INSIDE MACINTOSH

AQOCE Service Access Modules

[
rTw

Addison-Wesley Publishing Company

Reading, Massachusetts Menlo Park, California New York
Don Mills, Ontario Wokingham, England Amsterdam Bonn
Sydney Singapore Tokyo Madrid SanJuan

Paris Seoul Milan Mexico City Taipei

& Apple Computer, Inc.

© 1994 Apple Computer, Inc.
All rights reserved.

No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form or
by any means, mechanical, electronic,
photocopying, recording, or otherwise,
without prior written permission of
Apple Computer, Inc. Printed in the
United States of America.

No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application
developers to develop applications only
for Apple Macintosh computers.
Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
printing or clerical errors.

Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, AppleLink,
AppleTalk, APDA, LaserWriter,
Macintosh, MacTCP, MPW, and
PowerBook are trademarks of Apple
Computer, Inc., registered in the United
States and other countries.

AOCE, AppleMail, Balloon Help,
DigiSign, Finder, Monaco, PowerShare,
PowerTalk, QuickTime, and ResEdit are
trademarks of Apple Computer, Inc.
Adobe lllustrator, Adobe Photoshop,
and PostScript are trademarks of Adobe
Systems Incorporated, which may be
registered in certain jurisdictions.

America Online is a service mark of
Quantum Computer Services, Inc.

cc:Mail is a trademark of cc:Mail, Inc.
CompusServe is a registered service
mark of CompuServe, Inc.
FrameMaker is a registered trademark
of Frame Technology Corporation.
Helvetica and Palatino are registered
trademarks of Linotype Company.
Internet is a trademark of Digital
Equipment Corporation.

ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.

Optrotech is a trademark of Orbotech
Corporation.

QuickMail is a trademark of CE
Software, Inc.

Simultaneously published in the United
States and Canada.

LIMITED WARRANTY ON MEDIA AND
REPLACEMENT

ALL IMPLIED WARRANTIES ON THIS
MANUAL, INCLUDING IMPLIED
WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN DURATION
TO NINETY (90) DAYS FROM THE DATE
OF THE ORIGINAL RETAIL PURCHASE
OF THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO WARRANTY
OR REPRESENTATION, EITHER EXPRESS
OR IMPLIED, WITH RESPECT TO THIS
MANUAL, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT,
THIS MANUAL IS SOLD “AS IS,” AND
YOU, THE PURCHASER, ARE ASSUMING
THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the possibility
of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND IN
LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or liability
for incidental or consequential damages, so
the above limitation or exclusion may not
apply to you. This warranty gives you
specific legal rights, and you may also have
other rights which vary from state to state.

ISBN 0-201-40846-5
1234567 89-CRW-9897969594
First Printing, April 1994

Library of Congress Cataloging-in-Publication Data

Inside Macintosh : AOCE service acess modules.

p. cm.
Includes index.
ISBN 0-201-40846-5

1. Macintosh (Computer) 2. Systems software.

QAT76.8.M3142 1994
005.4'2—dc20

94-7195
CIP

Preface

Contents

Figures, Tables, and Listings iX

About This Book i

Chapter 1

Format of a Chapter xii
Conventions Used in This Book xiii
Special Fonts xiii
Types of Notes xiii
Parameter Block Information Xiv
Development Environment Xiv
For More Information XV

Introduction to Service Access Modules 11

Chapter 2

Overview 1-3

Messaging Service Access Modules 1-4
Catalog Service Access Modules 1-6
AOCE Setup and Address Templates 1-7

Messaging Service Access Modules 2-1

Introduction to Messaging Service Access Modules 2-6
Personal MSAMs 2-9
Server MSAMs 2-11
MSAM Modes of Operation 2-12
Types of Messages 2-16
Basic Messages 2-16
Letters 2-17
Reports 2-23
AOCE Addresses 2-23
AOCE High-Level Events 2-32
System Location 2-35
Using the MSAM API 2-35
Determining Whether the Collaboration Toolbox Is Available
Determining the Version of the IPM Manager 2-36
Launching a Personal MSAM 2-36
Initializing a Personal MSAM 2-37
Initializing a Server MSAM 2-40

