValuePB.attr = &attr;

err = DirAddAttributeValue(&dspb, false);

return err;

}

/* Given an FSSpec representing an MSAM file, return the corresponding

 MSAM record's creation ID, creating the MSAM record if necessary. */

OSErr DoGetMSAMCreationID(const FSSpec *spec, CreationID *msamCID)

{

OSErr err;

unsigned fileID;

short setupRef;

long version = 1;

err = DoGetIDFromFSSpec(spec, &fileID);

if (err == noErr)

{

err = DoGetSetupDirectoryRefNum(&setupRef);

}

if (err == noErr)

{

err = DoFindMSAMRecordWithFileID(setupRef, fileID, msamCID);

}

/* If you couldn't find the record, create it. */

if ((err == noErr) && OCEEqualCreationID(msamCID, OCENullCID()))

{

err = DoCreateMSAMRecord(setupRef, msamCID);

if (err == noErr)

{

C H A P T E R 4

Service Access Module Setup

4-20 Adding Catalog and Mail Services

/* Add the gateway file ID attribute. */

err = DoAddAttribute(setupRef, msamCID,OCEGetIndAttributeType

(kGatewayFileIDAttrTypeNum), sizeof(long),

(Ptr) &fileID);

}

if (err == noErr)

{

/* Add the version attribute. */

err = DoAddAttribute(setupRef, msamCID, OCEGetIndAttributeType

(kVersionAttrTypeNum), sizeof(long),

(Ptr) &version);

}

}

return err;

}

void Initialize()

{

InitGraf((Ptr) &qd.thePort);

InitFonts();

InitWindows();

InitMenus();

TEInit();

InitDialogs(nil);

InitCursor();

} /* initialize */

main()

{

OSErr err;

StandardFileReply reply;

CreationID cid;

Debugger();

MaxApplZone(); /* expand the heap so that code segments load at the top */

Initialize(); /* initialize the program */

StandardGetFile(nil, 0, nil, &reply);

if (reply.sfGood)

C H A P T E R 4

Service Access Module Setup

Adding Catalog and Mail Services 4-21

{

err = DoGetMSAMCreationID(&reply.sfFile, &cid);

Debugger();

}

}

10. Add a mail service attribute to the MSAM record that points to the Combined
record. You can get the record reference, which is a packed record ID, by calling
the kDETcmdGetDSSpec template callback function.

11. Add a parent MSAM attribute to the Combined record that points to the
MSAM record.

The sample function DoAddRecordReference in Listing 4-3 illustrates how to insert
a record reference into a record in the Setup catalog.

Listing 4-3 Inserting a record reference into a record

OSErr DoAddRecordReference(const CreationID *recordToAddReference,

 const AttributeType *attrType,

 const CreationID *referenceCID)

{

OSErr err;

short setupRef;

RecordID recordReference;

PackedRecordID *packedReference;

unsigned short size;

err = DoGetSetupDirectoryRefNum(&setupRef);

if (err == noErr)

{

recordReference.local.recordName = nil;

recordReference.local.recordType = nil;

OCECopyCreationID(referenceCID, &recordReference.local.cid);

recordReference.rli = nil;

size = OCEPackedRecordIDSize(&recordReference);

packedReference = (PackedRecordID*) NewPtr(size);

err = MemError();

}

if (err == noErr)

{

OCEPackRecordID(&recordReference, packedReference, size);

C H A P T E R 4

Service Access Module Setup

4-22 Adding Catalog and Mail Services

err = DoAddAttribute(setupRef, recordToAddReference, attrType, size,

(Ptr) packedReference);

}

return err;

}

12. Add a standard slot information attribute to the Combined record. This
attribute contains a MailStandardSlotInfoAttribute structure. See the
chapter “Messaging Service Access Modules” in this book for a description of
this data structure.

13. Call the MailCreateMailSlot function asynchronously to tell the MSAM to create
the new slot. You pass this function the MSAM record creation ID, the Combined
record creation ID, and some other information. You must call the kDETcmdBusy
callback routine while waiting for the MailCreateMailSlot function to complete.
The AOCE system launches the MSAM, which generates a unique slot ID for the new
slot and adds it to the Combined record in a slot ID attribute.

14. Delete the “aoce Unconfigured” attribute from the Combined record, because the
service is now configured. At this point, the mail and catalog services are available
to the user.

Your setup information pages obtain from the user whatever information is required to

access the external messaging system, such as the user’s account name and password, a

telephone number, connection information, and so forth.

Table 4-2 on page 4-65, Table 4-3 on page 4-66, and Table 4-6 on page 4-70 summarize the

contents of the MSAM, CSAM, and Combined records.

Adding a Mail Service Only
This section tells you how to add a mail service without adding a catalog service. Read

this section if you are providing only an MSAM. It explains what your setup template

must do to allow a user to add and configure a mail service.

The setup template for an MSAM includes main aspect templates for a Mail Service

record and a Catalog record. Your code resource for the Mail Service record should check

whether an MSAM record already exists. If the MSAM record does not exist, your

template’s code resource must create that record as well.

Listing 4-4 illustrates a setup template for a mail service. Except for changing several

strings from “combined” to “mail,” using the constant kMailServiceRecTypeBody

instead of kCombinedRecTypeBody, and specifying notDSAM instead of servesDSAM

in the 'sami' resource, Listing 4-4 is identical to Listing 4-1 on page 4-6.

C H A P T E R 4

Service Access Module Setup

Adding Catalog and Mail Services 4-23

Listing 4-4 Mail service setup template

#define SystemSevenOrLater 1

#include "Types.r"

#include "OCETemplates.h"

#include "OCE.r"

#define kSurfWriterAspect 1000

#define kSurfWriterInfoPage 1250

#define kSignature 'WAVE'

#define kServiceRecordType kMailServiceRecTypeBody "WAVE"

#define kAspectName "SurfWriter_MS_Aspect"

#define kInfoPageName "SurfWriter_MS_Info_Page"

#define kWindowWidth 259

#define kWindowHeight 200

#define kZeroRect {0, 0, 0, 0}

#define kDoubleLineLeft kDETSubpageIconLeft

#define kDoubleLineRight kWindowWidth - kDETSubpageIconLeft

#define kDoubleLineTop kTopBorder + kFieldHeight + 8

#define kDoubleLineBottom kDoubleLineTop + 1

#define kDoubleLineRect {kDoubleLineTop, kDoubleLineLeft,\

 kDoubleLineBottom, kDoubleLineRight}

resource 'deta' (kSurfWriterAspect, purgeable)

{

0, dropCheckConflicts, isMainAspect

};

resource 'rstr' (kSurfWriterAspect + kDETTemplateName, purgeable)

{

kAspectName

};

resource 'rstr' (kSurfWriterAspect + kDETRecordType, purgeable)

{

kServiceRecordType

};

C H A P T E R 4

Service Access Module Setup

4-24 Adding Catalog and Mail Services

resource 'rstr' (kSurfWriterAspect + kSAMAspectKind, purgeable)

{

"SurfWriter Mail Service"

};

resource 'rstr' (kSurfWriterAspect + kDETAspectKind, purgeable)

{

"SurfWriter Mail Service"

};

resource 'rstr' (kSurfWriterAspect + kDETAspectName, purgeable) {

"unconfigured SurfWriter Mail"

};

resource 'rstr' (kSurfWriterAspect + kSAMAspectUserName, purgeable) {

"SurfWriter User"

};

resource 'sami' (kSurfWriterAspect + kSAMAspectSlotCreationInfo, purgeable)

{

2, // max number of catalogs/slots

kSignature, // catalog signature, MSAM type

servesMSAM, // an MSAM template

notDSAM, // not a CSAM template

"SurfWriter Mail Service ", // display when user clicks Add

"untitled SurfWriter Mail Service" // new record name

};

// Custom window

resource 'detw' (kSurfWriterAspect + kDETAspectInfoPageCustomWindow,

purgeable)

{

{-1, -1, kWindowHeight, kWindowWidth},

includePopup

};

// Include code resource

include "SurfWriterCode" 'detc'(0) as

 'detc'(kSurfWriterAspect+kDETAspectCode, purgeable);

C H A P T E R 4

Service Access Module Setup

Adding Catalog and Mail Services 4-25

// Include icons

include "SurfWriterIcons" 'ICN#'(0) as

'ICN#'(kSurfWriterAspect+kDETAspectMainBitmap, purgeable);

include "SurfWriterIcons" 'icl4'(0) as

'icl4'(kSurfWriterAspect+kDETAspectMainBitmap, purgeable);

include "SurfWriterIcons" 'icl8'(0) as

'icl8'(kSurfWriterAspect+kDETAspectMainBitmap, purgeable);

include "SurfWriterIcons" 'ics#'(0) as

'ics#'(kSurfWriterAspect+kDETAspectMainBitmap, purgeable);

include "SurfWriterIcons" 'ics4'(0) as

'ics4'(kSurfWriterAspect+kDETAspectMainBitmap, purgeable);

include "SurfWriterIcons" 'ics8'(0) as

'ics8'(kSurfWriterAspect+kDETAspectMainBitmap, purgeable);

include "SurfWriterIcons" 'SICN'(0) as

'SICN'(kSurfWriterAspect+kDETAspectMainBitmap, purgeable);

//---

// Info-page

resource 'deti' (kSurfWriterInfoPage, purgeable)

{

kDefaultSortIndex,

kZeroRect,

noSelectFirstText,

{

kDETNoProperty, kDETNoProperty, kSurfWriterInfoPage;

},

{

}

};

resource 'rstr' (kSurfWriterInfoPage + kDETTemplateName, purgeable) {

kInfoPageName

};

resource 'rstr' (kSurfWriterInfoPage + kDETRecordType, purgeable) {

kServiceRecordType

};

resource 'rstr' (kSurfWriterInfoPage + kDETInfoPageName, purgeable) {

"SurfWriter Mail Service"

};

C H A P T E R 4

Service Access Module Setup

4-26 Adding Catalog and Mail Services

resource 'rstr' (kSurfWriterInfoPage + kDETInfoPageMainViewAspect,

purgeable) {

kAspectName

};

resource 'detv' (kSurfWriterInfoPage, "subpageview", purgeable)

{

{

kDoubleLineRect, kDETNoFlags, kDETNoProperty,

Box { kDETBoxIsGrayed };

kDETSubpageIconRect, kDETNoFlags, kDETAspectMainBitmap,

Bitmap { kDETLargeIcon };

};

};

During system initialization, the Key Chain loads all setup templates. As specified by the

'sami' resource in Listing 4-4, the Key Chain offers the user the choice “SurfWriter Mail

Service” when the user clicks the Add button. When the user selects this choice, the Key

Chain scans the Setup catalog looking for catalogs associated with the new mail service.

It identifies associated catalogs by looking for Catalog records whose type ends in the

catalog signature you specified in the 'sami' resource of your setup template. In our

example, these records would be of type “aoce DirectoryWAVE”. If the Key Chain finds

any such catalogs that do not already have an associated mail service, it displays a dialog

box (Figure 4-1) allowing the user to join one of these existing catalogs.

Figure 4-1 Catalog-choice dialog box

If the user selects one of these catalogs, the Key Chain adds a Mail Service record to the

Setup catalog (using the aspect template you provided) and puts an associated catalog

attribute in that record pointing to the Catalog record the user selected. The Key Chain

also adds to the Catalog record an associated mail service attribute pointing to the Mail

Service record it just created.

C H A P T E R 4

Service Access Module Setup

Adding Catalog and Mail Services 4-27

If the user clicks New or if the Key Chain does not find any associated catalogs that do

not already have an associated mail service, it adds to the Setup catalog both a Mail

Service record and a new Catalog record. It puts an “aoce Fake” attribute (attribute type

index kFakeAttrTypeNum) in the Catalog record, indicating that the MSAM does not

have a CSAM associated with it. The Key Chain also puts an associated catalog attribute

in the Mail Service record and an associated mail service attribute in the Catalog record.

As specified by Listing 4-4, the new Mail Service record’s name is “untitled SurfWriter

Mail Service”, and its type is “aoce Mail ServiceWAVE”. The Key Chain writes three

additional attributes into this record, as follows:

■ the associated catalog attribute

■ an attribute of type “aoce Unconfigured” (attribute type index
kUnconfiguredAttrTypeNum) indicating that the service has not yet been set up

■ a version attribute that contains the version number of the Key Chain at the time it
created the record

The Key Chain adds a line to the Key Chain window representing the new record. The

line includes the key icon used by the Key Chain, the service name you specified in

the kDETAspectName resource (“unconfigured SurfWriter Mail” in Listing 4-4), and

whatever default values your template provides for the Name and Kind fields in

the kSAMAspectUserName and kSAMAspectKind resources (“SurfWriter user” and

“SurfWriter Mail Service” in Listing 4-4).

Your code resource should create no new records or attributes at this time. However,

when the user opens the Key Chain entry, the Key Chain opens your information

page and calls your code resource with the kDETcmdInstanceInit routine selector.

Your setup template must follow the steps in the following two sections to set up a

mail service.

The attributes in the Mail Service record are summarized in Table 4-4 on page 4-67, and

the attributes in the Catalog record are summarized in Table 4-5 on page 4-68. Use the

Catalog Manager function DirAddAttributeValue to add attributes to a record. The

function is described in the chapter “Catalog Manager” in Inside Macintosh: AOCE
Application Interfaces; see the DoAddAttribute function on page 4-18 in Listing 4-2 for

an example of its use.

Setting Up the Associated Catalog Service

If the MSAM does not have a CSAM associated with it (that is, if the Catalog record

contains an “aoce Fake” attribute), you need to add some configuration information

to the Catalog record and rename the record. You can find your Catalog record by

unpacking the record reference stored in the associated catalog attribute in your Mail

Service record. To add a CSAM and associate it with an existing MSAM, see “Adding a

Catalog Service Only” on page 4-28.

1. Write the comment attribute. This is a string that you can use for any purpose.
An application developer can read this string by calling the
DirGetExtendedDirectoriesInfo function; see the chapter “Catalog Manager”
in Inside Macintosh: AOCE Application Interfaces for a description of this function.

C H A P T E R 4

Service Access Module Setup

4-28 Adding Catalog and Mail Services

2. Write the real name attribute, containing the external name of the catalog. This name
is for your own use; it is not read by the AOCE software. An application developer
can read this name by calling the DirGetExtendedDirectoriesInfo function.
Whereas the catalog name you provide to the DirSetNameAndType function (see
step 4) must be unique within the AOCE system, the “real” name need not be. For
example, the user might have accounts on two different SurfWriter mail servers. Each
would have to have a distinct name for display in the Key Chain, but the Catalog
records for both could contain the name SurfWriter Mail for the real name attribute.

3. If you wish, you can write a private data attribute. This attribute can contain binary
data of any length (up to the maximum length of an attribute) and is for your own
use. For example, you can store information about address formats for use by your
address template. Your application or template code resource can read this data by
calling the DirGetExtendedDirectoriesInfo function.

4. Determine the name of the catalog to be used in the Setup catalog, and call the
DirSetNameAndType function to set the name of the Catalog record to be the same
as the catalog name. This name must be unique within the Setup catalog, and once set,
it must never be changed.

5. Call the OCESetupAddDirectoryInfo function or the DirAddAttributeValue
function to add the user’s record ID attribute to the Catalog record. You must provide
the Catalog record’s creation ID and a record ID that includes the catalog’s name. You
can leave blank the other fields in the record ID and the password if the MSAM does
not require an account name and password. The OCESetupAddDirectoryInfo
function is described in the chapter “Authentication Manager” in Inside Macintosh:
AOCE Application Interfaces.

6. If the name of the User record does not correspond to the user’s account name, you
can also call the DirAddAttributeValue function to add a native name attribute to
the Catalog record. This attribute contains the user’s name or account name in the
external system. This name is for your own use; it is not read by the AOCE software.
An application or template code resource can read this name by calling the
OCESetupGetDirectoryInfo function, described in the chapter “Authentication
Manager” in Inside Macintosh: AOCE Application Interfaces.

7. Write the discriminator attribute, giving it the value of the address extension type of
the messaging system to which your MSAM provides access.

Setting Up the Mail Service

You next need to activate the mail slot. You do this by following the steps described in

“Adding the Mail Service” beginning on page 4-12.

Adding a Catalog Service Only
This section tells you how to add a catalog service without adding a mail service. Read

this section if you are providing only a CSAM. It explains what your setup template

must do to allow a user to add and configure a catalog service.

The setup template for a CSAM includes a main aspect template for a Catalog record.

C H A P T E R 4

Service Access Module Setup

Adding Catalog and Mail Services 4-29

A basic setup template for a catalog service is identical to the mail service template in

Listing 4-4 on page 4-23 with these two exceptions: the word “mail” is replaced with

“catalog” throughout, and the following 'sami' resource is used:

resource 'sami' (kSurfWriterAspect + kSAMAspectSlotCreationInfo, purgeable)

{

2, // max number of catalogs/slots

kSignature, // catalog signature

notMSAM, // not an MSAM template

servesDSAM, // a CSAM template

"SurfWriter Catalog Service ", // display when user clicks Add

"untitled SurfWriter Catalog Service" // new record name

};

During system initialization, the Key Chain loads all setup templates. As specified by the

preceding 'sami' resource, the Key Chain offers the user the choice “SurfWriter Catalog

Service” when the user clicks the Add button. When the user selects this choice, the

Key Chain scans the Setup catalog looking for unconfigured Catalog records of the

type specified by the setup template. In this example, these records would be of type

“aoce DirectoryWAVE”. It identifies an unconfigured Catalog record by looking for an

attribute of type “aoce Fake” in the record. If the Key Chain finds any such Catalog

records, it displays a dialog box allowing the user to join one of these existing catalogs

(see Figure 4-1 on page 4-26).

If the user selects one of these catalogs, the Key Chain replaces the “aoce Fake” attribute

with an “aoce Joined” attribute (attribute type index kJoinedAttrTypeNum).

If the user clicks New or if the Key Chain does not find any unconfigured catalogs of the

right type, it adds to the Setup catalog a new Catalog record, using the aspect template

you provided in your setup template. It puts an “aoce Unconfigured” attribute (attribute

type index kUnconfiguredAttrTypeNum) in the Catalog record, indicating that it has

not yet been configured.

Your code resource should create no new records or attributes at this time. However,

when the user opens the Key Chain entry, the Key Chain opens your information page

and calls your code resource with the kDETcmdInstanceInit routine selector. Your

setup template must then set up the catalog as follows:

1. Determine whether you are joining an existing catalog by checking for an “aoce
Joined” attribute.

2. If you are joining an existing catalog, the catalog name (which is the record name) is
already set and must not be changed. If there is no “aoce Joined” attribute, determine
the catalog name and call the DirSetNameAndType function to set the name of the
Catalog record to be the same as the catalog name. This name must be unique within
the Setup catalog, and once set, it must never be changed.

3. If you are joining an existing catalog, check the attributes in the Catalog record (see
Table 4-5 on page 4-68) for existing information.

C H A P T E R 4

Service Access Module Setup

4-30 Modifying an Existing Service

4. Preserve any existing information and follow the steps in “Adding the Catalog
Service” beginning on page 4-10 as appropriate to provide any attributes that don’t
already exist.

5. Delete the “aoce Unconfigured” or “aoce Joined” attribute.

Modifying an Existing Service

Each time the user restarts his or her system, the Key Chain calls your code resource

with the kDETcmdInit routine selector. At that time you should obtain the file system

specifier (FSSpec structure) for your MSAM file and make sure that the file ID is the

same as that saved in the gateway file ID attribute in the MSAM record (Table 4-2 on

page 4-65). If the user has replaced the MSAM record, the file ID for your MSAM file will

not match the one saved in the gateway file ID attribute. In this case, you must replace

the gateway file ID attribute with the correct file ID. Because the Collaboration toolbox

reads the file IDs from the MSAM record before calling your code resource, it cannot

open the new MSAM file until the user restarts the system. Therefore, after updating the

MSAM record, your code resource must display a dialog box telling the user to restart

the system in order to use the new file.

Your setup template must provide one or more information pages that allow a user to

modify an existing service. The implementation of this feature is up to you.

Writing and Modifying Addresses

To allow users to add addresses of the type used by your MSAM to their User records,

you must provide an address template. An address template consists of a main aspect

template for addresses of the type used by your mail service plus at least one information

page. All addresses used by AOCE are in the format of an OCEPackedRecipient data

structure, as described in the chapter “Messaging Service Access Modules” in this book.

Whenever practical, an address information page should provide two alternative but

equivalent methods of entering addresses: a set of fields and a single input string.

Internally, the form of the address is defined by the MSAM providing the address

template. Figure 4-2 shows the two views of an address template for the SurfWriter

application.

C H A P T E R 4

Service Access Module Setup

Writing and Modifying Addresses 4-31

Figure 4-2 Alternate forms of a single address information page

Writing an Address Template
Listing 4-5 shows the AOCE aspect and information page templates that create the

information page shown in Figure 4-2. The aspect template defines an attribute of type

kMailSlotsAttrTypeBody. The Collaboration toolbox expects all addresses to be

stored in a multivalued attribute of that type. The attribute tag specifies the address

format. In this example, the attribute tag is 'WAVE', the signature of the fictional

application SurfWriter. The lookup table lists the properties that must be processed by

the code resource and uses a custom lookup-table element so that the CE calls the code

resource each time it processes the lookup table.

The information page in Listing 4-5 has two conditional views to provide the two

methods of entering addresses: Fields or String. One view or the other is displayed,

depending on which radio button the user clicked.

Because an address is of type OCEPackedRecipient, which is a packed, private data

structure, you must use a code resource to pack and unpack this structure. The code

resource can call the utility routines described in the chapter “Interprogram Messaging

Manager” in Inside Macintosh: AOCE Application Interfaces to pack and unpack

OCEPackedRecipient structures. The code resource also converts between the fields

and string forms of the address. Listing 4-6 on page 4-41 shows the code resource for the

address template in Listing 4-5.

Listing 4-5 Address template

// Defines for the headers of the templates

#define kZeroRect {0, 0, 0, 0}

#define kWindowWidth 259

#define kWindowHeight 200

C H A P T E R 4

Service Access Module Setup

4-32 Writing and Modifying Addresses

#define kDETMenuLeft kDETSubpageIconRight + 16 // left edge of subpage menu

#define kDETMenuRight kDETMenuLeft + 150 // right edge of subpage menu

#define kDETMenuBottom kDETSubpageIconTop + 22 // bottom of subpage menu

#define kTopBorder kDETSubpageIconBottom + 8 // top of first item

#define kFieldHeight 16 // height of fields

#define kMenuWidth 75 // width of "View as" menu

#define kMenuTitleWidth 60 // width allowed for field titles

#define kFieldTitleSeparator 5

// These defines are for the "View As:" radio buttons at the top of

// most of the address templates.

#define kViewAsTextWidth 50

#define kViewButton1Width 43

#define kViewButton2Width 45

#define kFirstFieldTop kHeaderBottom + 10

#define kViewAsTextTop kTopBorder + 1

#define kViewAsTextLeft kDETMenuLeft

#define kViewAsTextBottom kViewAsTextTop + 14

#define kViewAsTextRight kViewAsTextLeft + kViewAsTextWidth

#define kViewAsTextRect {kViewAsTextTop, kViewAsTextLeft, kViewAsTextBottom,

kViewAsTextRight}

#define kFieldsButtonTop kTopBorder

#define kFieldsButtonBottom kFieldsButtonTop + kFieldHeight

#define kFieldsButtonLeft kViewAsTextRight + kFieldTitleSeparator

#define kFieldsButtonRight kFieldsButtonLeft + kViewButton1Width

#define kFieldsButtonRect {kFieldsButtonTop, kFieldsButtonLeft,

kFieldsButtonBottom, kFieldsButtonRight}

#define kStringButtonTop kTopBorder

#define kStringButtonBottom kStringButtonTop + kFieldHeight

#define kStringButtonLeft kFieldsButtonRight + kFieldTitleSeparator +

 kFieldTitleSeparator

#define kStringButtonRight kStringButtonLeft + kViewButton2Width

#define kStringButtonRect {kStringButtonTop, kStringButtonLeft,

kStringButtonBottom, kStringButtonRight}

// These defines are for miscellaneous components, such as the dotted line at

// the top of the template.

C H A P T E R 4

Service Access Module Setup

Writing and Modifying Addresses 4-33

#define kDoubleLineLeft kDETSubpageIconLeft

#define kDoubleLineRight kWindowWidth - kDETSubpageIconLeft

#define kDoubleLineTop kTopBorder + kFieldHeight + 8

#define kDoubleLineBottom kDoubleLineTop + 1

#define kDoubleLineRect {kDoubleLineTop, kDoubleLineLeft, kDoubleLineBottom,

kDoubleLineRight}

#define kHeaderBottom kDoubleLineBottom

#define kLeftBorder 35 // left border

#define kTitleWidth 45 // width allowed for field titles

#define kFieldLeft kLeftBorder + kTitleWidth

// left border of field items

#define kTextLeft 10 // left border of static text items

#define kTextRight kFieldLeft - kFieldTitleSeparator

// right border of static text items

#define kFieldWidth 155 // width of text fields

// Error messages for use by the code resource

resource 'STR#' (kSurfInfoPageAspect, purgeable) {

{

/* [1] */ "An unspecified problem occurred.",

/* [2] */ "This address must contain a name. Please enter a name in "

"the appropriate field.",

}

};

// Properties

#define prMyName (kDETFirstDevProperty + 0)

#define prMyZone (kDETFirstDevProperty + 1)

#define prMyAddress (kDETFirstDevProperty + 2)

#define prViewMenu (kDETFirstDevProperty + 3)

#define prInited (kDETFirstDevProperty + 4)

#define prOldName (kDETFirstDevProperty + 5)

#define prOldZone (kDETFirstDevProperty + 6)

#define prOldAddress (kDETFirstDevProperty + 7)

#define prDefaultName (kDETFirstDevProperty+8)

#define prDefaultZone (kDETFirstDevProperty+9)

#define prDefaultDisplayName (kDETFirstDevProperty+10)

C H A P T E R 4

Service Access Module Setup

4-34 Writing and Modifying Addresses

//---

// These custom lookup-table elements cause the Catalogs Extension to call

// the code resource.

#define kProcessData 'Hey!'

#define kPostProcessData 'Done'

#define kNullNameError 1000

//---*/

// Aspect template

include "SurfAddressCode" 'detc'(0) as 'detc'(kSurfInfoPageAspect +

 kDETAspectCode, purgeable);

// Aspect template signature resource

resource 'deta' (kSurfInfoPageAspect, purgeable) {

1000, // drop-operation order

dropCheckConflicts, // drop check flag

isMainAspect // is the main aspect

};

// Template name

resource 'rstr' (kSurfInfoPageAspect + kDETTemplateName, purgeable) {

kNewSurfAddressAspectName

};

// This template applies to the kMailSlotsAttrTypeBody attribute

resource 'rstr' (kSurfInfoPageAspect + kDETAttributeType, purgeable) {

kMailSlotsAttrTypeBody

};

// Tag of attribute this applies to

resource 'detn' (kSurfInfoPageAspect + kDETAttributeValueTag){

'WAVE'

};

// Template kind

resource 'rstr' (kSurfInfoPageAspect + kDETAspectKind, purgeable) {

"SurfWriter mail address"

};

// String for Add dialog box

resource 'rstr' (kSurfInfoPageAspect + kDETAspectNewMenuName, purgeable) {

C H A P T E R 4

Service Access Module Setup

Writing and Modifying Addresses 4-35

"SurfWriter"

};

// Category for template

resource 'rst#' (kSurfInfoPageAspect+kDETAspectCategory,purgeable)

{

{

kDETCategoryAddressItems,

}

};

// Open info page automatically when user creates new attribute value.

resource 'detn' (kSurfInfoPageAspect + kDETAspectSublistOpenOnNew){

1

};

// Attribute tag followed by default new value for attribute. This resource

// must be present if user is allowed to add a new attribute. The code

// resource routine DoCreateNewAttribute (page 4-44) appends the default

// attribute value to the attribute tag to create the new attribute value.

data 'detb' (kSurfInfoPageAspect + kDETAspectNewValue, purgeable) {

$"5741 5645" // 'WAVE' tag

};

// Lookup table. Most property values are actually set by the code resource,

// but it is necessary to include them all here so the Catalogs Extension

// to the Finder will know they exist and so that it will call the code

// resource when the user changes their values.

resource 'dett' (kSurfInfoPageAspect + kDETAspectLookup, purgeable)

{{

{ kMailSlotsAttrTypeBody },

'WAVE',

useForInput, useForOutput, notInSublist, isNotAlias, isNotRecordRef,

{

kProcessData,kDETNoProperty, 0; // custom property element,

// causing CE to call code resource

'prop', prMyZone, 0; // declare all the properties

'prop', prMyName, 0;

'prop', prMyAddress, 0;

'prop', kDETAspectName, 0;

C H A P T E R 4

Service Access Module Setup

4-36 Writing and Modifying Addresses

'awrd', kDETNoProperty, 0; // align to a word boundary

kPostProcessData, kDETNoProperty, 0;

// post-process the data

(if necessary)

'Pref', kDETNoProperty, 0; // ask CE to save preferred

// mailslot info

};

}};

// Custom window information

resource 'detw' (kSurfInfoPageAspect + kDETAspectInfoPageCustomWindow,

purgeable)

{

{0, 0, kWindowHeight, kWindowWidth},

includePopup // this places label in info page

};

// Default values for some properties

resource 'detn' (kSurfInfoPageAspect + prViewMenu, purgeable) {

1 // make "fields" the default conditional view

};

resource 'rstr'(kSurfInfoPageAspect + prDefaultName, purgeable) {

"<Name>"

};

resource 'rstr'(kSurfInfoPageAspect + prDefaultZone, purgeable) {

"<Zone>"

};

resource 'rstr'(kSurfInfoPageAspect + prDefaultDisplayName, purgeable) {

"untitled SurfWriter address"

};

// Text for help balloons

// Text for help balloon for the item in a sublist

resource 'rstr' (kSurfInfoPageAspect+kDETAspectWhatIs, purgeable) {

"Contains a SurfWriter mail address."

};

// Text for help balloon for an alias to the item

resource 'rstr' (kSurfInfoPageAspect+kDETAspectAliasWhatIs, purgeable) {

C H A P T E R 4

Service Access Module Setup

Writing and Modifying Addresses 4-37

"Contains an alias to a SurfWriter mail address."

};

// Text for help balloons for the properties

resource 'rst#' (kSurfInfoPageAspect+kDETAspectBalloons, purgeable) {

{

"Shows the name for this SurfWriter mail address. You can edit this "

"name.",

"Shows the name for this SurfWriter mail address. You cannot edit this "

"name.",

"Shows the zone location for this SurfWriter mail address. You can edit "

"this zone name.",

"Shows the zone location for this SurfWriter mail address. You cannot "

"edit this zone name.",

"Shows this SurfWriter mail address as a series of characters. "

"You can edit this address.",

"Shows this SurfWriter mail address as a series of characters. "

"You cannot edit this address.",

"Controls the display of address information. Click a button to change "

"the display.",

"",

}

};

//---

// Information page

//

#define kTwoProperty kDETFirstConstantProperty + 2

// Information page signature resource

resource 'deti' (kSurfInfoPage, purgeable) {

1000, // sort order

kZeroRect, // no sublist

noSelectFirstText, // don't select first text field

{

kDETNoProperty, kDETNoProperty, kSurfInfoPage; // common view list

prViewMenu, kDETOneProperty, kSurfInfoPage + 1; // "fields" view list

prViewMenu, kTwoProperty, kSurfInfoPage + 2; // "strings" view list

},

{ // no subview view lists

}};

C H A P T E R 4

Service Access Module Setup

4-38 Writing and Modifying Addresses

// Template name

resource 'rstr' (kSurfInfoPage + kDETTemplateName, purgeable) {

kNewSurfAddressInfoPageName

};

// Attribute type

resource 'rstr' (kSurfInfoPage + kDETAttributeType, purgeable) {

kMailSlotsAttrTypeBody

};

// Name of information page that appears as label on page

resource 'rstr' (kSurfInfoPage + kDETInfoPageName, purgeable) {

"SurfWriter"

};

// Name of related aspect template

resource 'rstr' (kSurfInfoPage + kDETInfoPageMainViewAspect, purgeable) {

kNewSurfAddressAspectName

};

// Defines for the rest of the info page

#define kAddressWidth 155 // width of string address field

#define kAddressHeight 64 // height of string address field

#define kStatText1Top kHeaderBottom + kFieldHeight

#define kStatText1Left kTextLeft

#define kStatText1Bottom kStatText1Top + kFieldHeight

#define kStatText1Right kTextRight

#define kStatText1Rect {kStatText1Top, kStatText1Left, kStatText1Bottom,

kStatText1Right}

#define kNameTextTop kStatText1Top

#define kNameTextLeft kFieldLeft

#define kNameTextBottom kStatText1Bottom

#define kNameTextRight kNameTextLeft + kFieldWidth

#define kNameTextRect {kNameTextTop, kNameTextLeft, kNameTextBottom,

kNameTextRight}

#define kStatText2Top kStatText1Bottom + kFieldHeight

#define kStatText2Left kTextLeft

#define kStatText2Bottom kStatText2Top + kFieldHeight

#define kStatText2Right kTextRight

C H A P T E R 4

Service Access Module Setup

Writing and Modifying Addresses 4-39

#define kStatText2Rect {kStatText2Top, kStatText2Left, kStatText2Bottom,

kStatText2Right}

#define kZoneTextTop kStatText2Top

#define kZoneTextLeft kFieldLeft

#define kZoneTextBottom kStatText2Bottom

#define kZoneTextRight kZoneTextLeft + kFieldWidth

#define kZoneTextRect {kZoneTextTop, kZoneTextLeft, kZoneTextBottom,

kZoneTextRight}

#define kAddressTextTop kNameTextTop

#define kAddressTextLeft kNameTextLeft

#define kAddressTextBottom kAddressTextTop + kAddressHeight

#define kAddressTextRight kAddressTextLeft + kAddressWidth

#define kAddressTextRect {kAddressTextTop, kAddressTextLeft,

kAddressTextBottom, kAddressTextRight}

// Nonconditional view

resource 'detv' (kSurfInfoPage, purgeable)

{

{

kDoubleLineRect, kDETNoFlags, kDETNoProperty,

Box { kDETBoxIsGrayed };

kDETSubpageIconRect, kDETNoFlags, kDETAspectMainBitmap,

Bitmap { kDETLargeIcon };

kViewAsTextRect, kDETNoFlags, kDETNoProperty,

StaticTextFromView { kDETApplicationFont, kDETApplicationFontSize,

kDETLeft, kDETBold, "View as:" };

kFieldsButtonRect, kDETEnabled, prViewMenu,

RadioButton { kDETApplicationFont, kDETApplicationFontSize,

kDETLeft, kDETNormal, "Fields", prViewMenu, 1 };

kStringButtonRect, kDETEnabled, prViewMenu,

RadioButton { kDETApplicationFont, kDETApplicationFontSize, kDETLeft,

kDETNormal, "String", prViewMenu, 2 };

};

};

// "Fields" conditional view

resource 'detv' (kSurfInfoPage + 1, purgeable)

C H A P T E R 4

Service Access Module Setup

4-40 Writing and Modifying Addresses

{

{

kStatText1Rect, kDETNoFlags, kDETNoProperty,

StaticTextFromView { kDETApplicationFont, kDETApplicationFontSize,

 kDETRight, kDETBold, "Name:" };

kStatText2Rect, kDETNoFlags, kDETNoProperty,

StaticTextFromView { kDETApplicationFont, kDETApplicationFontSize,

kDETRight, kDETBold, "Zone:" };

kNameTextRect, kDETNoFlags, prMyName,

EditText { kDETApplicationFont, kDETApplicationFontSize, kDETLeft,

kDETNormal };

kZoneTextRect, kDETNoFlags, prMyZone,

EditText { kDETApplicationFont, kDETApplicationFontSize, kDETLeft,

kDETNormal };

};

};

// "String" conditional view

resource 'detv' (kSurfInfoPage + 2, purgeable)

{

{

kStatText1Rect, kDETNoFlags, kDETNoProperty,

StaticTextFromView { kDETApplicationFont, kDETApplicationFontSize,

kDETRight,

kDETBold, "Address:" };

kAddressTextRect, kDETMultiLine, prMyAddress,

EditText { kDETApplicationFont, kDETApplicationFontSize, kDETLeft,

kDETNormal };

};

};

//

// Icons

include "AlbumIcons" 'ICN#'(0) as

'ICN#'(kSurfInfoPageAspect + kDETAspectMainBitmap, purgeable);

include "AlbumIcons" 'icl4'(0) as

'icl4'(kSurfInfoPageAspect + kDETAspectMainBitmap, purgeable);

include "AlbumIcons" 'icl8'(0) as

'icl8'(kSurfInfoPageAspect + kDETAspectMainBitmap, purgeable);

C H A P T E R 4

Service Access Module Setup

Writing and Modifying Addresses 4-41

include "AlbumIcons" 'ics#'(0) as

'ics#'(kSurfInfoPageAspect + kDETAspectMainBitmap, purgeable);

include "AlbumIcons" 'ics4'(0) as

'ics4'(kSurfInfoPageAspect + kDETAspectMainBitmap, purgeable);

include "AlbumIcons" 'ics8'(0) as

'ics8'(kSurfInfoPageAspect + kDETAspectMainBitmap, purgeable);

include "AlbumIcons" 'SICN'(0) as

'SICN'(kSurfInfoPageAspect + kDETAspectMainBitmap, purgeable);

Writing an Address Template Code Resource
The code resource for the address template shown in Listing 4-5 consists of a dispatcher

routine and several routines to handle standard requirements of the CE, as described in

the chapter “AOCE Templates” in Inside Macintosh: AOCE Application Interfaces. The

dispatcher routine and main code resource routines are shown in the following section.

The sections “Data Input Subroutines for the Address Template” beginning on page 4-47,

“Data Output Subroutines for the Address Template” beginning on page 4-51, and

“Miscellaneous Subroutines” beginning on page 4-57 show the subroutines called by the

main routines and by other subroutines. Subroutines with names beginning with My (for

example, MyCreateFieldsFromOCERecipient) are described but not shown here.

Main Routines for the Address Template Code Resource

Listing 4-6 shows the main routines for the code resource. The DoSurfAddress routine

is the dispatcher called by the Catalogs Extension (CE). When the CE calls this routine, it

calls one of the other routines shown in this section, depending on the routine selector

passed by the CE.