2-36

Handling Outgoing Messages 2-43
Enumerating Messages in an Outgoing Queue 2-44
Opening and Closing a Message 2-46
Determining the Message Family 2-47
Determining What Is in a Message 2-47
Reading Letter Attributes 2-47
Interpreting Creator and Type for Messages and Blocks 2-50
Reading Addresses 2-51
Reading Letter Content 2-57
Reading a Nested Message 2-59
Marking Recipients 2-60
Generating a Report 2-61
Writing Incoming Messages 2-62
Choosing Creator and Type for Messages and Blocks 2-64
Creating a Letter’s Message Summary 2-64
Creating a Letter 2-70
Creating a Non-Letter Message 2-71
Writing Letter Attributes 2-72
Writing Addresses 2-73
Writing Letter Content 2-76
Submitting a Message 2-79
Receiving a Report 2-80
Deleting a Message 2-81
Translating Addresses 2-82
Translating From an AOCE Address 2-83
Translating to an AOCE Address 2-88
Logging Personal MSAM Operational Errors 2-91
Messaging Service Access Module Reference 2-93
Data Types and Constants 2-94
The MSAM Parameter Block 2-94
The Mail Buffer 2-96
The Mail Reply Structure 2-96
The Enumeration Structures 2-97
The Mail Time Structure 2-99
The Letter Attribute Structures 2-99
The Recipient Structures 2-106
The Segment Types 2-109
The Enclosure Information Structure 2-111
The Image Block Information Structure 2-112
The High-Level Event Structures 2-113
The Server MSAM Administrative Event Structures 2-116
The Personal MSAM Setup Structures 2-119
The Personal MSAM Letter Flag Structures 2-122
The Personal MSAM Message Summary Structures 2-124
The Personal MSAM Error Log Entry Structure 2-128

Chapter 3

MSAM Functions 2-130
Initializing an MSAM 2-131
Enumerating Messages in a Queue 2-138
Opening an Outgoing Message 2-140
Reading Header Information 2-142
Reading a Message 2-150
Marking a Recipient 2-163
Closing a Message 2-167
Creating, Reading, and Writing Message Summaries
Creating a Message 2-176
Writing Header Information 2-178
Writing a Message 2-185
Submitting a Message 2-200
Deleting a Message 2-202
Generating Log Entries and Reports 2-204
Shutting Down a Server MSAM 2-210
Setting Message Status 2-211
Personal MSAM Template Functions 2-213
Application-Defined Function 2-219
High-Level Events 2-220
Summary of the MSAM Interface 2-238
C Summary 2-238
Data Types and Constants 2-238
MSAM Functions 2-262
Application-Defined Function 2-264
Pascal Summary 2-264
Data Types and Constants 2-264
MSAM Functions 2-290
Application-Defined Routine 2-292
Assembly-Language Summary 2-293
Trap Macros 2-293
Result Codes 2-294

Catalog Service Access Modules 31

2-168

Introduction to Catalog Service Access Modules 3-3
Components of a CSAM 3-5
Writing a Driver Resource for a CSAM 3-7
Responding to the Catalog Manager 3-10

The Catalog Service Function 3-11

The Parse Function 3-13

Determining the Version of the Catalog Manager 3-16

Indicating the Features You Support 3-16

Chapter 4

Human Interface Considerations 3-22
Supporting Records Having the Same Name and Type
Supporting Multiple Attribute Values of the Same Type
Supporting Browsing and Finding 3-24
Supporting Large Catalogs 3-24
Supporting Attribute Lookups 3-26
Providing Access Controls 3-26
Handling Application Completion Routines 3-27
Catalog Service Access Module Reference 3-28
CSAM Functions 3-29
Initializing a CSAM 3-29
Adding a CSAM and Its Catalogs 3-31
Removing a CSAM and Its Catalogs 3-35
Application-Defined Functions 3-37
Resources 3-40
The Driver Resource 3-40
Summary of Catalog Service Access Modules 3-42
C Summary 3-42
Data Types and Constants 3-42
CSAM Functions 3-45
Application-Defined Functions 3-46
Pascal Summary 3-46
Data Types and Constants 3-46
CSAM Functions 3-51
Application-Defined Functions 3-51
Assembly-Language Summary 3-51
Trap Macros 3-51
Result Codes 3-52