Listing 4-6 Main routines of the address template code resource

/* Code resource main routine */

pascal OSErr DoSurfAddress(DETCallBlockPtr callBlockPtr)

{

OSErr err = 1;

/* Process only calls targeted to this template plus untargeted calls. */

if ((callBlockPtr->protoCall.reqFunction < kDETcmdTargetedCall) ||

(callBlockPtr->protoCall.target.selector == kDETSelf))

{

switch (callBlockPtr->protoCall.reqFunction)

{

case kDETcmdInit:

err = DoInitTemplate(callBlockPtr);

break;

C H A P T E R 4

Service Access Module Setup

4-42 Writing and Modifying Addresses

case kDETcmdAttributeCreation:

err = DoCreateNewAttribute(callBlockPtr);

break;

case kDETcmdInstanceInit:

err = DoInitInstance(callBlockPtr);

break;

case kDETcmdInstanceExit:

err = DoExitInstance(callBlockPtr);

break;

case kDETcmdPropertyDirtied:

err = DoPropertyDirty(callBlockPtr);

break;

case kDETcmdValidateSave:

err = DoPrepareToSave(callBlockPtr);

break;

case kDETcmdPatternIn:

err = DoPatternIn(callBlockPtr);

break;

case kDETcmdPatternOut:

err = DoPatternOut(callBlockPtr);

break;

default:

break;

}

}

return err;

}

/* --- */

/* Template initialization. Set call-for mask. */

static OSErr DoInitTemplate(DETCallBlockPtr callBlockPtr)

{

OSErr err = noErr;

callBlockPtr->init.newCallFors = kDETCallForValidation +

 kDETCallForAttributes + kDETCallForViewChanges;

C H A P T E R 4

Service Access Module Setup

Writing and Modifying Addresses 4-43

return err;

}

/* --- */

/* Aspect initialization */

static OSErr DoInitInstance(DETCallBlockPtr callBlockPtr)

{

OSErr err = noErr;

/* Set value of property prInited to false. */

DoSetInited(callBlockPtr, false);

return err;

}

/* --- */

/* Exit routine */

static OSErr DoExitInstance(DETCallBlockPtr callBlockPtr)

{

OSErr err = noErr;

/* Set value of property prInited to false. */

DoSetInited(callBlockPtr, false);

return err;

}

/* --- */

/* The CE is about to save property values. */

static OSErr DoPrepareToSave(DETCallBlockPtr callBlockPtr)

{

OSErr err = kDETDidNotHandle;

Handle errorStr = nil;

if (!DoIsInited(callBlockPtr))

return 1;

/* Check the data to make sure it's valid. */

err = MyCheckData(callBlockPtr);

return err;

}

/* --- */

/* The CE calls this routine to process the custom lookup-table element that

processes input data. This routine is discussed in

C H A P T E R 4

Service Access Module Setup

4-44 Writing and Modifying Addresses

“Data Input Subroutines for the Address Template” beginning on

page 4-47.*/

static OSErr DoPatternIn(DETCallBlockPtr callBlockPtr)

{

OSErr err = 1;

Boolean enabled = true;

/* For input processing only */

if (callBlockPtr->patternIn.elementType == kProcessData)

{

err = DoExtractInformation(callBlockPtr);

}

else if (callBlockPtr->patternIn.elementType == kPostProcessData)

{

err = DoSetDisplayName(callBlockPtr);

}

DoHandleError(callBlockPtr, err);

return err;

}

/* --- */

/* The CE calls this routine when it is about to add a new attribute value

to the sublist. This routine gets the default values for the field

properties and the default string to be displayed in the sublist for the

attribute value. These values are provided by the template (page 4-36).

It packs the fields into a string and appends them to the default value

of the attribute. The CE provides a pointer to this default attribute

value; it gets the default attribute value from the kDETAspectNewValue

resource in the aspect template (page 4-35). See

beginning on page 4-51 for a discussion of the DoWriteNameAndZone

subroutine. */

static OSErr DoCreateNewAttribute(DETCallBlockPtr callBlockPtr)

{

OSErr err = 1;

RStringPtr *name, *zone, *dName;

/* Initialize the data. */

name = nil;

zone = nil;

dName = nil;

C H A P T E R 4

Service Access Module Setup

Writing and Modifying Addresses 4-45

/* Get the name. */

name = (RStringPtr*) GetResource('rstr', kSurfInfoPageAspect +

prDefaultName);

/* Get the zone. */

zone = (RStringPtr*) GetResource('rstr', kSurfInfoPageAspect +

prDefaultZone);

/* Get the display name. */

dName = (RStringPtr*) GetResource('rstr', kSurfInfoPageAspect +

 prDefaultDisplayName);

/* Lock everything. */

HLock((Handle) name);

HLock((Handle) zone);

HLock((Handle) dName);

/* Write out the data. */

err = DoWriteNameAndZone(callBlockPtr, *name, *dName, *zone,

callBlockPtr->attributeCreationBlock.value);

/* Unlock everything. */

HUnlock((Handle) name);

HUnlock((Handle) zone);

HUnlock((Handle) dName);

/* Clean up. */

ReleaseResource((Handle) name);

ReleaseResource((Handle) zone);

ReleaseResource((Handle) dName);

if (err == noErr)

err = kDETDidNotHandle;

return err;

}

/* --- */

/* The Catalogs Extension calls this routine when you call the

 kDETcmdDirtyProperty callback routine to indicate that a property value

 has changed, requiring a view to be redrawn. The CE also calls this

 routine when the CE completes its first catalog lookup. If the user has

 changed either of the text fields in the "Fields" view of the info page,

C H A P T E R 4

Service Access Module Setup

4-46 Writing and Modifying Addresses

 this routine updates the value of the address string. If the user has

 changed the address in the "String" view of the info page, this routine

 updates the values of the address fields. The DoUpdateNameAndZone and

 DoUpdateAddress functions are shown in

 “Data Output Subroutines for the Address Template” beginning on

 page 4-51. */

static OSErr DoPropertyDirty(DETCallBlockPtr callBlockPtr)

{

OSErr err = noErr;

short dirtyProperty;

if (!DoIsInited(callBlockPtr))

return 1;

dirtyProperty = callBlockPtr->propertyDirtied.property;

if (dirtyProperty == prMyAddress)

{

err = DoUpdateNameAndZone(callBlockPtr);

}

else if ((dirtyProperty == prMyName) || (dirtyProperty == prMyZone))

{

err = DoUpdateAddress(callBlockPtr);

}

if (err == noErr)

{

err = 1;

}

DoHandleError(callBlockPtr, err);

return err;

}

/* --- */

/* The CE calls this routine when processing the custom lookup-table

 element that processes output data. This routine is discussed in

 “Data Output Subroutines for the Address Template” on page 4-51.*/

C H A P T E R 4

Service Access Module Setup

Writing and Modifying Addresses 4-47

static OSErr DoPatternOut(DETCallBlockPtr callBlockPtr)
{

OSErr err = 1;

long message;

message = callBlockPtr->patternIn.elementType;

if (!DoIsInited(callBlockPtr))

return 1;

/* Write data only if you're supposed to be writing */

if (message == kProcessData)

{

err = DoWriteData(callBlockPtr);
}

return err;

}

Data Input Subroutines for the Address Template

The CE calls your code resource’s DETcmdPatternIn routine when it has to process a

custom lookup-table element for input data. The DoPatternIn function shown in

Listing 4-6 calls the DoExtractInformation function shown in Listing 4-7. The

DoExtractInformation function calls the DoReadData function, which in turn

calls the MyCreateFieldsFromOCERecipient function to read the address fields

from the OCERecipient structure. Then the DoReadData function calls the

MyCreateAddressString function, which creates an address string from the address

fields. Finally, the DoReadData function calls the DoSetAllStringProperties

function, which sets the values of the field and string properties for display in the

information page.

Next, the DoExtractInformation function calls the DoExtractDisplayName

function, passing it the attribute data; that is, the address in the form of an

OCEPackedRecipient structure. The DoExtractDisplayName function unpacks

the OCEPackedRecipient structure and extracts the record name. It sets the name

of the attribute value to the record name. The Electronic Addresses information

page uses this name for display in the sublist.

Finally, the DoExtractInformation function calculates the size of the data it just read

and sets the data offset and bit offset fields to the end of the attribute data so that the CE

stops processing the attribute.

The DoPatternIn function (page 4-44) also calls the DoSetDisplayName function

(page 4-51). The DoSetDisplayName function checks whether the attribute value has

been assigned a display name (that is, a name to display for the attribute value in the

sublist or for a stand-alone attribute). If not, it sets the display name to be the same as the

string in the property prMyName. That property is also used for the Name field in the

Fields address information page (see Figure 4-2 on page 4-31).

C H A P T E R 4

Service Access Module Setup

4-48 Writing and Modifying Addresses

Listing 4-7 Input subroutines for the address template code resource

static OSErr DoExtractInformation(DETCallBlockPtr callBlockPtr)

{

OSErr err = 1;

PackedDSSpecPtr pds;

Boolean enabled = true;

short size;

pds = (PackedDSSpecPtr) callBlockPtr->patternIn.attribute->value.bytes;

if (DoGetXtnType(pds) == 'WAVE')

{

/* Read the data in */

err = DoReadData(callBlockPtr, pds);

err = DoExtractDisplayName(callBlockPtr, pds);

size = (* ((short *) callBlockPtr->patternIn.attribute->value.bytes))

+ 2;

callBlockPtr->patternIn.dataOffset = size;

callBlockPtr->patternIn.bitOffset = 0;

}

else

{

/* This isn't a SurfWriter address. Abort! */

enabled = false;

}

if ((err == noErr) && enabled)

{

DoSetInited(callBlockPtr, true);

}

return err;

}

/* --- */

static long DoGetXtnType(PackedDSSpecPtr pds)

{

long extensionType;

DSSpec spec;

RecordID rid;

C H A P T E R 4

Service Access Module Setup

Writing and Modifying Addresses 4-49

OCEUnpackDSSpec(pds, &spec, &rid);

extensionType = spec.extensionType;

return extensionType;

}

/* --- */

static OSErr DoReadData(DETCallBlockPtr callBlockPtr, PackedDSSpecPtr pds)

{

OSErr err = noErr;

RStringPtr name, zone, address;

/* Initialize data */

name = nil;

zone = nil;

address = nil;

/* Extract the info we want */

err = MyCreateFieldsFromOCERecipient(pds, &name, &zone);

if (err == noErr)

{

/* Create the address string for display */

err = MyCreateAddressString(name, zone, &address);

}

if (err == noErr)

{

err = DoSetAllStringProperties(callBlockPtr, name, zone, address);

}

DisposeIfPtr(name);

DisposeIfPtr(zone);

DisposeIfPtr(address);

return err;

}

/* --- */

static OSErr DoSetAllStringProperties(DETCallBlockPtr callBlockPtr,

RStringPtr name,

RStringPtr zone,

RStringPtr address)

C H A P T E R 4

Service Access Module Setup

4-50 Writing and Modifying Addresses

{

OSErr err = noErr;

/* Set the zone property. */

err = DoSetRStringProperty(callBlockPtr, prMyZone, zone, false);

/* Set the name property for the list view. */

err = DoSetRStringProperty(callBlockPtr, prMyName, name, false);

/* Set the OldName property for the list view. */

err = DoSetRStringProperty(callBlockPtr, prOldName, name, false);

/* Create the address for display. */

err = DoSetRStringProperty(callBlockPtr, prMyAddress, address, false);

/* Create the OldAddress for display. */

err = DoSetRStringProperty(callBlockPtr, prOldAddress, address, false);

return err;

}

/* --- */

static OSErr DoExtractDisplayName(DETCallBlockPtr callBlockPtr,

PackedDSSpecPtr pds)

{

OSErr err = noErr;

DSSpec spec;

RecordID rid;

RStringPtr dName;

OCEUnpackDSSpec(pds, &spec, &rid);

dName = rid.local.recordName;

if (dName != nil)

{

err = DoSetRStringProperty(callBlockPtr, kDETAspectName, dName, false);

if (err == kDETPropertyBusy)

{

err = noErr;

}

}

return err;

}

C H A P T E R 4

Service Access Module Setup

Writing and Modifying Addresses 4-51

/* --- */

static OSErr DoSetDisplayName(DETCallBlockPtr callBlockPtr)

{

OSErr err = noErr;

RStringPtr name, dName;

name = nil;

dName = nil;

/* Get the name. */

err = DoGetRStringPtrProperty(callBlockPtr, prMyName, &name);

/* Get the display name. */

err = DoGetRStringPtrProperty(callBlockPtr, kDETAspectName, &dName);

if (dName->dataLength <= 0)

{

err = DoSetRStringProperty(callBlockPtr, kDETAspectName, name, false);

}

DisposeIfPtr(name);

DisposeIfPtr(dName);

return err;

}

Data Output Subroutines for the Address Template

The CE calls your code resource’s DETcmdPatternOut routine when it has to process a

custom lookup-table element for output data. The parameter block that the CE provides

with the DETcmdPatternOut call to your code resource includes a handle to the

attribute. The attribute already has an attribute tag assigned but lacks the data length and

data fields. The DoPatternOut function shown in Listing 4-6 calls the DoWriteData

function shown in Listing 4-8, reads the address fields from the current property values,

and calls the DoWriteNameAndZone function. The DoWriteNameAndZone function

calls the DoPackNameAndZone function, which verifies the name and zone and calls the

MyCreateOCERecipient function. The MyCreateOCERecipient function packs the

address fields into a string and creates an OCEPackedRecipient structure that includes

the address string as an extension. Then the DoWriteNameAndZone function appends

the OCEPackedRecipient structure to the data handle provided by the CE, thus

updating the attribute value. The MyCreateOCERecipient function is not shown here.

For a sample function that creates an OCEPackedRecipient structure for an external

messaging system, see “Translating to an AOCE Address” beginning on page 2-88 in the

chapter “Messaging Service Access Modules” in this book.

C H A P T E R 4

Service Access Module Setup

4-52 Writing and Modifying Addresses

The Catalogs Extension calls your kDETcmdPropertyDirtied routine when a

property value has changed, requiring a view to be redrawn. If the user has changed

either of the text fields in the “Fields” view of the info page, the DoPropertyDirty

function shown in Listing 4-6 calls the DoUpdateAddress function to update the value

of the address string. If the user has changed the address in the “String” view of the

information page, the DoPropertyDirty function calls the DoUpdateNameAndZone

function to update the values of the address fields.

Listing 4-8 Output subroutines for the address template code resource

static OSErr DoWriteData(DETCallBlockPtr callBlockPtr)

{

OSErr err = noErr;

RStringPtr name, zone, dName;

Size size;

/* Initialize the data. */

name = nil;

zone = nil;

dName = nil;

/* Get the name. */

err = DoGetRStringPtrProperty(callBlockPtr, prMyName, &name);

/* Get the zone. */

if (err == noErr)

{

err = DoGetRStringPtrProperty(callBlockPtr, prMyZone, &zone);

}

/* Get the display name. */

if (err == noErr)

{

err = DoGetRStringPtrProperty(callBlockPtr, kDETAspectName, &dName);

}

/* Write out the data. */

if (err == noErr)

{

err = DoWriteNameAndZone(callBlockPtr, name, dName, zone,

callBlockPtr->patternOut.data);

}

C H A P T E R 4

Service Access Module Setup

Writing and Modifying Addresses 4-53

if (err == noErr)

{

size = GetHandleSize((Handle) callBlockPtr->patternOut.data);

callBlockPtr->patternOut.dataOffset = size;

callBlockPtr->patternOut.bitOffset = 0;

}

DisposeIfPtr(name);

DisposeIfPtr(zone);

DisposeIfPtr(dName);

return err;

}

/* --- */

static OSErr DoWriteNameAndZone(DETCallBlockPtr callBlockPtr, RStringPtr

name, RStringPtr dName, RStringPtr zone, Handle buffer)

{

OSErr err = noErr;

PackedDSSpecPtr pds = nil;

Size size;

/* Pack the data. */

err = DoPackNameAndZone(callBlockPtr, name, dName, zone, &pds);

/* Append the address to the data handle provided by the CE. */

if (err == noErr)

{

size = GetPtrSize((Ptr) pds);

SetHandleSize(buffer, size);

err = MemError();

if (err == noErr)

BlockMove((Ptr) pds, *buffer, size);

}

/* Dispose of allocated stuff. */

DisposeIfPtr(pds);

return err;

}

C H A P T E R 4

Service Access Module Setup

4-54 Writing and Modifying Addresses

/* --- */

static OSErr DoPackNameAndZone(DETCallBlockPtr callBlockPtr, RStringPtr name,

RStringPtr dName, RStringPtr zone, PackedDSSpecPtr* pds)

{

OSErr err = noErr;

unsigned short size;

/* Initialize the data. */

*pds = nil;

/* Validate the name and zone. */

if (!DoStringPtrIsOK(name) || !DoStringPtrIsOK(zone))

err = paramErr;

/* Create an address. */

if (err == noErr)

{

err = MyCreateOCERecipient(pds, &size, name, dName, zone);

}

if ((*pds == nil) && (err == noErr))

err = paramErr;

return err;

}

/* --- */

/* This routine is called to make sure that the name and zone are

 not of zero length and that they have valid values. */

static Boolean DoStringPtrIsOK(RStringPtr string)

{

Boolean good = true;

Str255 divider;

if (string->dataLength < 0)

good = false;

if (string->dataLength > 0)

{

if (MyValidateString(string, divider, 0) != kBadString)

good = false;

}

return good;

}

C H A P T E R 4

Service Access Module Setup

Writing and Modifying Addresses 4-55

/* --- */

static OSErr DoUpdateNameAndZone(DETCallBlockPtr callBlockPtr)

{

OSErr err = noErr;

OSErr tempErr;

RStringPtr name, zone, address, oldAddress;

/* Initialize the variables. */

name = nil;

zone = nil;

address = nil;

oldAddress = nil;

err = DoGetRStringPtrProperty(callBlockPtr, prMyAddress, &address);

if (err == noErr)

{

err = MyDecomposeServerlessAddressString(&name, &zone, address);

}

if ((err == noErr) && (name->dataLength == 0))

err = kNullNameError;

else if ((err == kSMPInvalidAddressString) && (name == nil))

err = kNullNameError;

if (err == noErr)

{

err = DoSetRStringProperty(callBlockPtr, prMyName, name, true);

err = DoSetRStringProperty(callBlockPtr, prMyZone, zone, true);

err = DoSetRStringProperty(callBlockPtr, prOldName, name, true);

}

else

{

tempErr = DoGetRStringPtrProperty(callBlockPtr, prOldAddress,

 &oldAddress);

tempErr = DoSetRStringProperty(callBlockPtr, prMyAddress, oldAddress,

 true);

}

DisposeIfPtr(name);

DisposeIfPtr(zone);

DisposeIfPtr(oldAddress);

C H A P T E R 4

Service Access Module Setup

4-56 Writing and Modifying Addresses

DisposeIfPtr(address);

return err;

}

/* --- */

static OSErr DoUpdateAddress(DETCallBlockPtr callBlockPtr)

{

OSErr err = noErr;

OSErr tempErr;

RStringPtr name, zone, address;

RStringPtr oldName, oldZone;

short dirtyProperty;

/* Initialize the variables. */

name = nil;

zone = nil;

address = nil;

oldName = nil;

oldZone = nil;

dirtyProperty = callBlockPtr->propertyDirtied.property;

err = DoGetRStringPtrProperty(callBlockPtr, prMyName, &name);

err = DoGetRStringPtrProperty(callBlockPtr, prMyZone, &zone);

if (err == noErr)

{

if ((name->dataLength == 0) && (dirtyProperty == prMyName))

err = kNullNameError;

}

if (err == noErr)

{

err = MyCreateAddressString(name, zone, &address);

}

if (err == noErr)

{

err = DoSetRStringProperty(callBlockPtr, prMyAddress, address, true);

err = DoSetRStringProperty(callBlockPtr, prOldAddress, address, true);

err = DoSetRStringProperty(callBlockPtr, prOldName, name, true);

}

C H A P T E R 4

Service Access Module Setup

Writing and Modifying Addresses 4-57

else

{

/* Revert to the previous version. */

tempErr = DoGetRStringPtrProperty(callBlockPtr, prOldName, &oldName);

if (tempErr == noErr)

{

tempErr = DoSetRStringProperty(callBlockPtr, prMyName, oldName, true);

}

}

DisposeIfPtr(oldName);

DisposeIfPtr(oldZone);

DisposeIfPtr(address);

DisposeIfPtr(name);

DisposeIfPtr(zone);

return err;

}

Miscellaneous Subroutines

The subroutines in Listing 4-9 are called by one or more of the functions in the

preceding sections.