Service Access Module Setup 41

3-23
3-23

Vi

Introduction to SAM Setup 4-3
About Personal MSAMs and Addresses 4-4
Adding Catalog and Mail Services 4-5
Adding a Combined Service 4-6
Adding the Catalog Service 4-10
Adding the Mail Service 4-12
Adding a Mail Service Only 4-22
Setting Up the Associated Catalog Service 4-27
Setting Up the Mail Service 4-28
Adding a Catalog Service Only 4-28
Modifying an Existing Service 4-30
Writing and Modifying Addresses 4-30
Writing an Address Template 4-31

Writing an Address Template Code Resource 4-41
Main Routines for the Address Template Code Resource 4-41
Data Input Subroutines for the Address Template 4-47
Data Output Subroutines for the Address Template 4-51
Miscellaneous Subroutines 4-57

SAM Setup Reference 4-63

The PowerTalk Setup Catalog 4-63
The Setup Record 4-64
The MSAM Record 4-64
The CSAM Record 4-65
The Mail Service Record 4-66
The Catalog Record 4-67
The Combined Record 4-70

The Setup Template Resources 4-73

The Address Template 4-80

Glossary cL-1

Index IN-1

Vii

Chapter 2

Figures, Tables, and Listings

Messaging Service Access Modules 2-1

Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-5
Figure 2-6
Figure 2-7
Figure 2-8
Figure 2-9
Figure 2-10
Figure 2-11
Figure 2-12
Figure 2-13

Table 2-1
Table 2-2
Table 2-3
Table 2-4
Table 2-5
Table 2-6
Table 2-7
Table 2-8
Table 2-9
Table 2-10

Listing 2-1
Listing 2-2
Listing 2-3
Listing 2-4
Listing 2-5
Listing 2-6
Listing 2-7
Listing 2-8
Listing 2-9
Listing 2-10
Listing 2-11
Listing 2-12
Listing 2-13
Listing 2-14
Listing 2-15
Listing 2-16

Adding an MSAM 2-7

An MSAM's relationship to AOCE software 2-8
Communication between the IPM Manager and an MSAM
Personal MSAM with its slots and queues 2-10
Store-and-forward gateway model 2-13

Online model 2-13

Nested letters 2-20

How the nesting level increments 2-21

Structure of a letter 2-22

AOCE system connected to external messaging systems
Adding a dNode for a messaging system 2-26
MSAMSs, messaging system names, and extension types
Exploded view of an OCEReci pi ent structure 2-28

Differences between personal MSAMs and server MSAMs
MSAM operating modes 2-16

Predefined letter block types 2-18

External address: Contents of an OCEReci pi ent structure
AOCE address: Contents of an OCEReci pi ent structure
AOCE extension types 2-31

Sample addresses 2-32

Selected Catalog record attributes 2-40

Outgoing tasks and functions 2-44

Incoming tasks and functions 2-63

Enumerating outgoing messages 2-45
Reading letter attributes 2-48

Getting resolved and original recipients 2-53
Reading addresses from an outgoing message 2-55
Reading a letter's content block 2-58

Creating a message summary 2-67

Creating a letter 2-70

Adding attributes to a letter header 2-72
Adding recipients to a letter 2-74

Adding a specific type of recipient 2-75
Writing letter content 2-78

Submitting a letter 2-80

Building SMTP addresses 2-84

Converting from AOCE to SMTP address 2-87
Building an OCEReci pi ent structure 2-90