Listing 4-9 Miscellaneous subroutines used by the address template code resource

/* Set value of property prInited. */

static void DoSetInited(DETCallBlockPtr callBlockPtr, Boolean inited)

{

OSErr err = noErr;

err = DoSetBooleanProperty(callBlockPtr, prInited, inited, false);

}

/* --- */

/* Get value of property prInited. */

static Boolean DoIsInited(DETCallBlockPtr callBlockPtr)

{

OSErr err = noErr;

Boolean inited = false;

err = DoGetBooleanProperty(callBlockPtr, prInited, &inited);

C H A P T E R 4

Service Access Module Setup

4-58 Writing and Modifying Addresses

if (err != noErr)

inited = false;

return inited;

}

/* --- */

/* Error handler */

static void DoHandleError(DETCallBlockPtr callBlockPtr, OSErr err)

{

if ((err == noErr) || (err == kDETDidNotHandle))

return;

/* Call kDETcmdAboutToTalk callback routine. */

AboutToTalk(callBlockPtr);

/* Display one of the error messages in the template. */

switch (err)

{

case kNullNameError:

DisplayErrorMessage(err, kSurfInfoPageAspect, 2);

break;

default:

DisplayErrorMessage(err, kSurfInfoPageAspect, 1);

break;

}

}

/* --- */

/* Call kDETcmdSetPropertyRString callback routine. */

pascal OSErr DoSetRStringProperty(DETCallBlockPtr callBlockPtr,

 short property,

 RStringPtr newValue,

 Boolean markAsChanged)

{

OSErr err;

DETCallBackBlock cbb;

cbb.setPropertyRString.reqFunction = kDETcmdSetPropertyRString;

cbb.setPropertyRString.property = property;

cbb.setPropertyRString.target.selector = kDETSelf;

cbb.setPropertyRString.newValue = newValue;

err = CallBackDET(callBlockPtr, &cbb);

C H A P T E R 4

Service Access Module Setup

Writing and Modifying Addresses 4-59

if ((err == noErr) && markAsChanged)

{

err = DoSetPropertyChanged(callBlockPtr, property, true);

}

return err;

}

/* --- */

/* Call kDETcmdSetPropertyNumber callback routine. */

pascal OSErr DoSetNumProperty(DETCallBlockPtr callBlockPtr,

 short property,

 unsigned long newValue,

 Boolean markAsChanged)

{

OSErr err;

DETCallBackBlock cbb;

cbb.setPropertyRString.reqFunction = kDETcmdSetPropertyNumber;

cbb.setPropertyRString.property = property;

cbb.setPropertyRString.target.selector = kDETSelf;

cbb.setPropertyRString.newValue = newValue;

err = CallBackDET(callBlockPtr, &cbb);

if ((err == noErr) && markAsChanged)

{

err = DoSetPropertyChanged(callBlockPtr, property, true);

}

return err;

}

/* --- */

/* Call kDETcmdSetPropertyNumber callback routine with a value of 0 or 1. */

pascal OSErr DoSetBooleanProperty(DETCallBlockPtr callBlockPtr,

 short property,

 Boolean value,

 Boolean markChanged)

{

OSErr err = noErr;

err = DoSetNumProperty(callBlockPtr, property, value, markChanged);

C H A P T E R 4

Service Access Module Setup

4-60 Writing and Modifying Addresses

return err;

}

/* --- */

/* Call kDETcmdSetPropertyChanged callback routine. */

pascal OSErr DoSetPropertyChanged(DETCallBlockPtr callBlockPtr,

short property,

Boolean propertyChanged)

{

OSErr err;

DETCallBackBlock cbb;

cbb.SetPropertyChanged.reqFunction = kDETcmdSetPropertyChanged;

cbb.SetPropertyChanged.property = property;

cbb.SetPropertyChanged.target.selector = kDETSelf;

cbb.SetPropertyChanged.propertyChanged = propertyChanged;

err = CallBackDET(callBlockPtr, &cbb);

return err;

}

/* --- */

/* Call kDETcmdGetPropertyRString callback routine. */

pascal OSErr DoGetRStringProperty(DETCallBlockPtr callBlockPtr,

short property,

RString ***str)

{

OSErr err;

DETCallBackBlock cbb;

cbb.getPropertyRString.reqFunction = kDETcmdGetPropertyRString;

cbb.getPropertyRString.property = property;

cbb.getPropertyRString.target.selector = kDETSelf;

err = CallBackDET(callBlockPtr, &cbb);

*str = cbb.getPropertyRString.propertyValue;

return err;

C H A P T E R 4

Service Access Module Setup

Writing and Modifying Addresses 4-61

/* --- */

/* Call kDETcmdGetPropertyNumber callback routine. */

pascal OSErr DoGetNumProperty(DETCallBlockPtr callBlockPtr,

 short property,

 long *value)

{

OSErr err;

DETCallBackBlock cbb;

cbb.getPropertyNumber.reqFunction = kDETcmdGetPropertyNumber;

cbb.getPropertyNumber.property = property;

cbb.getPropertyNumber.target.selector = kDETSelf;

err = CallBackDET(callBlockPtr, &cbb);

*value = cbb.getPropertyNumber.propertyValue;

return err;

}

/* --- */

/* Call kDETcmdGetPropertyNumber callback routine and return 0 or 1. */

pascal OSErr DoGetBooleanProperty(DETCallBlockPtr callBlockPtr,

 short property,

 Boolean* value)

{

OSErr err = noErr;

long number;

err = DoGetNumProperty(callBlockPtr, property, &number);

*value = (number == 1);

return err;

}

/* --- */

/* Call kDETcmdGetPropertyRString callback routine and convert handle to

 pointer. */

pascal OSErr DoGetRStringPtrProperty(DETCallBlockPtr callBlockPtr,

 short property,

 RStringPtr* str)

{

OSErr err = noErr;

C H A P T E R 4

Service Access Module Setup

4-62 Writing and Modifying Addresses

RStringHandle stringH = nil;

RStringPtr stringP = nil;

err = DoGetRStringProperty(callBlockPtr, property, &stringH);

if (err == noErr)

{

err = DoRStringHandleToPtr(stringH, &stringP);

}

DisposeHandle((Handle) stringH);

*str = stringP;

return err;

}

/* --- */

/* Convert an RString handle to a pointer. */

pascal OSErr DoRStringHandleToPtr(RStringHandle stringH,

 RStringPtr* string)

{

OSErr err = noErr;

RStringPtr stringP = nil;

stringP = (RStringPtr) NewPtr(sizeof(ProtoRString) +

(*stringH)->dataLength);

HLock((Handle) stringH);

err = OCECopyRString(*stringH, stringP, (*stringH)->dataLength);

HUnlock((Handle) stringH);

*string = stringP;

return err;

}

C H A P T E R 4

Service Access Module Setup

SAM Setup Reference 4-63

SAM Setup Reference

This section lists and describes the contents of the PowerTalk Setup catalog and the

attributes in records of the following types:

■ Setup

■ MSAM

■ CSAM

■ Mail Service

■ Catalog

■ Combined

Following the descriptions of these records and attributes, this section describes all of the

properties and resources that you must include in your setup template.

The PowerTalk Setup Catalog

The information in the PowerTalk Setup catalog completely describes the AOCE services

available on the Macintosh computer on which the Setup catalog is located. The records

in the Setup catalog contain information about the installed CSAMs, the catalogs

associated with those CSAMs, the installed personal MSAMs, and the messaging

services associated with those MSAMs. Each CSAM and personal MSAM is represented

by a record, and each personal MSAM mail slot and CSAM catalog is represented by a

record (a single Combined record can represent both a mail slot and a catalog). In

addition, there is a special Setup record that ties everything together.

When a user installs the PowerTalk software on his or her Macintosh, PowerTalk

software creates the Setup catalog. The Setup catalog initially contains a single record

called the Setup record. As the user adds catalog or messaging services, additional

records are needed in the Setup catalog to specify these services.

Many of the records in the Setup catalog refer to other records in the Setup catalog by

means of a record reference. A record reference is an attribute whose value consists

of a packed record ID, of which only the creation ID is used to identify a given record.

Except for parent MSAM record attributes, which your setup template creates, the

PowerTalk Key Chain manages record references; you shouldn't need to examine or

manipulate them.

Setup templates create or modify many of the records in the Setup catalog. The sections

that follow describe the types of records in the Setup catalog and the contents of those

records. The sections “Adding Catalog and Mail Services” beginning on page 4-5 and

“Modifying an Existing Service” on page 4-30 explain how you actually create and

modify the records.

C H A P T E R 4

Service Access Module Setup

4-64 SAM Setup Reference

Table 4-1 lists the standard types of records contained in the Setup catalog, provides the

corresponding record type index where applicable, and notes who creates a record of

that type. Record type indexes are described in the chapter “AOCE Utilities” in the book

Inside Macintosh: AOCE Application Interfaces.

The Setup Record

There is a single Setup record in the Setup catalog. It contains record references to all of

the records in the PowerTalk Setup catalog that represent slots, catalogs, and other items

that show up in the PowerTalk Key Chain. It is identified by the record type index

constant kSetupRecTypeNum. The Key Chain sets up and maintains the Setup record;

you do not manipulate it or read it.

The MSAM Record

An MSAM record represents a personal MSAM. The setup template for a given MSAM

creates this record. The record name is the same as the name of the file containing the

personal MSAM at the time you create the record. (Once the MSAM has been created

and configured, the user can change the filename without affecting the MSAM record).

An MSAM record is identified by the record type index constant kMSAMRecTypeNum.

Table 4-2 shows the attributes for an MSAM record.

Table 4-1 Setup-catalog record types

Type of record Record type index Created by

Setup kSetupRecTypeNum AOCE

MSAM kMSAMRecTypeNum Setup template (by calling the
DirAddRecord function if this
record does not already exist)

CSAM kDSAMRecTypeNum Setup template (by calling the
DirAddDSAM function)

Mail Service
(also known as
a slot record)

N/A Key Chain; main aspect template
provided by MSAM-only setup
templates

Catalog N/A Key Chain; main aspect template
provided by MSAM-only and
CSAM-only setup templates

Combined N/A Key Chain; main aspect template
provided by combined MSAM
and CSAM setup templates

C H A P T E R 4

Service Access Module Setup

SAM Setup Reference 4-65

An MSAM record may also contain MSAM-specific information in attributes added by

the personal MSAM, its setup template, or both.

The CSAM Record

A CSAM record represents a CSAM. A setup template creates this record by calling the

DirAddDSAM function. The record name is the same as the name of the file that contains

the CSAM. A CSAM record is identified by the record type index constant

kDSAMRecTypeNum. Table 4-3 shows the attributes for a CSAM record.

Table 4-2 Attributes of an MSAM record

Attribute type
and index Data type Description Written by

AOCE version
kVersionAttrTypeNum

long AOCE version number. Setup
template

Gateway file ID
kGatewayFileIDAttrTypeNum

long The file ID of the personal MSAM file. To
activate a mail slot, you need to find the
slot’s Mail Service record. To do so, you
compare your file’s file ID with the file ID
stored in the gateway file ID attribute in each
MSAM record. (If no Mail Service record
exists for this file, you must create one.)

Setup
template

Mail service
kMailServiceAttrTypeNum

PackedRecordID A record reference to a Mail Service record
that represents a slot belonging to this
personal MSAM. An MSAM record contains
one mail service attribute for each slot
associated with the MSAM.

Setup
template

C H A P T E R 4

Service Access Module Setup

4-66 SAM Setup Reference

A CSAM record may also contain CSAM-specific information added by the CSAM, its

setup template, or both.

The Mail Service Record

A Mail Service record (also known as a slot record) contains information about a mail slot.

The Key Chain creates this record, using a main aspect template provided by your setup

template, when your setup template adds a mail service only. When your setup template

adds a combined mail and catalog service, the mail slot information is contained in a

Combined record rather than a Mail Service record.

Your main aspect template for the Mail Service record must specify the record type “aoce

Mail Servicexxxx” where xxxx is the address extension type of the messaging system to

which your MSAM provides access. You can use the constant

kMailServiceRecTypeBody to do so; for example, the following fragment of an

aspect template creates a record of type “aoce Mail ServiceWAVE”:

#define kServiceRecordType kMailServiceRecTypeBody "WAVE"

resource 'deta' (kSurfWriterAspect, purgeable)
{

0, dropCheckConflicts, isMainAspect
};

resource 'rstr' (kSurfWriterAspect + kDETRecordType, purgeable)

{
kServiceRecordType

};

Table 4-4 shows the attributes for a Mail Service record.

Table 4-3 Attributes of a CSAM record

Attribute type
and index Data type Description Written by

CSAM alias
kDSAMFileAliasAttrTypeNum

Private to AOCE An alias to the CSAM file, created
and used by AOCE software.

Setup template calls
DirAddDSAM function

Catalog
kDirectoryAttrTypeNum

PackedRecordID A record reference to a Catalog
record that represents a catalog
available through this CSAM.
A CSAM record contains one
catalog attribute for each catalog
associated with the CSAM.

Setup template calls
DirAddDSAMDirectory
function

C H A P T E R 4

Service Access Module Setup

SAM Setup Reference 4-67

The Mail Service record may also contain other slot-specific information added by the

personal MSAM, its setup template, or both.

The Catalog Record

A Catalog record represents a catalog to which the user has access. The Key Chain

creates this record, using a main aspect template provided by your setup template, when

your setup template adds a mail service only or a catalog service only. When your setup

template adds a combined mail and catalog service, the catalog information is contained

in a Combined record rather than a Mail Service record, as described in the next section.

Your main aspect template for the Catalog record must specify the record type “aoce

Directoryxxxx”. If the catalog is associated with a mail slot, xxxx is the address extension

type of the external messaging system to which the slot’s MSAM provides access. If the

catalog is not associated with a slot, xxxx is the signature field of the catalog

discriminator (DirDiscriminator structure).

Table 4-4 Attributes of a Mail Service record

Attribute type
and index Data type Description Written by

AOCE version
kVersionAttrTypeNum

long AOCE version number. Key Chain

Associated catalog
kAssoDirectoryAttrTypeNum

PackedRecordID A record reference to the record that represents
the catalog with which this slot is associated.
AOCE needs the Catalog record to route
messages; the Setup catalog must contain the
Catalog record before your MSAM can be
properly set up.

Key Chain

Parent MSAM
kParentMSAMAttrTypeNum

PackedRecordID A record reference to the record that represents
the MSAM to which this slot belongs.

Setup
template

Slot ID
kSlotIDAttrTypeNum

SlotID The slot ID for this mail slot. MSAM

Standard slot information
kStdSlotInfoAttrTypeNum

MailStandardSlotInfoAttribute

A structure that contains information about the
slot, such as when to log on to the external
messaging system.

Setup
template

C H A P T E R 4

Service Access Module Setup

4-68 SAM Setup Reference

You can use the constant kDirectoryRecTypeBody to assign the record type; for

example, the following fragment of an aspect template creates a record of type “aoce

DirectoryWAVE”:

#define kServiceRecordType kDirectoryRecTypeBody "WAVE"

resource 'deta' (kSurfWriterAspect, purgeable)

{

0, dropCheckConflicts, isMainAspect

};

resource 'rstr' (kSurfWriterAspect + kDETRecordType, purgeable)

{

kServiceRecordType

};

Table 4-5 shows the attributes for a Catalog record. Note that some attributes are used in

Catalog records only for stand-alone MSAMs, some are used in Catalog records only for

stand-alone CSAMs, and some are used both for MSAMs and CSAMs. When you install

a combined MSAM and CSAM, you provide a template for a Combined record rather

than for a Catalog record (see Table 4-6 on page 4-70).

Table 4-5 Attributes of a Catalog record

Attribute type
and index Data type Description Written by Used for

Version
kVersionAttrTypeNum

long Version number of the
Key Chain at the time
the record was created

Key Chain CSAM

Associated mail service
kAssoMailServiceAttrTypeNum

PackedRecordID Record reference to the
Mail Service record
associated with this
catalog

Key Chain MSAM

Parent CSAM
kParentDSAMAttrTypeNum

PackedRecordID Record reference to
CSAM record for
this catalog

Setup template calls
DirAddDSAMDirectory
function

CSAM

continued

C H A P T E R 4

Service Access Module Setup

SAM Setup Reference 4-69

Discriminator
kDiscriminatorAttrTypeNum

DirDiscriminator This catalog’s
discriminator value

Setup template
(CSAM template calls
DirAddDSAMDirectory
function)

MSAM
CSAM

Capability flags
kSFlagsAttrTypeNum

 long This catalog’s
capability flags

Setup template calls
DirAddDSAMDirectory
function

CSAM

Comment
kCommentAttrTypeNum

RString Comment for your use Setup template MSAM
CSAM

Real name
kRealNameAttrTypeNum

RString Name of this catalog
for your use

Setup template MSAM
CSAM

User’s record ID
kDirUserRIDAttrTypeNum

RecordID User’s record ID Setup template calls
OCESetupAddDirectoryInfo
function

MSAM
CSAM

Native name
kDirNativeNameAttrTypeNum

RString User’s name or account
name in the external
catalog; for your use

Setup template MSAM
CSAM

User’s key
kDirUserKeyAttrTypeNum

Private to AOCE User’s encrypted
password

Setup template calls
OCESetupAddDirectoryInfo
function

MSAM

continued

Table 4-5 Attributes of a Catalog record (continued)

Attribute type
and index Data type Description Written by Used for

C H A P T E R 4

Service Access Module Setup

4-70 SAM Setup Reference

The Combined Record

A Combined record represents a mail slot and a catalog in a single record. The Key

Chain creates this record, using a main aspect template provided by your setup

template, when your setup template adds a combined MSAM and CSAM.

Your main aspect template for the Combined record must specify the record type “aoce

Combinedxxxx” where xxxx is the address extension type of the external messaging

system to which the slot’s MSAM provides access.

You can use the constant kCombinedRecTypeBody to assign the record type; for

example, the following fragment of an aspect template creates a record of type “aoce

CombinedWAVE”:

#define kServiceRecordType kCombinedRecTypeBody "WAVE"

resource 'deta' (kSurfWriterAspect, purgeable)
{

0, dropCheckConflicts, isMainAspect
};

resource 'rstr' (kSurfWriterAspect + kDETRecordType, purgeable)

{
kServiceRecordType

};

Table 4-6 shows the attributes for a Combined record.

Private data
kPrivateDataAttrTypeNum

Binary data of any
length (to maximum
size of attribute)

Data for your use; for
example, information
about address formats

Setup template MSAM
CSAM

Table 4-6 Attributes of a Combined record

Attribute type
and index Data type Description Written by

Version
kVersionAttrTypeNum

long Version number of the
Key Chain at the time
the record was created.

Key Chain

continued

Table 4-5 Attributes of a Catalog record (continued)

Attribute type
and index Data type Description Written by Used for

C H A P T E R 4

Service Access Module Setup

SAM Setup Reference 4-71

Associated catalog
kAssoDirectoryAttrTypeNum

PackedRecordID A record reference to the record that
represents the catalog with which this
slot is associated. For Combined records,
this attribute points back to the Combined
record itself.

Key Chain

Associated mail service
kAssoMailServiceAttrTypeNum

PackedRecordID Record reference to the Mail Service
record associated with this catalog.
For Combined records, this attribute
points back to the Combined record itself.

Key Chain

Parent CSAM
kParentDSAMAttrTypeNum

PackedRecordID Record reference to the
CSAM record for this
catalog.

Setup template calls
DirAddDSAMDirectory
function

Parent MSAM
kParentMSAMAttrTypeNum

PackedRecordID A record reference to the
record that represents
the MSAM to which this
slot belongs.

Setup template

Slot ID
kSlotIDAttrTypeNum

SlotID The slot ID for this
mail slot.

MSAM

Standard slot information
kStdSlotInfoAttrTypeNum

MailStandardSlotInfoAttribute

A structure that contains information
about the slot, such as when to log on
to the external messaging system.

Setup template

continued

Table 4-6 Attributes of a Combined record (continued)

Attribute type
and index Data type Description Written by

C H A P T E R 4

Service Access Module Setup

4-72 SAM Setup Reference

Discriminator
kDiscriminatorAttrTypeNum

DirDiscriminator This catalog’s
discriminator value.

Setup template calls
DirAddDSAMDirectory
function

Capability flags
kSFlagsAttrTypeNum

 long This catalog’s
capability flags.

Setup template calls
DirAddDSAMDirectory
function

Comment
kCommentAttrTypeNum

RString Displayable comment
about this catalog; for
example, the time the
catalog was installed.

Setup template

Real name
kRealNameAttrTypeNum

RString Name of this catalog
for your use.

Setup template

User’s record ID
kDirUserRIDAttrTypeNum

RecordID User’s record ID. Setup template calls
OCESetupAddDirectoryInfo
function

Native name
kDirNativeNameAttrTypeNum

RString User’s name or account
name in the external
catalog; for your use.

Setup template

User’s key
kDirUserKeyAttrTypeNum

Private to AOCE User’s encrypted
password.

Setup template calls
OCESetupAddDirectoryInfo
function

Private data
kPrivateDataAttrTypeNum

Binary data of any
length (to maximum
size of attribute)

Data for your use; for
example, information
about address formats.

Setup template

Table 4-6 Attributes of a Combined record (continued)

Attribute type
and index Data type Description Written by

C H A P T E R 4

Service Access Module Setup

SAM Setup Reference 4-73

The Setup Template Resources

Every CSAM and personal MSAM must include a setup template in the resource fork of

the SAM file. The setup template provides the human interface that allows a user to add

or remove the SAM and the services that it supports. In response to user input, the

template creates and modifies records in the Setup catalog.

A setup template consists of an aspect template and at least one information page

template. To learn how to write an AOCE template, read the chapter “AOCE Templates”

in Inside Macintosh: AOCE Application Interfaces. This section covers only those topics that

are specific to setup templates.

Table 4-7 shows the resources required for the setup aspect template. Only those

resources that are unique to setup templates or that must have specific values in setup

templates are described here. For descriptions of the other required resources and for a

complete list of all the resources you can use in aspect templates, see the chapter “AOCE

Templates” in Inside Macintosh: AOCE Application Interfaces.

Table 4-7 Required resources for setup aspect templates

Resource
type

Offset of resource ID from
signature resource ID Purpose of resource

'deta' 0 Identifies template as main aspect and
provides a base resource ID.

'rstr' kDETTemplateName Name of template.

'rstr' kDETRecordType Type of record to which the template applies.

'rstr' kDETAspectName The name displayed in the Key Chain in the
Service field.

'rstr' kSAMAspectKind The kind of service as shown in the Kind
field of the Key Chain.

'detn' kSAMAspectCannotDelete A property that detemines whether the
user can delete the slot or catalog set up
by this aspect.

'rstr' kSAMAspectUserName The string the Key Chain displays
in the Name field.

'sami' kSAMAspectSlotCreationInfo The information needed by the Key Chain to
create and delete slots and catalogs.

Icon suite kDETAspectMainBitmap Suite of icons.

'rstr' kDETAspectKind The kind of record as shown in the Get Info
dialog box. Neither the code resource nor the
user can change this value.

'rstr' kDETAspectWhatIs Help-balloon string for objects of the type
described by this aspect when they appear
in the Key Chain.

'detc' kDETAspectCode A code resource.

C H A P T E R 4

Service Access Module Setup

4-74 SAM Setup Reference

IMPORTANT

Because of these additional required resources, your own
properties should start at offset kSAMFirstDevProperty
rather than at kFirstDevProperty. ▲

The rest of this section describes the resources required for setup aspect templates. For a

complete description of the resources you can use in any AOCE aspect template, see the

chapter “AOCE Templates” in Inside Macintosh: AOCE Application Interfaces.

Aspect Signature Resource

You must supply a main aspect template for Mail Service records, Catalog records,

and Combined records required for your setup template (see Table 4-1 on page 4-64).

The aspect signature resource provides the base resource ID for the aspect template

and specifies that the template is a main aspect template. Because users cannot drag

records out of the Key Chain or drop them in, the drop-related fields of the aspect

signature resource are not significant. The signature resource for an aspect template

is of type 'deta'.

resource 'deta' (kSurfWriterAspect, purgeable)

{

0, dropCheckConflicts, isMainAspect

};

kDETTemplateName

The template name resource is required of all templates. It has a resource ID with an

offset of kDETTemplateName from the template’s base (signature) resource ID.

resource 'rstr' (kSurfWriterAspect+kDETTemplateName, purgeable) {

"kAspectName"

};

Your information page templates must use this name to refer to the aspect template that

provides their property values.

kDETRecordType

The record-type resource specifies the record type to which the aspect template

applies. The record-type resource has a resource ID with an offset of kDETRecordType

from the template’s base resource ID.

C H A P T E R 4

Service Access Module Setup

SAM Setup Reference 4-75

#define kServiceRecordType kMailServiceRecTypeBody "WAVE"

resource 'rstr' (kSurfWriterAspect + kDETRecordType, purgeable)

{

kServiceRecordType

};

A main aspect template for a Mail Service record must specify the record type “aoce Mail

Servicexxxx” where xxxx is the address extension type of the messaging system to which

your MSAM provides access. A main aspect template for a Catalog record must specify

the record type “aoce Directoryxxxx”. If the catalog is associated with a mail slot, xxxx is

the extension type of the external messaging system to which the slot’s MSAM provides

access. If the catalog is not associated with a slot, xxxx is the signature field of the

catalog discriminator (DirDiscriminator structure). A main aspect template for a

Combined record must specify the record type “aoce Combinedxxxx” where xxxx is the

extension type of the external messaging system to which the slot’s MSAM provides

access. You can use the following constants when assigning a record type:

#define kDirectoryRecTypeBody "aoce Directory"

#define kMailServiceRecTypeBody "aoce Mail Service"

#define kCombinedRecTypeBody "aoce Combined"

kDETAspectName

A setup aspect template should specify a default name for the CE to display in the

Service field in the Key Chain. To provide this name, use an RString resource with

an offset of kDETAspectName from the template’s base resource ID.

Note
For main aspect templates for records other than setup templates, the CE
automatically sets the kDETAspectName property to be the name of the
record. However, for records in the Key Chain, your template must
provide a resource to set this property explicitly. ◆

resource 'rstr' (kSurfWriterAspect+kDETAspectName, purgeable)

{

"New Mail Server"

};

Your setup information page template can allow the user to change this name to the

name of the mail server or catalog server on which he or she has an account.

C H A P T E R 4

Service Access Module Setup

4-76 SAM Setup Reference

kDETAspectKind

Specify the kind of the record as it is to be displayed in a Get Info dialog box with

an RString resource with an offset of kDETAspectKind from the template’s base

resource ID.

resource 'rstr' (kSurfWriterAspect+kDETAspectKind, purgeable)

{

"SurfWriter Mail Service"

};

This resource is the only source for this information. Neither your code resource nor the

user can change the value you specify in this resource. Unlike AOCE dNode windows,

however, the Key Chain does not use the kDETAspectKind resource to determine what

to display in the Kind field. The Key Chain uses the kSAMAspectKind resource

(described next) for that purpose.

kSAMAspectKind

A setup aspect template must specify the name the CE should display in the Kind field

in the Key Chain. To provide this name, use an RString resource with an offset of

kSAMAspectKind from the template’s base resource ID.

resource 'rstr' (kSurfWriterAspect+kSAMAspectKind, purgeable)

{

"SurfWriter Mail Service"

};

This resource is the only source for this information. Your code resource can change the

value you specify in this resource. You must also include a kDETAspectKind resource

to specify the kind of the record as it is to be displayed in a Get Info dialog box.

kSAMAspectUserName

A setup aspect template should specify the default name the CE should display in the

Name field in the Key Chain. To provide this name, use an RString resource with an

offset of kSAMAspectUserName from the template’s base resource ID.

resource 'rstr' (kSurfWriterAspect+kSAMAspectUserName, purgeable)

{

"SurfWriter User"

};

C H A P T E R 4

Service Access Module Setup

SAM Setup Reference 4-77

Your setup information page template can allow the user to change this name to the

account name on the mail system or catalog server. If your system does not use account

names, you should use the name of the owner of the Key Chain for this property. You

can obtain this name from the Setup record, where it is stored in an attribute of type

“Local Name”. The attribute type index for this attribute is kLocalNameAttrTypeNum.

kSAMAspectCannotDelete

The kSAMAspectCannotDelete property indicates whether the slot or catalog

associated with this aspect can be deleted. A property value of 0 indicates that the

slot or catalog can be deleted. Otherwise, it cannot be deleted. The default value of

this property is 0. Your setup template can set the value of this property to prevent

the user from deleting the slot or catalog once it has been added.

resource 'detn' (kSurfWriterAspect+kSAMAspectCannotDelete,

purgeable)

{

1

};

kSAMAspectSlotCreationInfo

The slot creation information resource gives the Key Chain the information it needs to

create and delete MSAM slots and CSAM catalogs. To provide this information, use a

resource of type 'sami' with an offset of kSAMAspectSlotCreationInfo from the

template’s base resource ID. This resource has the following Rez type definition:

type 'sami' {

integer; // max number of catalogs/slots

longint; // catalog signature, MSAM type

byte notMSAM, servesMSAM; // an MSAM template?

byte notDSAM, servesDSAM; // a CSAM template?

rstring; // display when user clicks Add

align word;

rstring; // new record name

align word;

};

The integer value is the maximum number of slots, catalogs, or combined services that

your SAM can support. Set this to 0 if you can support an unlimited number of slots

or catalogs.

C H A P T E R 4

Service Access Module Setup

4-78 SAM Setup Reference

The longint value identifies your type of service. For catalogs, this is the value of the

signature field of the catalog discriminator (DirDiscriminator structure; see the

chapter “AOCE Utilities” in Inside Macintosh: AOCE Application Interfaces). For slots, this

is the extension type of the addresses. Addresses and address extension types are

described in the chapter “Messaging Service Access Modules” in this book. For a catalog

and mail service to work together, the catalog discriminator and address extension type

values must be the same.

The two byte values specify whether your SAM is an MSAM or a CSAM. If it is a

combined MSAM and CSAM, specify both servesMSAM and servesDSAM for

these values.

The first RString value specifies the text for the dialog box that the Key Chain

displays when the user clicks the Add button. This value in the

kSAMAspectSlotCreationInfo resource replaces the kDETAspectNewMenuName

resource used in other (non-setup) main aspect templates.

The second RString value specifies the name the Key Chain assigns initially to new

records of this type. (The user can use the Key Chain information page to rename this

record.) This value in the kSAMAspectSlotCreationInfo resource replaces the

kDETAspectNewEntryName resource used in other (non-setup) main aspect templates.

Here is an example of a kSAMAspectSlotCreationInfo resource:

#define kSignature 'WAVE'

resource 'sami' (kSurfWriterAspect + kSAMAspectSlotCreationInfo,

 purgeable)

{

2,

kSignature,

servesMSAM,

servesDSAM,

"SurfWriter Combined Service",

"untitled combined SurfWriter"

};

kDETAspectMainBitmap

Every main aspect template, including a setup template, must include an icon suite with

a resource ID that has an offset of kDETAspectMainBitmap from the template’s base

resource ID. Suppose, for example, that you prepared an icon suite in a ResEdit file

named SurfWriterIcons, that all of your icon resources had resource IDs of 0, and that

your resource base ID was kSurfWriterAspect. In this case, you could use the

following code to include the icon suite in your setup aspect template:

C H A P T E R 4

Service Access Module Setup

SAM Setup Reference 4-79

include "SurfWriterIcons" 'ICN#'(0) as

'ICN#'(kMainAspect+kDETAspectMainBitmap, purgeable);

include "SurfWriterIcons" 'icl4'(0) as

'icl4'(kMainAspect+kDETAspectMainBitmap, purgeable);

include "SurfWriterIcons" 'icl8'(0) as

'icl8'(kMainAspect+kDETAspectMainBitmap, purgeable);

include "SurfWriterIcons" 'ics#'(0) as

'ics#'(kMainAspect+kDETAspectMainBitmap, purgeable);

include "SurfWriterIcons" 'ics4'(0) as

'ics4'(kMainAspect+kDETAspectMainBitmap, purgeable);

include "SurfWriterIcons" 'ics8'(0) as

'ics8'(kMainAspect+kDETAspectMainBitmap, purgeable);

include "SurfWriterIcons" 'SICN'(0) as

'SICN'(kMainAspect+kDETAspectMainBitmap, purgeable);

The icon suite must be included in the main aspect template and cannot be changed

from a code resource or by the user.

kDETAspectWhatIs

Each setup main-aspect template must provide a help-balloon string. The Key Chain

displays this string when the user enables Balloon Help online assistance and moves the

cursor over an entry in the Key Chain to which this main aspect applies. The

help-balloon string is in an RString resource with an offset kDETAspectWhatIs from

the template’s base resource ID.

resource 'rstr' (kSurfWriterAspect+kDETAspectWhatIs, purgeable) {

"Contains information about this key, which represents a

 SurfWriter combined mail and catalog service."

};

kDETAspectCode

Every setup aspect template must include a code resource with an offset of

kDETAspectCode from the template’s base resource ID. For example, to include code

that has been compiled and saved as the resource SurfWriterCode of type 'detc'

with a resource ID of 0, add the following line to the setup aspect template:

include "SurfWriterCode" 'detc'(0) as

 'detc'(kSurfWriterAspect+kDETAspectCode, purgeable);

C H A P T E R 4

Service Access Module Setup

4-80 SAM Setup Reference

Your setup template code resource must call a variety of Collaboration toolbox functions

and AOCE template callback functions to create records and attributes. See “Adding

Catalog and Mail Services” beginning on page 4-5 for a description of each step involved

in setting up catalog and mail services. Code resources and template callback functions

are described in the chapter “AOCE Templates” in Inside Macintosh: AOCE Application
Interfaces.

The Address Template

Every MSAM must include an address template in the resource fork of the MSAM file.

The template provides the human interface that allows a user to view, create, and edit

the addresses the MSAM needs to send letters to recipients on its messaging system.

An address template consists of an aspect template and at least one information

page template.

The lookup table ('dett' pattern) for an address must end with a pattern element of

type 'Pref'. This custom element type lets the Electronic Addresses information page

set the preferred address radio buttons correctly.

The standard address information page is 259 pixels wide and 200 pixels high. It has a

page-selection pop-up menu at location (8, 56, 30, 206) (top, left, bottom, right). It has a

page-identifying large icon at (8, 8, 40, 40). Within the page are two radio buttons labeled

“View as:”, a Fields radio button and a String radio button. The string “View as:” is at

location (49, 56, 63, 106). The Fields radio button is at location (48, 111, 64, 154). The

String radio button is at location (48, 164, 64, 209). Between the view-as selector and the

data is a dotted line, at location (72, 8, 73, 251).

Addresses with all types of tags are forwarded to the drop-send aspect by a built-in

forwarder. For this reason, your address template does not need to handle drops.

For an example of an address template, see “Writing and Modifying Addresses”

beginning on page 4-30.

GL-1

access controls A set of bits that specify the
types of operations a requestor is authorized to
perform on a given catalog node, record, or
attribute type.

address template A set of AOCE templates that
allow a user to enter address information into a
User record.

AOCE Apple Open Collaboration Environment.

AOCE catalog A hierarchically arranged store
of data in a format intelligible to the AOCE
Catalog Manager. See also external catalog,
PowerShare catalog.

AOCE messaging system The set of PowerTalk
system software and PowerShare mail servers
that allows Macintosh users and processes
connected over a network or via a modem to
exchange information.

AOCE Setup catalog See PowerTalk Setup
catalog.

AOCE system software The collection of
Macintosh Operating System managers and
utility functions that provide APIs for catalog,
messaging, and security services. The AOCE
system software includes the Standard Mail
Package, the Standard Catalog Package, AOCE
templates, the Interprogram Messaging Manager,
the Catalog Manager, the Authentication
Manager, and the Digital Signature Manager, as
well as utility functions. See also PowerTalk
system software.

AOCE template A resource file that extends
the AOCE extension to the Finder to display new
types of data in catalogs or to display data in a
new way. See also aspect template, file type
template, forwarder template, information
page template, killer template.

AOCE toolbox The low-level APIs for the
AOCE system software: the Authentication
Manager, Catalog Manager, Interprogram
Messaging Manager, and Digital Signature
Manager. See also Collaboration package,
Collaboration toolbox.

API Application programming interface.

AppleMail format See standard interchange
format.

AppleTalk Secure Data Stream Protocol
(ASDSP) A networking protocol that provides
reliable transmission of an encrypted stream of
bytes between two authenticated entities on an
AppleTalk internet.

approval file A file you receive from a
signature-authorization-issuing agency. You use
this file to activate your signer file.

approval request A notarized (or otherwise
authorized) request to issue a public-key
certificate. The approval request includes what is
intended to be the public key of the certificate’s
owner.

approved signer file See signer file.

approving agency See certificate issuer.

ASDSP See AppleTalk Secure Data Stream
Protocol.

aspect A structure in memory that contains
properties provided by an aspect template. An
aspect might also contain code provided by the
code resource in an aspect template.

aspect template An AOCE template that
specifies how attributes in a record are to be
parsed into properties for display in an
information page. An aspect template can also
specify certain constant property values and can
contain a code resource that translates between
property types and implements features in
information pages. See also information page
template.

attribute The smallest unit of data in an AOCE
catalog; the data within a record is organized into
attributes. Each attribute has a type indicating
the type of data, a tag indicating the format of the
data, a creation ID, and data (the attribute value).

Glossary

G L O S S A R Y

GL-2

attribute creation ID A number assigned by a
catalog that uniquely identifies an attribute value
within a record. It persists for as long as the
attribute value exists and is never reused. Not all
catalogs support attribute creation IDs. See also
pseudo-persistent attribute creation ID.

attribute tag See attribute value tag.

attribute type The type of data in an attribute;
for example, telephone number or picture. A
record can contain more than one attribute type,
and there can be more than one attribute value of
the same attribute type in a record.

attribute value The data in an attribute.

attribute value tag The format of the data in an
attribute value.

authentication Verification of the identification
of an entity on a network or of one end of a
communication link.

authentication identity See identity.

Authentication Manager The part of the
Macintosh Operating System that authenticates
users of AOCE messaging and catalog services
and provides authentication services to
applications.

authentication server A secure network-based
server that holds the client keys of users and
services and generates credentials that allow
users to do mutual authentication.

bcc recipient A “blind courtesy copy” recipient
of a letter. Bcc recipients are not listed in copies of
the letter recieved by To and cc recipients. See
also original recipient.

block creator A four-character sequence that
indicates which application created a message
block; analogous to a file’s creator in HFS.

block type A code that indicates the format of
the data contained within a message block.

callback routine (1) An application-defined
routine called by the Operating System. When
you call certain functions, you provide a pointer
to a callback routine, and the function installs
your routine in memory. Then when a certain
event occurs, the Operating System calls your
callback routine. See also completion routine.
(2) A function provided by the CE to provide a

service for aspect code resources. When the CE
calls your code resource, your code resource can
call the CE’s callback routines.

catalog See AOCE catalog.

Catalog Browser A Finder extension that
allows a user to search through an AOCE catalog
by opening folders on the desktop.

catalog discriminator A name and reference
number that uniquely identifies a catalog.

Catalog Manager The part of the Macintosh
Operating System that manages the organization,
reading, and writing of data in AOCE catalogs.

catalog node See dNode.

catalog service access module (CSAM) A code
module, implemented as a device driver, that
makes an external catalog available within an
AOCE system by supporting the Catalog
Manager API.

catalog service function A CSAM-defined
function that responds to requests for AOCE
catalog services from clients of the Catalog
Manager.

Catalogs Extension An extension to the Finder
that makes it possible for the Finder to display
the contents of AOCE catalogs and for the user to
edit the contents of records.

cc recipient A “courtesy copy” or secondary
recipient of a letter. See also original recipient.

CE See Catalogs Extension.

certificate See public-key certificate.

certificate issuer The organization that
authorized, or issued, a particular public-key
certificate. Each certificate is digitally signed by
its issuer.

certificate owner The person or organization to
which a particular public-key certificate has been
issued. Each certificate contains the public key of
its owner.

certificate request See approval request.

certificate set A chain of public-key certificates
that, combined with a digital signature, make up
a full signature. A certificate set consists of the
public-key certificate of the signer (owner),

G L O S S A R Y

GL-3

digitally signed by the organization that issued
the certificate; plus the certificate of the issuing
organization, signed by the organization that
issued that certificate; and so on, until the last
signature is that of the prime issuing organiza-
tion. The certificate set provides the signer’s
public key for decryption of the signer’s signa-
tures and ensures the validity of that public key.

certification authority See certificate issuer.

chain of certificates See certificate set.

client key A key that is known only to a
specific entity and to the authentication server.