2-24

2-27

2-11

2-29
2-30

Calling an MSAM function from assembly language 2-130

Chapter 3 Catalog Service Access Modules 3-1

Figure 3-1 Relationship of an application, the Catalog Manager,
and a CSAM 3-4
Figure 3-2 Calling relationships 3-6
Figure 3-3 Who calls the CSAM driver subroutines and the catalog service and
parse functions 3-7
Figure 3-4 Relationship of ' DRVR and' STR ' resources 3-10
Table 3-1 Determining the scrolling method for a catalog 3-26
Listing 3-1 A sample CSAM'’s driver resource header 3-8
Listing 3-2 A CSAM's driver name string resource 3-9
Listing 3-3 A catalog service function 3-13
Listing 3-4 Calling an application’s callback routine 3-15
Listing 3-5 Setting the feature flags for a catalog 3-21
Listing 3-6 Calling an application’s completion routine 3-28
Listing 3-7 'DRVR' resource definition 3-40
Chapter 4 Service Access Module Setup 4-1
Figure 4-1 Catalog-choice dialog box 4-26
Figure 4-2 Alternate forms of a single address information page 4-31
Table 4-1 Setup-catalog record types 4-64
Table 4-2 Attributes of an MSAM record 4-65
Table 4-3 Attributes of a CSAM record 4-66
Table 4-4 Attributes of a Mail Service record 4-67
Table 4-5 Attributes of a Catalog record 4-68
Table 4-6 Attributes of a Combined record 4-70
Table 4-7 Required resources for setup aspect templates 4-73
Listing 4-1 Combined catalog and mail service setup template 4-6
Listing 4-2 Matching an MSAM file ID 4-12
Listing 4-3 Inserting a record reference into a record 4-21
Listing 4-4 Mail service setup template 4-23
Listing 4-5 Address template 4-31
Listing 4-6 Main routines of the address template code resource 4-41
Listing 4-7 Input subroutines for the address template code resource 4-48
Listing 4-8 Output subroutines for the address template
code resource 4-52
Listing 4-9 Miscellaneous subroutines used by the address template

code resource 4-57

P REFACE

About This Book

This book, Inside Macintosh: AOCE Service Access Modules, describes the
mechanisms by which you can add catalog and messaging services to those
that are available through PowerTalk system software and PowerShare
collaboration servers. The technology underlying the PowerTalk and
PowerShare software is called the Apple Open Collaboration Environment
(AOCE). In this book, the term AOCE software refers to the Macintosh
Operating System managers, Finder extensions, and other system software
that the PowerTalk system software and PowerShare servers use to
implement their many features. You use this AOCE software to implement
your service access module. The term PowerTalk system software refers
specifically to the implementation of the AOCE technology for the Macintosh
Computer, and the term PowerShare collaboration servers refers to AOCE-based
servers provided by Apple Computer, Inc., that provide mail, messaging,
catalog, security, and time services.

You need to read this book if you want to extend the capabilities of the
PowerTalk system software to take advantage of services offered by external
catalogs (also known as directories or databases) and external messaging
systems. This book describes the architecture of catalog service access
modules (CSAMSs) and messaging service access modules (MSAMSs) and
explains how each type of service access module (SAM) interacts with AOCE
software. This book also describes the special AOCE templates that SAMs
require to obtain configuration and address information from the user. It
provides a technical reference to the system software routines that you use
to provide catalog and messaging services.

This book assumes that you are an experienced C and Macintosh programmer
and are familiar with the capabilities of AOCE software. Before reading this
book, you should read at least these chapters in Inside Macintosh: AOCE
Application Interfaces:

n “Introduction to the Apple Open Collaboration Environment” describes
some of the uses of PowerTalk and PowerShare system software and
introduces all of the AOCE managers. It discusses some concepts
fundamental to an understanding of the AOCE software and defines
many new terms.

n “AOCE Utilities” describes AOCE data structures and utility routines.

n “AOCE Templates” describes AOCE template resources. You need to under-
stand standard AOCE templates before you can write the setup template
that most SAMs require and the address template that all MSAMs require.

n “Catalog Manager” describes functions you implement in your CSAM to
service user requests for information about the catalogs that you support
and to manipulate the data in those catalogs.

Xi

P REFACE

In addition, portions of the chapters “Interprogram Messaging Manager” and
“Authentication Manager” in Inside Macintosh: AOCE Application Interfaces
provide information useful in developing a SAM. This book contains cross-
references to those chapters where appropriate.

In this book, the chapter “Introduction to Service Access Modules” provides
a brief overview of the different types of SAMs and their setup and address
templates.

The chapter “Catalog Service Access Modules” describes the architecture and
the components of a CSAM. This chapter does not stand alone. To implement
a CSAM, you need a sound understanding of Catalog Manager functions and
AOCE data types, described in the chapters “Catalog Manager* and “AOCE
Utilities” in Inside Macintosh: AOCE Application Interfaces.