Collaboration package The high-level APIs
for the AOCE system software collaboration
managers: the Standard Mail Package and the
Standard Catalog Package. See also
Collaboration toolbox.

Collaboration toolbox The low-level APIs for
the AOCE system software collaboration
managers: the Authentication Manager, Catalog
Manager, and Interprogram Messaging Manager.
See also AOCE toolbox, Collaboration package.

completion routine A callback routine you
can specify when you execute a function
asynchronously. When the function completes
execution, it calls your completion routine.

conditional view A view in an information
page that is displayed only if certain conditions
are met in the aspect associated with that
information page.

content block A message block that contains
the body of a letter in standard interchange
format.

content enclosure An enclosure that contains a
letter’s content. It may be the sole content in a
letter or be accompanied by content in a content
block, an image block, or both. See also regular
enclosure.

context A data structure used by some Digital
Signature Manager routines to hold information
and the results of calculations needed when
processing data. See also queue context.

copying As used by AOCE utility routines: the
process of taking the contents of each field in a
source structure and placing them in the

corresponding field of a destination structure.
This process includes all nested structures as
well. Compare duplicating.

creation ID See attribute creation ID,
record creation ID.

credentials Encrypted information provided by
a server and sent by an initiator to a recipient
as part of the authentication process. The
credentials contain the session key and the
initiator’s identification.

CSAM See catalog service access module.

current block The message block last added to
a message.

decrypt To restore encrypted data to its
previous, legible (unscrambled) state. In most
cryptographic systems, decryption is performed
by mathematically manipulating the data with a
large number called a key.

delivery indication Information within a report
that indicates the successful delivery of a specific
message to a specific recipient.

DES Data Encryption Standard. A standard
algorithm for data encryption.

DES encryption A form of secret-key
encryption used by the Digital Signature
Manager solely for keeping users’ private keys
secure. See also secret-key cryptography.

digest A number, 16 bytes long, that is
calculated from the contents of a given set of
data. A digest is like a sophisticated checksum;
it is almost impossible for two data sets of any
size with any difference to yield the same
digest value.

digital signature A data structure associated
with a document or other set of data. The digital
signature uniquely identifies the person or
organization that is signing, or authorizing the
contents of, the data and ensures the integrity of
the signed data. It is a digest of the data to which
the signature applies, encrypted with the private
key of the signer. A digital signature can be
verified by decrypting with the signer’s public
key. Same as encrypted digest. See also full
signature.

G L O S S A R Y

GL-4

Digital Signature Manager The part of the
Macintosh Operating System that manages
digital signatures and certificates.

distinguished name The complete identifier of
the owner or issuer of a certificate. A distin-
guished name includes elements such as
common name, organization, street address, and
country.

dNode A container within an AOCE catalog
that contains records, other dNodes, or both.

dNode number A number assigned by a
catalog that uniquely identifies a catalog node
within that catalog. Not all catalogs support
dNode numbers. See also pathname.

dNode window A Finder window that displays
the dNodes and records contained in a dNode.

duplicating As used by AOCE utility routines:
the process of copying the pointers to data
structures and not the actual data structures
themselves. Compare copying.

enclosure A file or folder sent along with a
letter, like an attachment to a conventional
hard-copy letter. See also content enclosure,
regular enclosure.

encrypt To hide data by putting it into a
scrambled (illegible) state, in such a way that its
original state can be restored later. In most
cryptographic systems, encryption is performed
by mathematically manipulating the data with a
large number called a key.

encrypted digest See digital signature.

encryption key See key.

extension type A four-character value that
identifies a type of messaging system that uses a
specific addressing convention; for example, an
AppleLink system or an X.400 system.

external catalog A catalog or database
accessible to AOCE-enabled applications through
the Catalog Manager API. For a user to have
access to an external catalog, the user’s AOCE
system must include a CSAM for that catalog
service.

external messaging system Any non-AOCE
messaging system.

external service A service that is not provided
automatically with PowerTalk system software
and PowerShare servers.

file type template An AOCE template that
extends the list of file types that may contain an
AOCE template. During system startup, the
Catalogs Extension searches for AOCE templates
in files whose types are on the list.

focus box See focus rectangle.

focus rectangle A heavy border around a panel
or around the content portion of a window. This
border indicates to the user that the area it
encloses is active and that any subsequent
key-down event pertains to that portion of the
window. Also called focus box.

foreign dNode A dNode in a PowerShare
catalog used by AOCE system software to route
messages to an external messaging system
through a server MSAM.

Forwarder record A catalog record that
contains identifying information about a server
MSAM.

forwarder template An AOCE template that
allows existing aspect templates and information
page templates to be used for new types of
records and attributes.

From recipient The sender of a message. See
also original recipient.

full digital signature See full signature.

full signature A digital signature plus the
certificate set of the signer. The Digital Signature
Manager creates and verifies full signatures.
Same as full digital signature.

identity A number used as shorthand for the
name and key or name and password of a user or
service. See also local identity, specific identity.

image block A message block containing a
graphic representation of a letter’s content. It
may be the sole content in a letter or be
accompanied by content in a content block, a
content enclosure, or both. The format of data
in an image block is sometimes referred to as
snapshot format.

incoming message A message coming into
an AOCE system from an external
messaging system.

G L O S S A R Y

GL-5

incoming queue A queue belonging to a mail
slot into which a personal MSAM puts letters
coming into an AOCE system from an
external system.

information page A formatted display of data
and controls, similar in appearance to a dialog
box, showing information about an AOCE
catalog record or a portion of a record. See also
information page template.

information page template An AOCE template
that defines the layout and contents of an
information page, using the properties in a
specific aspect.

information page window A window that
contains one or more information pages. If the
window contains more than one information
page, only one information page is displayed at a
time. In that case, the window contains a pop-up
menu with a list of the information pages
available.

initiator The originator of the authentica-
tion process.

intermediary A representative of a user or
service that uses a proxy to obtain credentials for
mutual authentication and then performs some
function for the user or service represented.

Interprogram Messaging Manager (IPM) The
part of the Macintosh Operating System that
manages the creation, sending, and receiving of
messages. IPM messages conform to a specific
structure and can be transmitted over an
AppleTalk network or any other communication
link. The Interprogram Messaging Manager
provides store-and-forward messaging services
for Macintosh computers.

issuer See certificate issuer.

issuing organization See certificate issuer.

key A number used by an encryption algorithm
to encrypt or decrypt data.

Key Chain See PowerTalk Key Chain.

Key Chain Access Code The master password
providing access to a PowerTalk Key Chain.

killer template An AOCE template that
disables other AOCE templates. A killer template
can disable any type of AOCE template except
another killer template.

large-catalog mode A set of algorithms used by
certain components of a PowerTalk system when
retrieving information from large catalogs and
displaying that information to the user.

letter A type of message consisting of a defined
set of message blocks. A letter is intended to
be read by a person. See also mailer, non-
letter message.

letter attribute A piece of information about a
letter stored in the letter header or the letter’s
message summary. Letter attributes include
information such as the sender, the subject, the
time the letter was sent, and so forth. Not to be
confused with attribute.

letter header block A message block found in
every letter. It contains recipient information and
letter attributes.

local identity A number used as shorthand for
the name and password of the principal user of a
particular computer. A local identity gives the
user access to all the services for which names
and passwords are stored in the PowerTalk
Setup catalog. See also specific identity.

lookup table A resource in an aspect template
that parses attribute values into properties and
properties into attribute values. A lookup table
contains an entry for each type of attribute value
to be translated into and from properties.

mail A term used to refer collectively to letters.

mailer A region added to a document window
that transforms the document into a letter. The
mailer enables the user to enter addresses and
subject information, enclose other files and
folders in the letter, and add a digital signature to
the letter.

mailer set All of the mailers belonging to a
forwarded letter.

mail slot A personal MSAM slot that serves to
transfer letters. See also slot.

main aspect An aspect that contains the
properties the CE needs to fill in the data for an
item in a sublist. Compare main view aspect.

G L O S S A R Y

GL-6

main aspect template A template for a
main aspect.

main enclosure See content enclosure.

main view aspect An aspect that provides the
properties for all the views in the main portion of
an information page; that is, all of the informa-
tion page except for the items in a sublist.
Compare main aspect.

Master Key password The password of the
principal user of a computer. This password
unlocks the local identity and provides access
to the services represented in the PowerTalk
Setup catalog.

message The basic unit of communication
defined by the Interprogram Messaging
Manager. The term message is used as an
inclusive term to refer both to letters and
non-letter messages. See also letter, non-
letter message.

message block A component of a message
consisting of a sequence of any number of bytes
whose format is governed by the block creator
and block type.

message creator A four-character sequence that
indicates which application created a message;
analogous to a file’s creator in HFS.

message family A set of messages grouped
according to similar characteristics. Messages of
the same family conform to the syntax of a
defined set of message block types and their
associated semantics.

message header That part of a message that
contains control information about the message
such as the message creator and message type,
the total length of the message, the time it was
submitted, addressing information, and so forth.

message mark A marker, used by the IPM
Manager, that points to the current location
within a message that is being created.

message queue A set of messages maintained
by the IPM Manager on a recipient’s disk or the
disk of a message server.

message summary A set of data used by the
Finder to display an incoming letter to a user.

message type A code that indicates the
semantics of the message, the block types the
message should contain, and the relationships
among the various blocks in the message.

messaging service access module (MSAM) A
foreground or background application that
makes an external messaging system accessible
from within an AOCE system. It translates and
transfers letters, non-letter messages, or both
between an AOCE system and an external
messaging system. See also personal MSAM,
server MSAM.

messaging slot A personal MSAM slot that
serves to transfer non-letter messages. See
also slot.

messaging system A combination of hardware
and software that gives users or processes the
ability to exchange messages.

MSAM See messaging service access module.

mutual authentication Authentication of both
ends of a communication link accomplished
by exchanging a series of encrypted challenges
and replies.

nested letter A complete letter included whole
within another letter.

nested message Any type of message included
whole within another message.

nesting level An indication of how many
messages are nested within a given message. For
example, a letter that contains one nested letter
has a nesting level of 1, and a letter that contains
no nested letters has a nesting level of 0.

non-delivery indication Information within a
report that indicates unsuccessful attempts to
deliver a specific message to a specific recipient.

non-letter message A message sent from one
application or process to another, not intended to
be read by people. Compare letter.

online mode A mode of operation available
only to personal MSAMs in which the MSAM
actively manages letters in a user’s AOCE
mailbox and in the user’s accounts on external
messaging systems, reflecting changes in one to
the other, keeping both ends synchronized to the
degree possible.

G L O S S A R Y

GL-7

original recipient Any of four specific types of
recipient that can be specified by the sender of a
message: To, From, cc, or bcc. An original
recipient may be a group address. A non-letter
message can include only From and To
recipients. See also resolved recipient.

outgoing message A message that is leaving
an AOCE system to go to an external
messaging system.

outgoing queue A queue from which an
MSAM reads messages that it must deliver
to an external messaging system.

owner See certificate owner.

packing The process of compacting or
“flattening” a complex data structure into a
sequence of bytes. Compare unpacking.

parse function A CSAM-defined function that
responds to requests for AOCE parse services
from clients of the Catalog Manager.

partial pathname In an AOCE catalog, a value
that uniquely identifies a catalog by specifying a
dNode number and continuing with the name
of each dNode under that one to the dNode
in question.

password In digital signatures, a set of
characters used as a key to encrypt and decrypt a
certificate owner’s private key.

password encryption See DES encryption.

pathname In an AOCE catalog, a string that
uniquely identifies a catalog node by specifying
the name of each catalog node in the catalog
starting from the first node under the root node
and including each intervening node to the node
in question. See also dNode number.

personal catalog An AOCE catalog created and
managed by the Catalog Manager. A personal
catalog is an HFS file located on a user’s local
disk. A personal catalog can store any records
that can be kept in a PowerShare catalog and is
often used to store frequently used information
from such a catalog.

personal MSAM An MSAM that transfers
messages between the user’s Macintosh and
specific user accounts on an external messaging
system. A personal MSAM runs on a user’s
Macintosh. Compare server MSAM.

physical queue The actual data of a message
queue residing on a disk. A physical queue can
have any number of associated virtual queues.
See also virtual queue.

PMSAM See personal MSAM.

PowerShare catalog An AOCE server-based
catalog provided by Apple Computer, Inc. See
also external catalog.

PowerShare server A server installed on an
AppleTalk network to provide catalog services to
any number of entities on that network. A
PowerShare server can also identify and authen-
ticate users to ensure that only authorized people
or agents gain access to the catalog information.

PowerTalk Key Chain The PowerTalk software
that sets up and maintains a user’s PowerTalk
Setup catalog.

PowerTalk Setup catalog A special personal
catalog that contains information about the mail
and messaging services, catalog services, and
other services available to the owner of the
computer. See also local identity.

PowerTalk system software Apple Computer’s
implementation of the AOCE system software for
use on Macintosh computers. The PowerTalk
system software includes desktop services as
well as all of the services of the AOCE system
software managers.

private key One of a pair of keys needed
for private-key cryptography. Every user has
a private key kept by the user and known only
to the user.

property An individual, self-contained piece of
information, such as a number or a string. A
property is defined in an aspect template and
stored in an aspect in memory.

property command Any command handled by
your AOCE template code resource’s
kDETcmdPropertyCommand routine. The CE
calls your code resource with the
kDETcmdPropertyCommand routine selector
when the user clicks a button or checkbox in your
information page, when the user selects an item
in a pop-up menu in your information page, and
in a few other circumstances.

G L O S S A R Y

GL-8

property number A reference number assigned
to a property by an aspect template. The property
number uniquely identifies that property within
that aspect.

property type A constant associated with a
property that specifies the nature of the data
in the property value. For example, a property
type can be a number, a string, or a custom type
defined by a developer.

property value The data associated with
a property.

proxy A privilege provided by a user or service
to an intermediary. The proxy allows the
intermediary to be authenticated as the user
or service for a limited period of time.

pseudonym An alternative name for a record in
a Catalog Manager routine.

pseudo-persistent attribute creation ID A
number that uniquely identifies an attribute
value within a record. It persists from the time
the CSAM is opened at system startup until
system shutdown. See also attribute creation ID.

public key One of a pair of keys needed for
public-key cryptography. Every user has a public
key, which can be distributed to other users.

public-key certificate A document that
contains, among other information, the name and
public key of a user. The user is the owner of the
certificate. See also signed certificate, certificate
set.

public-key cryptography A system of
cryptography in which every user has two keys
to encrypt and decrypt data: a public key and a
private key. Data encrypted with a user’s public
key can be decrypted only with that same user’s
private key. Likewise, data encrypted with a
user’s private key can be decrypted only with
that user’s public key.

quasi-batch mode A mode of operation
available only to personal MSAMs in which the
MSAM complies with the minimum
requirements of online mode. See also online
mode.

queue context A grouping of virtual message
queues. When you close a queue context, you
simultaneously close all of the queues associated
with that context. See also virtual queue.

recipient (1) The end of a communications link
that receives credentials and a challenge from the
initiator. The recipient must respond correctly to
establish an authenticated connection. (2) An
addressee on an AOCE message. See also
original recipient, resolved recipient.

record The fundamental container for data
storage in an AOCE catalog; analogous to a file
in the HFS hierarchy. A record can contain any
number of attributes.

record alias A record that enables you to
store information about another record. For
example, an alias could store in its attribute
value the record location information for the
original record.

record creation ID A number that uniquely
identifies a record within a catalog. Not all
catalogs support record creation IDs.

record ID The identity of a record, comprising
the record name, record type, record creation ID,
and record location information. See also record
creation ID, record type.

record reference An attribute that identifies a
specific catalog record.

record type A value that indicates the type of
entity represented by a record—for example,
LaserWriter, User, or Group.

regular enclosure Any message enclosure that
is not a content enclosure. See also content
enclosure, enclosure.

report A message with a defined set of
message blocks used to send delivery and
non-delivery indications to the sender of the
message.

resolved recipient A recipient to which an
MSAM must deliver a message. See also original
recipient.

RSA RSA Data Security, Inc., a prime issuing
organization for public-key certificates.

SAM See service access module.

G L O S S A R Y

GL-9

secret-key cryptography A system of crypto-
graphy in which a single key is used to both
encrypt and decrypt data. All who wish to share
information must share the same key and keep it
secret from all others.

server A program or process that provides
some service to other processes on a network.

server MSAM An MSAM that transfers
messages for multiple users on the AppleTalk
network to which it is connected. It transfers
messages between a PowerShare mail server
and an external messaging system. A server
MSAM must run on the same Macintosh
as a PowerShare mail server. Compare
personal MSAM.

service access module A software component
that provides a PowerTalk user with access
to external mail and messaging services or
catalog services.

session key A key provided by an authentica-
tion server to be used by both the initiator
and the recipient for mutual authentication.
The session key remains valid for a limited
time period.

Setup catalog See PowerTalk Setup catalog.

Setup record A record in the PowerTalk Setup
catalog containing record references to all records
in the PowerTalk Setup catalog that represent
slots, catalogs, and other items.

setup template A set of AOCE templates that
allow a user to install and configure a service
access module.

sign As used by the Digital Signature Manager:
To create a digital signature and affix it to a
document or other piece of data. By signing, the
signer authorizes the content of the data, protects
it from alteration, and asserts his or her identity
as the signer.

signature See digital signature.

signature resource A resource in an AOCE
template that specifies the type of the template
and the base ID number for the template. Other
standard template resources have ID numbers
equal to the signature resource’s ID number plus
some offset value.

signed certificate A public-key certificate that
has been digitally signed by its issuer. Like any
digital signature, the signature on a certificate
ensures the integrity of the certificate (including
its public key) and proves the identity of the
signer (the issuer of the certificate).

signed digest See encrypted digest.

signer The individual or organization that signs
a document or other piece of data. To create a
signature, a signer must be the owner of a
public-key certificate.

signer file A file used by a signer to create a
digital signature. It consists of the signer’s
encrypted private key and the signer’s
certificate set.

Simple Mail Transfer Protocol (SMTP) A
protocol for the exchange of electronic mail.
Computers connected to the Internet often use
this protocol.

slot A collection of information about one
account on an external messaging system. The
information includes whatever is necessary to
allow an MSAM to access the account and
retrieve and send messages. See also mail slot,
messaging slot.

SMSAM See server MSAM.

snapshot format See image block.

specific identity A number used as shorthand
for the name and key of an alternate user on a
computer to provide access to a specific catalog
or mail service. See also local identity.

stand-alone attribute A record that contains
only one attribute, extracted from another record.
Although technically a record, the AOCE soft-
ware treats a stand-alone attribute like an
attribute in most circumstances. The record type
of a stand-alone attribute begins with the value of
the constant kAttributeValueRecTypeBody.

Standard Catalog Package The part of the
Macintosh Operating System that manages find
and browse panels for AOCE catalogs.

standard content See standard interchange
format.

G L O S S A R Y

GL-10

standard interchange format A set of data
formats that consists of plain text, styled text,
sound (AIFF), images (PICT), and QuickTime
movies ('MooV').

Standard Mail Package The part of the
Macintosh Operating System that manages
mailers and makes it easy for applications to
create and send letters.

standard mode A mode of operation available
to server MSAMs and to personal MSAMs that
deal with non-letter messages. An MSAM
operating in standard mode hands off an
incoming message to an AOCE system. It is the
AOCE system, not the MSAM operating in
standard mode, that is responsible for delivering
the message to the ultimate destination.

store-and-forward gateway A link between
different messaging systems, sometimes bridging
different physical media, providing temporary
data storage, and, where necessary, address
translation.

store-and-forward messaging A method of
delivering messages that provides for temporary
storage and forwarding of a message from one
location to another, sometimes through several
intermediate store-and-forward gateways
or servers.

store-and-forward server A server that
provides store-and-forward messaging
services. PowerShare servers are store-and-
forward servers.

sublist A list of attributes that appears as a
distinct subset of the items displayed in an
information page window, or a list of records
that appears in a dNode window.

tag See attribute value tag.

TCP/IP Transmission Control Protocol/Internet
Protocol. The major transport protocol and the
network layer protocol typically used in
communicating messages over the Internet.

template See AOCE template.

To recipient A principal recipient of a message.
See also original recipient.

unapproved signer file A file created by the
MacSigner application when it creates an
approval request. The unapproved signer file
contains a DES-encrypted number that is
intended to be the user’s private key.

universal coordinated time (UTC) The same as
Greenwich Mean Time (GMT); the standard time
as established by the Royal Observatory at
Greenwich, England.

unpacking The process of reconstructing a data
structure from a sequence of bytes. Compare
packing.

User record A catalog record representing
an entity that has an account on an AOCE
messaging or catalog server. A User record
contains electronic addresses and biographical
information about the entity that can be read by
users of the system, as well as information about
the entity’s access privileges and password for
use by the AOCE software.

UTC See universal coordinated time.

verify To establish the authenticity of a digital
signature. Verification consists of determining
that the signed document has not changed since
it was signed and affirming that the public key
used to decrypt the signature is valid.

view An item or field in an information page
displaying one or more property values.

view list A data structure that specifies
individual views on an information page. Each
item in the list includes the graphic rectangle
containing the view, the number of the property
that provides the information to be displayed, the
type of view, and information specific to that
view type.

virtual queue A view of a physical message
queue through which an application can open,
close, and list messages. More than one virtual
queue can be associated with a single physical
queue. See also physical queue.

IN-1

Index

A

access controls, CSAM support of 3-26 to 3-27
addresses 2-23 to 2-32. See also address templates;

recipients
adding addresses to AOCE system 2-25 to 2-26
contents of external address 2-29
contents of PowerTalk or PowerShare address 2-30
extension types 2-24, 2-30 to 2-31
foreign dNode 2-25
OCERecipient structure 2-27 to 2-28, 2-106 to 2-107
personal MSAMs and 4-4
reading 2-51 to 2-57, 2-144 to 2-148
sample external address 2-32
sample PowerTalk address 2-32
translating from AOCE to external format 2-83 to

2-88
translating from external to AOCE format 2-88 to

2-91
user input 4-30 to 4-62
writing 2-73 to 2-76, 2-179 to 2-180

address templates
appearance of information page, standards for 4-80
defined 4-3
introduced 2-32
sample 4-31 to 4-62
aspect and information page templates 4-31 to 4-41
code resource 4-41 to 4-62
code resource data input routines 4-47 to 4-51
code resource data output routines 4-51 to 4-57
code resource main routines 4-41 to 4-47
code resource miscellaneous routines 4-57 to 4-62

Admin event. See kMailEPPCAdmin high-level event
'alan' extension type 2-31
AOCE catalogs. See also Setup catalog

browsing, supporting 3-24
features supported by
human interface effects of 3-22 to 3-26
identifying to Catalog Manager 3-16 to 3-22
large catalogs, supporting 3-24 to 3-26
searching, supporting 3-24 to 3-25

aoce Fake attribute 4-27
AOCE high-level events 2-220 to 2-237
EventRecord data type 2-33
introduced 2-8
list of 2-33
MailEPPCMsg structure 2-34, 2-113 to 2-114
overview of 2-32 to 2-34
SMCA structure 2-34, 2-114 to 2-115

aoce Joined attribute 4-29
AOCE messaging systems 2-6
aoce Unconfigured attribute 4-10, 4-22, 4-27, 4-29 to

4-30
AOCE version attribute

in Mail Service record 4-67
in MSAM record 4-65

'aphn' extension type 2-31
AppleMail format. See standard interchange format
Apple menu

Find in Catalog command 3-22
AppleTalk Transition Queue 2-36, 2-42 to 2-43
application-defined routines
MyCompletionRoutine 2-219 to 2-220
MyDSAMDirParseProc function 3-38 to 3-39
MyDSAMDirProc function 3-37 to 3-38

aspect kind resource 4-76
aspect name resource 4-75
aspect signature resource 4-74
associated catalog attribute 2-38 to 2-39, 4-67, 4-71
associated mail service attribute 4-68, 4-71
ATTransSFShutdown transition event code 2-42
ATTransSFStart transition event code 2-42
attribute creation ID

CSAM support of 3-23
attributes (AOCE record)

adding to a record 4-12 to 4-21
aoce Fake 4-27
aoce Joined 4-29
aoce Unconfigured 4-10, 4-22, 4-27, 4-29 to 4-30
AOCE version

in Mail Service record 4-67
in MSAM record 4-65

associated catalog 2-38 to 2-39, 4-67, 4-71
associated mail service 4-68, 4-71
capability flags 2-39, 2-40, 4-11, 4-69, 4-72
catalog 4-66
comment 2-39, 2-40, 4-10, 4-69, 4-72
CSAM alias 4-66
discriminator 2-39, 2-40, 4-11, 4-69, 4-72
gateway file ID 4-65
Key Chain version

in Catalog record 4-68
in Combined record 4-70

location 2-38
mail service 2-38, 4-21, 4-65
native name 4-11, 4-28, 4-69, 4-72
parent CSAM 4-11, 4-68, 4-71
parent MSAM 4-21, 4-67, 4-71

I N D E X

IN-2

attributes (AOCE record) (continued)
private data 4-11, 4-70, 4-72
real name 2-39, 2-40, 4-10, 4-69, 4-72
slot ID 2-38, 2-39, 4-22, 4-67, 4-71
standard slot information 2-38 to 2-39, 4-22, 4-67,

4-71
user lookups, supporting 3-26
user’s key 4-69, 4-72
user’s record ID 4-69, 4-72

attributes. See attributes (AOCE record); letter
attributes

AuthAddToLocalIdentityQueue function 2-37
AuthBindSpecificIdentity function 2-42
AuthGetLocalIdentity function 2-37, 3-27

B

block creators 2-16 to 2-17, 2-51, 2-64
block types 2-16 to 2-17, 2-51, 2-64
browsing a catalog, CSAM support of 3-24 to 3-25

C

callback routines
called from CSAM parse function 3-14 to 3-16

capability flags attribute 2-39, 2-40, 4-11, 4-69, 4-72
capability flags. See CSAMs, features supported by
catalog attribute 4-66
Catalog-Browsing panel in the mailer 3-22, 3-24 to 3-26
catalog creation information resource 4-77
catalog discriminator attribute 4-69, 4-72
Catalog record 4-67 to 4-70

associated mail service attribute 4-68
capability flags attribute 4-69
comment attribute 4-69
discriminator attribute 4-69
functions for adding and removing 3-33 to 3-35, 3-37
initializing a personal MSAM and 2-38 to 2-39
native name attribute 4-69
parent CSAM attribute 4-68
private data attribute 4-70
real name attribute 4-69
user’s key attribute 4-69
user’s record ID attribute 4-69
version attribute 4-68

catalogs. See AOCE catalogs; Setup catalog
catalog service. See also CSAMs

adding a catalog service only 4-28 to 4-30
adding as part of combined service 4-10 to 4-11
functions for adding and removing Catalog

records 3-33 to 3-35, 3-37
setting up when adding a mail service only 4-27 to

4-28

catalog service access modules. See CSAMs
catalog service function 3-6, 3-10 to 3-13
catalog service requests

asynchronous requests 3-11 to 3-12
determining the type of 3-11
synchronous requests 3-11
types not passed to CSAM 3-10

Catalogs Extension (CE) 3-22 to 3-26
CE. See Catalogs Extension
code resource

for SAM setup templates 4-79
Collaboration toolbox, testing for availability 2-36
Combined record 4-70 to 4-72

associated catalog attribute 4-71
associated mail service attribute 4-71
capability flags attribute 4-72
comment attribute 4-72
discriminator attribute 4-72
initializing a personal MSAM and 2-38
native name attribute 4-72
parent CSAM attribute 4-71
parent MSAM attribute 4-71
private data attribute 4-72
real name attribute 4-72
slot ID attribute 4-71
standard slot information attribute 4-71
user’s key attribute 4-72
user’s record ID attribute 4-72
version attribute 4-70

combined service 4-6 to 4-22. See also CSAMs; MSAMs
adding the catalog service 4-10 to 4-11
adding the mail service 4-12 to 4-22

comment attribute 2-39, 2-40, 4-10, 4-69, 4-72
completion routines

handling for asynchronous Catalog Manager
function calls 3-12, 3-27 to 3-28

content blocks
defined 2-18 to 2-19
reading 2-57 to 2-59, 2-150 to 2-155
types of data in 2-18 to 2-19
writing 2-76 to 2-79, 2-186 to 2-189

content enclosures 2-19. See also enclosures
Continue event. See kMailEPPCContinue high-

level event
Create Slot event. See kMailEPPCCreateSlot high-

level event
creation ID. See attribute creation ID; record creation

IDs
CSAM alias attribute 4-66
'csam' file type 2-9, 3-5, 4-4
CSAM-provided functions

catalog service function 3-6, 3-10 to 3-13
driver Close subroutine 3-6 to 3-8
driver Control subroutine 3-6
driver Open subroutine 3-6 to 3-8
driver Prime subroutine 3-6

I N D E X

IN-3

driver Status subroutine 3-6
parse function 3-6, 3-10 to 3-11, 3-13 to 3-16

CSAM record 4-65 to 4-66
catalog attribute 4-66
creating 4-11
CSAM alias attribute 4-66

CSAMs (catalog service access modules) 3-3 to 3-52.
See also catalog service

access controls, support of 3-26 to 3-27
address templates. See address templates
application completion routine, calling 3-12, 3-27 to

3-28
application-defined functions for 3-37 to 3-39
attribute lookup, supporting 3-26
basic services provided by 3-3 to 3-5
Catalog Manager functions, supporting 3-10
catalog service function 3-6, 3-10 to 3-13
device driver, implemented as 3-6, 3-7 to 3-9
features supported by

human interface effects of 3-22 to 3-26
identifying to Catalog Manager 3-16 to 3-22

file types 4-4
functions for

adding CSAM and Catalog records 3-31 to 3-35
handling catalog service and parse requests 3-37

to 3-39
initializing 3-29 to 3-31
removing CSAM and Catalog records 3-35 to 3-37

initializing 3-8
installing 3-9, 3-32
introduced 1-6
overview of 3-3 to 3-5
parse function 3-6, 3-10 to 3-11, 3-13 to 3-16
relationship to Catalog Manager 3-4, 3-6
relationship to Device Manager 3-6
removing a CSAM 3-35 to 3-37
resources for 3-40 to 3-41
setup templates. See setup templates

D

data attribute 4-11, 4-70, 4-72
Delete Outgoing Queue Message event. See

kMailEPPCDeleteOutQMsg high-level event
Delete Slot event. See kMailEPPCDeleteSlot

high-level event
delete slot or catalog resource 4-77
delivery indications 2-23. See also reports (AOCE)
'deta' resource type 4-73
'detc' resource type 4-73
'detn' resource type 4-73
DirAddADAPDirectory function 3-10
DirAddDSAMDirectory function 3-22, 3-33 to 3-35

DirAddDSAM function 3-9, 3-31 to 3-33
DirClosePersonalDirectory function 3-10
DirCreatePersonalDirectory function 3-10
DirEnumerateDirectoriesGet function 3-10
DirEnumerateDirectoriesParse function 3-10
DirFindADAPDirectoryByNetSearch function 3-10
DirGestalt data type 3-16 to 3-20
DirGetDirectoryInfo function 3-10, 3-22
DirGetExtendedDirectoriesInfo function 3-10
DirGetOCESetupRefNum function 3-10
DirGetOCESetupRefnum function 2-37
DirInstantiateDSAM function 3-8, 3-11, 3-29 to 3-31
DirLookupGet function 2-37, 2-38, 2-39
DirLookupParse function 2-37, 2-38, 2-39
DirMakePersonalDirectoryRLI function 3-10
DirNetSearchADAPDirectoriesGet function 3-10
DirNetSearchADAPDirectoriesParse function 3-10
DirOpenPersonalDirectory function 3-10
DirParamBlock data type 3-29
DirRemoveDirectory function 3-37
DirRemoveDSAM function 3-35 to 3-36
discriminator attribute 2-39, 2-40, 4-11, 4-69, 4-72
driver Close subroutine 3-6, 3-8
driver Control subroutine 3-6, 3-8, 3-9
driver Open subroutine 3-6, 3-8
driver Prime subroutine 3-6, 3-8, 3-9
driver resource type 3-7 to 3-9, 3-40 to 3-41
driver Status subroutine 3-6, 3-8, 3-9
'DRVR' resource type 3-7 to 3-9, 3-40 to 3-41
dsam abbreviation 4-4
'dsam' file type 3-5, 4-4
duplicate records, CSAM support of 3-23

E

enclosures
data type for 2-111 to 2-112
defined 2-19
reading 2-155 to 2-157
writing 2-190 to 2-193

'entn' extension type 2-31
errors, personal MSAM operational 2-91 to 2-93, 2-128

to 2-129, 2-204 to 2-205
EventRecord data type, as used by MSAM 2-33
extension types. See also addresses
'alan' 2-31
'aphn' 2-31
defined 2-24
'entn' 2-31

external catalogs 3-3
external messaging systems 2-7

I N D E X

IN-4

F

fake catalog attribute 4-27
file IDs

comparing for MSAM files 4-12 to 4-21
file types
'csam' 2-9, 4-4
'dsam' 4-4
'msam' 2-9, 4-4
for SAMs 4-4

Find in Catalog command (Apple menu) 3-22, 3-24
Find panel in the mailer 3-22, 3-24
foreign dNode 2-25
Forwarder record, for server MSAM 2-40 to 2-41, 2-135

to 2-136

G

gateway file ID attribute 4-65
gateways. See MSAMs
Gestalt function

Catalog Manager, determining version 3-16
Collaboration toolbox, testing for availability 2-36
PowerShare Mail Server, testing for availability 2-42

H

help-balloon string resource 4-79
high-level events. See AOCE high-level events
human interface guidelines. See user interface

guidelines

I, J

icon suite resource
for SAM setup templates 4-78

image block information structure 2-113
image blocks

data type for 2-113
defined 2-19
reading 2-161
writing 2-195 to 2-196

incoming messages 2-62 to 2-80. See also messages
creating 2-70 to 2-71, 2-176 to 2-178
MSAM functions that act on 2-63
overview of processing 2-62 to 2-64
submitting 2-79 to 2-80, 2-200 to 2-201
writing 2-72 to 2-79, 2-178 to 2-199

incoming queues
defined 2-10
enumerating messages in 2-138 to 2-140

personal MSAM manipulation of 2-14, 2-228 to 2-231
Incoming Queue Update event. See

kMailEPPCInQUpdate high-level event
IPM Manager

determining version 2-36

K

kDETAspectCode resource ID offset 4-79
kDETAspectKind resource ID offset 4-76
kDETAspectMainBitmap resource ID offset 4-78
kDETAspectName resource ID offset 4-75
kDETAspectWhatIs resource ID offset 4-79
kDETcmdInit routine selector 4-30
kDETRecordType resource ID offset 4-74
kDETTemplateName resource ID offset 4-74
Key Chain

and adding a catalog only 4-29
and adding a Combined service 4-9 to 4-10
and adding a mail service only 4-26 to 4-27
Kind field 4-76
Name field 4-76
Service field 4-75

Key Chain version attribute
in Catalog record 4-68
in Combined record 4-70

kMailEPPCAdmin high-level event 2-33, 2-235 to 2-237
kMailEPPCContinue high-level event 2-33, 2-227
kMailEPPCCreateSlot high-level event 2-33, 2-34,

2-38, 2-221 to 2-222
kMailEPPCDeleteOutQMsg high-level event 2-33,

2-231
kMailEPPCDeleteSlot high-level event 2-33, 2-34,

2-224 to 2-225
kMailEPPCInQUpdate high-level event 2-33, 2-228 to

2-229
kMailEPPCLocationChanged high-level event 2-33,

2-35, 2-232 to 2-233
kMailEPPCMailboxClosed high-level event 2-33,

2-226
kMailEPPCMailboxOpened high-level event 2-33,

2-225
kMailEPPCModifySlot high-level event 2-33, 2-34,

2-222 to 2-224
kMailEPPCMsgOpened high-level event 2-33, 2-34,

2-229 to 2-231
kMailEPPCMsgPending high-level event 2-33, 2-45,

2-235
kMailEPPCSchedule high-level event 2-33, 2-45, 2-227

to 2-228
kMailEPPCSendImmediate high-level event 2-33,

2-34, 2-234 to 2-235
kMailEPPCShutDown high-level event 2-33, 2-226

I N D E X

IN-5

kMailEPPCWakeup high-level event 2-33, 2-217 to
2-218, 2-232

kSAMAspectCannotDelete resource ID offset 4-77
kSAMAspectKind resource ID offset 4-76
kSAMAspectSlotCreationInfo resource ID

offset 4-77
kSAMAspectUserName resource ID offset 4-76

L

large-catalog mode 3-24 to 3-25
letter-approximation scrolling 3-25 to 3-26
letter attributes

data types for 2-99 to 2-106
defined 2-17
reading from outgoing letter 2-47 to 2-50, 2-142 to

2-144
setting bits in MailIndications structure 2-106
summary table of 2-102
writing to incoming letter 2-72 to 2-73, 2-179 to 2-180

letter content blocks. See content blocks
letter flags 2-122 to 2-124
letter header blocks 2-17
letters. See also content blocks; enclosures; image

blocks; messages; message summaries
alternate representations of content 2-18 to 2-19
creating 2-70 to 2-71, 2-176 to 2-178
defined 2-17
nested letters 2-20 to 2-22
reading 2-47 to 2-60
structure of 2-21 to 2-22
types of blocks in 2-17 to 2-18
writing 2-72 to 2-79

local identity
CSAM access controls and 3-26 to 3-27
personal MSAM initialization and 2-37

location attribute 2-38
Location Changed event. See

kMailEPPCLocationChanged high-level
event

location of computer
data types for 2-115 to 2-116
determining 2-38
effect on personal MSAM 2-35
notifying personal MSAM of change 2-232 to 2-233

logging personal MSAM operational errors 2-91 to
2-93, 2-204 to 2-205, 2-227

M

MailAttributeBitmap structure 2-47, 2-48, 2-100 to
2-102

MailAttributeID data type 2-100
MailAttributeMask data type 2-239
MailBlockInfo structure 2-159
Mailbox Closed event. See kMailEPPCMailboxClosed

high-level event
Mailbox Opened event. See

kMailEPPCMailboxOpened high-level event
MailBuffer structure 2-96
MailCoreData structure 2-125 to 2-126
MailCreateMailSlot function 2-36, 2-213 to 2-215
MailEnclosureInfo structure 2-111 to 2-112
MailEPPCMsg structure 2-34, 2-113 to 2-114
mailer Catalog Browser. See Catalog-Browsing panel in

the mailer
mailer Find Panel. See Find panel in the mailer
MailErrorLogEntryInfo structure 2-128 to 2-129
MailIndications structure 2-102 to 2-106
MailLetterFlags structure 2-123
MailLetterSystemFlags data type 2-122
MailLetterUserFlags data type 2-122 to 2-123
MailLocationFlags data type 2-115 to 2-116
MailLocationInfo structure 2-116
MailLogErrorCode data type 2-128
MailLogErrorType data type 2-128
MailMaskedLetterFlags structure 2-124
MailMasterData structure 2-124 to 2-125
MailModifyMailSlot function 2-36, 2-215 to 2-217
MailOriginalRecipient structure 2-108
MailParamBlockHeader parameter block header 2-94
MailRecipient structure. See OCERecipient structure
MailReply structure 2-97
MailResolvedRecipient structure 2-108 to 2-109
MailSegmentMask data type 2-110 to 2-111
MailSegmentType data type 2-109 to 2-110
mail service. See also MSAMs

adding a mail service only 4-22 to 4-28
setting up the associated catalog service 4-27 to