The chapter “Messaging Service Access Modules” describes how you can
interface an external mail or messaging system with the PowerTalk system
software by writing an MSAM. It explains the structure of personal and
server MSAMs and the differences between them, and describes how you
can accomplish the most common tasks of an MSAM.

The chapter “Service Access Module Setup” describes the setup template,
required for CSAMs and personal MSAMs, and the address template,
required for all MSAMs. It also describes the records in the PowerTalk Setup
catalog that the templates manipulate.

For your convenience, this book and Inside Macintosh: AOCE Application
Interfaces include the same glossary of AOCE terminology. Thus, some
glosssary entries refer to topics that are not introduced in this book.

Format of a Chapter

Xil

The chapters in this book typically contain an overview of the features
provided by the subject of the chapter, sections that describe how to use the
most common routines along with code samples, a reference section, and a
summary section.

The content of the reference section differs somewhat from chapter to chapter.
For example, whereas the reference section of the chapter “Messaging Service
Access Modules” describes the data structures and functions used by the
MSAM API, the reference section of the chapter “Service Access Module
Setup” describes the records in the PowerTalk Setup catalog and the resources
that constitute the setup template. In each case, the reference section provides
a complete reference to the portion of AOCE system software described by
that chapter.

Function descriptions follow a standard format, which gives the function
declaration and a description of every parameter of the function. Some
function descriptions also give additional descriptive information, such

P REFACE

as special considerations and cross-references to other sections, chapters,
and books.

The summary section typically provides the API’s C interface, as well as the
Pascal interface, for the constants, data structures, functions, and result codes
associated with the API. It also includes some assembly-language interface
information.

Some chapters include additional main sections that provide more detailed
discussions of certain topics. For example, the chapter “Messaging Service
Access Modules” contains the section “AOCE Addresses,” which describes
the format of addresses used by PowerTalk software.

Conventions Used in This Book

Inside Macintosh uses various conventions to present information. Words that
require special treatment appear in specific fonts or font styles. Certain
information, such as parameter blocks, use special formats so that you can
scan them quickly.

Special Fonts

All code listings, reserved words, and the names of actual data structures,
constants, fields, parameters, and functions are shown in Courier (this is
Couri er).

Words that appear in boldface are key terms or concepts defined in the
glossary.

Types of Notes

Three types of notes are used in this book:

Note

A note like this contains general information that is supplemental to the
main text. (An example appears on page 3-5.) u

Special topic note

A note like this contains information about a specific topic that is
supplemental to the main text. (An example appears on page 2-6.) u

IMPORTANT

A note like this contains information that is essential for an
understanding of the main text and that might cause you problems if
ignored. (An example appears on page 2-67.) s

xiii

P REFACE

WARNING

Warnings like this indicate potentially severe problems that you should
be aware of as you design your application. Failure to heed these
warnings could result in system crashes or loss of data. (An example
appears on page 2-197.) s

Parameter Block Information

Inside Macintosh presents information about the fields of a parameter block in
this format:

Parameter block

« i nAndQut Bool ean Input/output parameter.
= out put 1 CSEr r Output parameter.
® i nput 1 | ong Input parameter.

The arrow in the far left column indicates whether the field is an input
parameter, output parameter, or both. You must supply values for all input
parameters and input/output parameters. The function returns values in
output parameters and input/output parameters.

The second column shows the field name as defined in the MPW C interface
files; the third column indicates the C data type of that field. The fourth
column provides a brief description of the use of the field. For a complete
description of each field, see the discussion that follows the parameter block
or the description of the parameter block in the reference section of the
chapter.

Development Environment

Xiv

The system software routines described in this book are available using C or
Pascal interfaces. You can call most of these routines in assembly language,
but no assembly-language interface files are provided. How you access these
routines depends on the development environment you are using. This book
shows system software functions in their C interface using the Macintosh
Programmer’s Workshop (MPW).

All code listings in this book are shown in C, or, for resources, in Rez input
format. They show methods of using various routines and illustrate
techniques for accomplishing particular tasks. Not all code listings have been
compiled or tested. These code listings are for illustrative purposes only;
Apple Computer, Inc., does not intend for you to use these code samples in
your application.

P REFACE

For More Information

APDA is Apple’s worldwide source of information about more than 300
development tools, technical resources, and training products. APDA is a
valuable resource for anyone interested in developing applications on Apple
platforms. Customers receive the quarterly APDA Tools Catalog featuring all
current versions of Apple development tools and the most popular
third-party development tools. Ordering is easy. There are no membership
fees, and application forms are not required for most products. APDA offers
convenient payment and shipping options, including site licensing.

To order products or to request a complimentary copy of the APDA Tools
Catalog, contact

APDA

Apple Computer, Inc.

P.O. Box 319

Buffalo, NY 14207-0319

Telephone 800-282-2732 (United States)
800-637-0029 (Canada)
716-871-6555 (International)

Fax 716-871-6511

AppleLink APDA

America Online APDAorder

CompuServe 76666,2405

Internet APDA@applelink.apple.com

If you provide commercial products and services, call 408-974-4897 for
information on the developer support programs available from Apple.

For information on registering application signatures, file types, Apple events,
and other technical information, contact

Macintosh Developer Technical Support
Apple Computer, Inc.

20525 Mariani Avenue, M/S 303-2T
Cupertino, CA 95014-6299

XV

CHAPTER 1

Introduction to Service
Access Modules

Contents

Overview 1-3

Messaging Service Access Modules 1-4
Catalog Service Access Modules 1-6
AOCE Setup and Address Templates 1-7

Contents

1-1

CHAPTER 1

Introduction to Service Access Modules

This book describes service access modules and their setup and address templates. A
service access module (SAM) extends a user’s PowerTalk system to provide access to
non-AOCE mail and messaging services and catalog services.

The AOCE software comes with a set of application programming interfaces (APIs) that
allow you to extend the features provided by PowerTalk, to build collaborative
applications, and to create service access modules that integrate external services into

a user’s PowerTalk environment. This book describes the APIs you can use to create
SAMs and tells you how to write and set up a SAM. The AOCE APIs used by application
programs are described in the book Inside Macintosh: AOCE Application Interfaces.

You should read this chapter if you are interested in developing a service access module
for PowerTalk system software. PowerTalk system software is the implementation of
the Apple Open Collaboration Environment (AOCE) technology by Apple Computer,
Inc. You will find detailed information about service access modules in the remaining
chapters of this book.

This chapter gives a brief overview of service access modules and describes how they fit
into a PowerTalk system. Then, it briefly describes mail and messaging service access
modules, catalog service access modules, and the AOCE setup and address templates
needed for the configuration of service access modules.

Overview

Service access modules and their setup and address templates provide

n a user interface for non-AOCE mail and messaging services that is consistent with
that provided by the PowerTalk system software and PowerShare servers

n a user interface for browsing, searching, and editing information contained in
non-AOCE databases and address directories that is consistent with that provided
by PowerTalk and PowerShare catalogs

n aconsistent programming interface for collaborative application developers,
facilitating the development of cross-platform collaborative applications

Through the mechanism of the service access module, the PowerTalk system software
architecture simplifies a Macintosh computer user’s interaction with existing mail and
messaging services and with catalog services. A service access module (SAM) is a
software component that provides the PowerTalk user with access to external mail and
messaging services or catalog services. External services are those that are not provided
automatically with PowerTalk system software and PowerShare servers. A SAM
provides its services to the user through the Catalogs and Mailbox Extensions to the
Finder and through AOCE templates. Therefore, the user interface is consistent across
different mail and messaging services and catalog services.

Consider the situation prior to the advent of AOCE technology. A Macintosh user with
accounts on a variety of electronic mail services, such as AppleLink, the Internet,
CompusServe, cc:Mail, and QuickMail, had to log on to each of these services to send and
receive mail. With PowerTalk software installed, by contrast, a user can employ a single

Overview 1-3

CHAPTER 1

Introduction to Service Access Modules

method to access all electronic mail services, sending and receiving all types of electronic
mail through a single mailbox on the desktop. You can provide a PowerTalk user with
access to an external mail or messaging system by writing a messaging service access
module (MSAM).

Typically, a user needs a repository of addresses and the ability to look up those
addresses to make use of a mail service. In a PowerTalk system, addresses are stored in
catalogs. Although one of the primary uses of a catalog is to store addresses, the content
of catalogs is not limited to address information. In fact, you can provide a catalog
service access module (CSAM) and associated AOCE templates to allow a PowerTalk
user to browse and read any sort of information stored in any sort of external database,
address directory, or catalog, regardless of the structure of the underlying information.