4-28
adding as part of combined service 4-12 to 4-22
modifying 4-30

mail service attribute 2-38, 4-21, 4-65
Mail Service record 4-66 to 4-67

AOCE version attribute 4-67
associated catalog attribute 4-67
initializing a personal MSAM and 2-38
parent MSAM attribute 4-67
slot ID attribute 4-67
standard slot information attribute 4-67

mail slots. See also messaging slots; slots, mail and
messaging

creating a new 4-22
defined 2-9

I N D E X

IN-6

personal MSAM queues and 2-10
MailStandardSlotInfoAttribute structure 2-121
MailTimer data type 2-119
MailTimerKind data type 2-119
MailTimers structure 2-120 to 2-121
MailTime structure 2-99
MailWakeupPMSAM function 2-217 to 2-218
main enclosures. See content enclosures
message blocks

enumerating 2-157 to 2-159
overview 2-16 to 2-17
reading 2-159 to 2-162
writing 2-193 to 2-196

message creators 2-16 to 2-17, 2-51, 2-64
message families

defined 2-17
determining 2-47
relationship to letters 2-22

message headers
defined 2-16
reading 2-148 to 2-150
writing 2-183 to 2-185

Message Opened event. See kMailEPPCMsgOpened
high-level event

Message Pending event. See kMailEPPCMsgPending
high-level event

messages. See also incoming messages; letters; outgoing
messages

defined 2-16
deleting 2-81 to 2-82, 2-202 to 2-203, 2-231
enumerating in queues 2-44 to 2-46, 2-97 to 2-99,

2-138 to 2-140
types of 2-16 to 2-23

message summaries
creating 2-64 to 2-70, 2-169 to 2-171
defined 2-14 to 2-15
modifying 2-173 to 2-175
reading 2-171 to 2-173
structures for 2-124 to 2-128

message types 2-16 to 2-17, 2-51, 2-64
messaging service access modules. See MSAMs
messaging slots. See also mail slots; slots, mail and

messaging
defined 2-9
personal MSAM queues and 2-10
messaging systems 2-6
Modify Slot event. See kMailEPPCModifySlot

high-level event
movies

including in messages 2-19, 2-110
MSAMBeginNested function 2-196 to 2-198
MSAMClose function 2-47, 2-167 to 2-168
MSAMCreate function 2-176 to 2-178
MSAMCreateReport function 2-206 to 2-207
MSAMDelete function 2-202 to 2-203
MSAMEndNested function 2-198 to 2-199

MSAMEnumerateBlocks function 2-47, 2-157 to 2-159
MSAMEnumerate function 2-44, 2-138 to 2-140
MSAMEnumerateInQReply structure 2-98 to 2-99
MSAMEnumerateOutQReply structure 2-47, 2-97 to 2-98
'msam' file type 2-9, 4-4
MSAMGetAttributes function 2-47, 2-142 to 2-144
MSAMGetBlock function 2-47, 2-159 to 2-162
MSAMGetContent function 2-47, 2-57 to 2-58, 2-150 to

2-155
MSAMGetEnclosure function 2-47, 2-155 to 2-157
MSAMGetMsgHeader function 2-50, 2-148 to 2-150
MSAMGetRecipients function 2-47, 2-51 to 2-52, 2-144

to 2-148
MSAMMarkRecipients function 2-166 to 2-167
MSAMMsgSummary structure 2-127 to 2-128
MSAMnMarkRecipients function 2-52, 2-163 to 2-165
MSAMOpen function 2-46, 2-140 to 2-141
MSAMOpenNested function 2-47, 2-162 to 2-163
MSAMParam parameter block 2-95 to 2-96
MSAMPutAttribute function 2-179 to 2-180
MSAMPutBlock function 2-193 to 2-196
MSAMPutContent function 2-76, 2-186 to 2-189
MSAMPutEnclosure function 2-190 to 2-193
MSAMPutMsgHeader function 2-183 to 2-185
MSAMPutRecipient function 2-180 to 2-183
MSAMPutRecipientReport function 2-207 to 2-210
MSAM record 4-64 to 4-65

AOCE version attribute 4-65
creating 4-12 to 4-21
gateway file ID attribute 4-65
initializing a personal MSAM and 2-37
mail service attribute 4-65

MSAMs (messaging service access modules) 2-5 to
2-295. See also personal MSAMs; server MSAMs

application-defined completion routine 2-219 to
2-220

basic services provided by 2-6
data types for 2-94 to 2-129
functions for 2-130 to 2-218

calling from assembly language 2-130
introduced 1-4 to 1-5
modes of operation 2-12 to 2-16
overview of 2-6 to 2-8
packaged with CSAM 3-5, 3-32
relationship to IPM Manager 2-7 to 2-8

MSAMSubmit function 2-200 to 2-201
multi-valued attributes, CSAM support of 3-23
MyCompletionRoutine function 2-219 to 2-220
MyDSAMDirParseProc function 3-14, 3-38 to 3-39
MyDSAMDirProc function 3-11, 3-37 to 3-38

N

native name attribute 4-11, 4-28, 4-69, 4-72
nested messages

I N D E X

IN-7

nested letters 2-20 to 2-21
opening 2-162 to 2-163
reading 2-59 to 2-60
writing 2-196 to 2-199

nesting levels 2-20 to 2-21
non-delivery indications 2-23. See also reports (AOCE)
non-letter messages

creating 2-71
defined 2-6

O

OCEPackedRecipient structure 2-107 to 2-108
OCERecipient structure 2-27 to 2-28, 2-106 to 2-107
OCESetupAddDirectoryInfo function 4-11
OCESetupChangeDirectoryInfo function 4-11
OCESetupGetDirectoryInfo function 2-39, 4-11
OCESetupLocation data type 2-115
online mode of MSAM operation 2-13 to 2-16
original recipients 2-51. See also recipients
outgoing messages 2-43 to 2-62. See also messages

closing 2-47, 2-167 to 2-168
determining the message family of 2-47
determining what is in a message 2-47
MSAM functions that process 2-44
opening 2-46, 2-140 to 2-141
overview of 2-43 to 2-44
reading 2-47 to 2-60, 2-142 to 2-163

outgoing queues
defined 2-10
differences for personal and server MSAM 2-16
enumerating messages in 2-44 to 2-46, 2-138 to 2-140

P

parent CSAM attribute 4-11, 4-68, 4-71
parent MSAM attribute 4-21, 4-67, 4-71
parse function 3-10 to 3-11, 3-13 to 3-16

calling a callback routine from 3-15 to 3-16
defined 3-6
virtual memory and 3-16

parse requests
callback routines and 3-14 to 3-16
defined 3-13
determining the type of 3-14

personal MSAMs. See also MSAMs
addresses and 4-4
caching a letter 2-15
compared with server MSAMs 2-11
defined 2-6
errors, logging 2-91 to 2-93, 2-204 to 2-205, 2-227

file types 4-4
initializing 2-37 to 2-40, 2-131 to 2-134
launched by IPM Manager 2-36 to 2-37
location of computer and 2-35, 2-38, 2-115 to 2-116,

2-232 to 2-233
online mode 2-13 to 2-16
overview of 2-9 to 2-11
quasi-batch mode 2-14 to 2-16
replaced by user 4-30
setting message status 2-211 to 2-213, 2-230
slots and 2-9
standard mode 2-12 to 2-14, 2-16

pictures
including in messages 2-19, 2-110

PMSAMCreateMsgSummary function 2-169 to 2-171
PMSAMGetMSAMRecord function 2-37, 2-131 to 2-132
PMSAMGetMsgSummary function 2-171 to 2-173
PMSAMLogError function 2-204 to 2-205
PMSAMOpenQueues function 2-39, 2-133 to 2-134
PMSAMPutMsgSummary function 2-173 to 2-175
PMSAMSetStatus function 2-211 to 2-213
PowerShare mail server

testing for availability 2-42
PowerTalk Setup catalog. See Setup catalog
PowerTalk system software xi
private data attribute 4-11, 4-70, 4-72
pseudo-persistent attribute creation ID 3-23

Q

quasi-batch mode of MSAM operation 2-14 to 2-16
queues. See incoming queues; outgoing queues
QuickTime movies

including in messages 2-19, 2-110

R

ratio-approximation scrolling 3-25 to 3-26
real name attribute 2-39, 2-40, 4-10, 4-69, 4-72
recipients. See also addresses
bcc recipient, guidelines for 2-52
data types for defining 2-106 to 2-109
marking 2-52, 2-60, 2-163 to 2-167
original recipients 2-51 to 2-52
reading 2-51 to 2-57, 2-144 to 2-148

recipients (continued)
resolved recipients 2-52 to 2-53
types of 2-51
writing 2-73 to 2-76, 2-180 to 2-183

record creation IDs
CSAM support of 3-23

I N D E X

IN-8

determining 4-12 to 4-21
record references

defined 4-63
putting into Setup catalog 4-21

records (AOCE)
allowing duplicates 3-23
Catalog 4-67 to 4-70
Combined 4-70 to 4-72
CSAM 4-11, 4-65 to 4-66
Mail Service 4-66 to 4-67
MSAM 4-12 to 4-21, 4-64 to 4-65
Setup 4-64

record-type resource 4-74
regular enclosures 2-19. See also enclosures
reports (AOCE)

creating 2-61 to 2-62, 2-206 to 2-210
introduced 2-23
reading 2-80 to 2-81
structure of 2-81

request codes, Catalog Manager, list of 3-43 to 3-44
resLocked resource attribute, for CSAM 3-7
resolved recipients 2-51. See also recipients
resource ID offsets

setup templates
kDETAspectCode 4-79
kDETAspectKind 4-76
kDETAspectMainBitmap 4-78
kDETAspectName 4-75
kDETAspectWhatIs 4-79
kDETRecordType 4-74
kDETTemplateName 4-74
kSAMAspectCannotDelete 4-77
kSAMAspectKind 4-76
kSAMAspectSlotCreationInfo 4-77
kSAMAspectUserName 4-76

resources
CSAM driver 3-7 to 3-9, 3-40 to 3-41
setup templates 4-73 to 4-80

aspect kind (kDETAspectKind) 4-76
aspect name (kDETAspectName) 4-75
aspect signature 4-74
code (kDETAspectCode) 4-79
delete slot or catalog

(kSAMAspectCannotDelete) 4-77
help-balloon string (kDETAspectWhatIs) 4-79
icon suite (kDETAspectMainBitmap) 4-78
list of 4-73
record-type (kDETRecordType) 4-74
SAM kind (kSAMAspectKind) 4-76
SAM user name (kSAMAspectUserName) 4-76
slot creation information

(kSAMAspectSlotCreationInfo) 4-77
template name (kDETTemplateName) 4-74

string, for CSAM’s driver name 3-9
resource types
'deta' 4-73

'detc' 4-73
'detn' 4-73
'DRVR' 3-7, 3-40 to 3-41
'rstr' 4-73
'sami' 4-73
'STR ' 3-9

resSysHeap resource attribute, for CSAM 3-7
result codes, returned by a CSAM 3-12
'rstr' resource type 4-73

S

'sami' resource type 4-73, 4-77 to 4-78
SAM kind resource 4-76
sample routines
DoAddAttribute 4-18
DoAddRecordReference 4-21
DoAddTheRecipients 2-75
DoAOCEToSMTPAddress 2-87
DoBuildSMTPAddressInfo 2-84
DoConvertToAOCEAddress 2-90
DoCreateMSAMRecord 4-17
DoCreateNewAttribute 4-44
DoEnumCB 4-15
DoEnumerateOutgoingMessages 2-45
DoEnumerateParse 3-15
DoExitInstance 4-43
DoExtractDisplayName 4-50
DoExtractInformation 4-48
DoFindMSAMRecordWithFileID 4-16
DoGetBooleanProperty 4-61
DoGetIDFromFSSpec 4-12
DoGetMSAMCreationID 4-19
DoGetNumProperty 4-61
DoGetRStringProperty 4-60
DoGetRStringPtrProperty 4-61
DoGetSetupDirectoryRefNum 4-13
DoGetXtnType 4-48
DoHandleError 4-58
DoIncomingLetter 2-67
DoInitInstance 4-43
DoInitTemplate 4-42
DoIsInited 4-57
DoLookupCB 4-13
DoMyDSAMDirProc 3-13
DoPackNameAndZone 4-54
DoPatternIn 4-44

sample routines (continued)
DoPatternOut 4-47
DoPrepareToSave 4-43
DoPropertyDirty 4-46
DoReadAddress 2-53
DoReadData 4-49

I N D E X

IN-9

DoReadGenericAddress 2-55
DoReadLetterAttributes 2-48
DoReadLetterContent 2-58
DoRecordHasFileID 4-14
DoRStringHandleToPtr 4-62
DoSetAllStringProperties 4-49
DoSetBooleanProperty 4-59
DoSetDisplayName 4-51
DoSetInited 4-57
DoSetNumProperty 4-59
DoSetPropertyChanged 4-60
DoSetRStringProperty 4-58
DoStringPtrIsOK 4-54
DoSurfAddress 4-41
DoUpdateAddress 4-56
DoUpdateNameAndZone 4-55
DoWriteData 4-52
DoWriteLetterContent 2-78
DoWriteNameAndZone 4-53

SAMs (service access modules) 1-3 to 1-7. See also
CSAMs; MSAMs

SAM user name resource 4-76
Schedule event. See kMailEPPCSchedule high-level

event
scroll bars

managing in catalog windows 3-25 to 3-26
Send Immediate event. See kMailEPPCSendImmediate

high-level event
server MSAMs. See also MSAMs

administrative events 2-116 to 2-119, 2-235 to 2-237
and AppleTalk Transition Queue 2-42 to 2-43
compared with personal MSAMs 2-11
defined 2-6
Forwarder record 2-40 to 2-41
initializing 2-40 to 2-43, 2-135 to 2-137
overview of 2-11
shutting down 2-210 to 2-211
standard mode 2-12 to 2-14, 2-16

service access modules. See SAMs
Setup catalog 4-63 to 4-72

adding a Catalog record 3-33
adding a CSAM record 3-31
adding a record reference 4-21
Catalog record 4-67 to 4-70
Combined record 4-70 to 4-72
CSAM record 4-65 to 4-66
defined 4-4
initializing a personal MSAM and 2-37 to 2-39
Mail Service record 4-66 to 4-67
MSAM record 4-64 to 4-65
reading information from 2-37 to 2-39
record types 4-64
removing a Catalog record 3-37
removing a CSAM record 3-35
Setup record 4-64

setup process. See also CSAMs, initializing; personal
MSAMs, initializing; server MSAMs, initializing

for SAMs 4-3 to 4-57
Setup record 4-64

initializing a personal MSAM and 2-38
setup templates. See also Setup catalog

adding a Catalog record to Setup catalog 3-33
adding a catalog service 4-28 to 4-30
adding a combined service 4-6 to 4-22

adding the catalog service 4-10 to 4-11
adding the mail service 4-12 to 4-22

adding a CSAM record to Setup catalog 3-31
adding a mail service 4-22 to 4-28

setting up the associated catalog service 4-27 to
4-28

as part of CSAM file 3-5
creating a slot 2-213 to 2-215, 2-221 to 2-222
defined 4-3
initialization routine 4-30
modifying a slot 2-215 to 2-217, 2-222 to 2-224
for personal MSAM 2-9, 2-37
removing a Catalog record from Setup catalog 3-37
removing a CSAM record from Setup catalog 3-35
resources 4-73 to 4-80

aspect kind (kDETAspectKind) 4-76
aspect name (kDETAspectName) 4-75
aspect signature 4-74
code (kDETAspectCode) 4-79
delete slot or catalog

(kSAMAspectCannotDelete) 4-77
help-balloon string (kDETAspectWhatIs) 4-79
icon suite (kDETAspectMainBitmap) 4-78
list of 4-73
record-type (kDETRecordType) 4-74
SAM kind (kSAMAspectKind) 4-76
SAM user name (kSAMAspectUserName) 4-76
slot creation information

(kSAMAspectSlotCreationInfo) 4-77
template name (kDETTemplateName) 4-74

sample
combined service 4-6 to 4-9
mail service 4-23 to 4-26

waking a personal MSAM 2-217 to 2-218
Shutdown event. See kMailEPPCShutDown high-level

event
slot creation information resource 4-77
slot ID attribute 2-38 to 2-39, 4-22, 4-67, 4-71
Slot record. See Mail Service record
slots, mail and messaging

creating 2-213 to 2-215, 2-221 to 2-222, 4-22
defined 2-9
deleting 2-224 to 2-225
information in Setup catalog 2-9 to 2-10
modifying 2-215 to 2-217, 2-222 to 2-224

I N D E X

IN-10

reading slot information from Mail Service
records 2-38 to 2-39

relationship to personal MSAM queues 2-10
SMCA structure 2-34, 2-114 to 2-115
SMSAMAdminCode data type 2-116
SMSAMAdminEPPCRequest structure 2-117
SMSAMSetupChange structure 2-117 to 2-118
SMSAMSetup function 2-40 to 2-42, 2-135 to 2-136
SMSAMShutdown function 2-210 to 2-211
SMSAMSlotChanges data type 2-118 to 2-119
SMSAMStartup function 2-40, 2-42 to 2-43, 2-136 to

2-137
Snapshot format. See image blocks
sounds, including in messages 2-19, 2-110
standard content. See standard interchange format
standard interchange format 2-19. See also content

blocks
standard mode of MSAM operation 2-12 to 2-14, 2-16
standard slot information attribute 2-38 to 2-39, 4-22,

4-67, 4-71
store-and-forward gateways 2-12. See also MSAMs
'STR ' resource type

CSAM driver name 3-9
system location. See location of computer

T

template name resource 4-74
three-position-thumb scrolling 3-25 to 3-26
timers for sending and receiving mail 2-119 to 2-121
TPfPgDir structure 2-113

U

user interface guidelines
related to CSAMs 3-22 to 3-26

user’s key attribute 4-69, 4-72
user’s record ID attribute 4-69, 4-72

V

version attribute
in Catalog record 4-68
in Combined record 4-70
in Mail Service record 4-67
in MSAM record 4-65

W, X, Y, Z

WaitNextEvent function
and enumerating messages 2-46

Wakeup event. See kMailEPPCWakeup high-level event
WakeUpProcess function

and enumerating messages 2-46

T H E A P P L E P U B L I S H I N G S Y S T E M

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh
computers and FrameMaker software.
Proof pages were created on an Apple
LaserWriter Pro printer. Final page
negatives were output directly from
text files on an Optrotech SPrint 220
imagesetter. Line art was created
using Adobe™ Illustrator and
Adobe Photoshop. PostScript™, the
page-description language for the
LaserWriter, was developed by Adobe
Systems Incorporated.

Text type is Palatino® and display type is
Helvetica®. Bullets are ITC Zapf
Dingbats®. Some elements, such as
program listings, are set in Apple Courier.

LEAD WRITER

Paul Black

WRITERS

Dee Eduardo, Paul Black

DEVELOPMENTAL EDITORS

Antonio Padial, Sue Factor

ILLUSTRATORS

Deb Dennis, Peggy Kunz

COVER DESIGNER

Barbara Smyth

PRODUCTION EDITORS

Josephine Manuele, Lorraine Findlay

PROJECT MANAGER

Patricia Eastman

Special thanks to John Evans,
Steve Falkenburg, Steve Fisher,
Charlie Kim, Wendy Krafft, Monica Pal,
Laurel Rezeau, S. G. Sangameswara

Acknowledgments to Andy Atkins,
Michael Bayer, Darryl Dalke, Godfrey
DiGiorgi, Bruce Gaya, Laurence Gathy,
Darren Giles, Karen Lam, Carol Lee,
Miki Lee, Barbara Martinez, Paula Metz,
Martin Minow, Dave O’Rourke,
Mike Radovancevich, Gursharan Sidhu,
Keith Stattenfield, Eric Trehus,
Atticus Tysen, R.C. Venkatraman, and
the entire AOCE team.