AOCE technology allows two types of MSAMs: server-based and personal. Whereas a
server-based MSAM requires a system administrator to set it up and maintain it, any
user can install a personal MSAM on his or her computer, becoming both the system
administrator and a user of the system (in much the same way that System 7 provided
personal file sharing). All CSAMs are personal, installed on an individual user’s
computer. Personal SAMs require minimal setup by the user and need no intervention
by a system administrator.

Messaging Service Access Modules

A messaging service access module (MSAM) provides a link or gateway to an external
mail or messaging service. A mail service transfers information between people. A
messaging service transfers information between processes. An MSAM may provide
either mail or messaging services, or both.

An MSAM’s basic tasks are to translate addresses and data from AOCE formats to
external formats and vice versa, and to transfer messages. Historically, most gateways
have been mail gateways, and most mail has consisted of plain text data. However, users
can now exchange mail that contains styled text, pictures, sounds, and movies as well.
Processes can also exchange data in a variety of formats.

MSAMs come in two basic types—server-based and personal. A server-based MSAM
acts much like a traditional store-and-forward mail gateway. It provides a transport-
level connection between a PowerShare mail server and one or more external mail or
messaging services. The external services may be of different types. For instance, it is
possible for a single server-based MSAM to provide a connection to AppleLink and to
the Internet. A server-based MSAM must be set up and maintained by a system
administrator and typically connects large systems.

A server-based MSAM does not work on behalf of individual users; it does not need
individual account or password information. It delivers messages to a system. It is not
responsible for delivering the message to the recipient. You implement a server-based
MSAM as a foreground application.

Messaging Service Access Modules

CHAPTER 1

Introduction to Service Access Modules

Personal MSAMs represent a major innovation in the use of gateways, unique to the
Macintosh computer. A personal MSAM is user-centered; it acts as the user’s agent. It
provides a user with a personal connection to an external mail or messaging service
through the Mailbox Extension to the Finder. A user simply drops the MSAM into the
System Folder and provides configuration information through the PowerTalk Key
Chain. A personal MSAM does not require the services of a network or system
administrator.

Usually, one thinks of a personal MSAM as connecting a user to a mail service, for
example, the AppleLink service. A personal MSAM can also provide access to private
devices connected to the user’s Macintosh computer. For instance, you can write a
personal MSAM to connect to a fax modem.

There are many implementation decisions you must make when writing a personal
MSAM. For instance, once the user has read a message, you must decide whether to
delete the message in the user’s account on the external mail service, or to keep a copy
of the message. The choice has certain implications for the user. Consider an MSAM
that automatically deletes mail once it has been read. Suppose a user opts to have mail
automatically downloaded at certain times (a feature all personal MSAMs should offer).
In this case, when the user is not at his or her Macintosh computer, he or she may not
have access to the mail (because, once the MSAM has downloaded the mail, no copy
exists on the external mail service). If, however, the MSAM keeps a copy of previously
read mail on the external mail system, then the user must periodically empty the
mailbox on the external mail system or the mail server’s disk will eventually become
full. Your MSAM can deal with such choices in any way you see fit, including offering
the user both options in a preferences dialog box.

Another example concerns whether or not to store incoming mail on the user’s Macintosh
computer. Personal MSAMSs create message summaries for incoming mail. A message
summary contains important information about the message, such as the sender, the
subject, the time it was sent, and so forth. As a result, the user can browse incoming mail
without the message itself being physically present on the user’s computer. An MSAM
can then download the message itself only when the user actually wants to open and
read the message. Downloading a message on demand is an advantage if disk space is

in short supply on the user’s Macintosh. On the other hand, it is a disadvantage if the
physical connection over which the message is transferred is slow.

You make these and other implementation decisions by considering the characteristics of
the mail system to which you provide access and the needs of your users. PowerTalk
system software does not dictate these decisions. You implement a personal MSAM as a
background application.

The current implementation of AOCE system software does not fully support the
transfer of process-to-process messages by a personal MSAM.

For detailed information about writing an MSAM, see the chapter “Messaging Service
Access Modules” in this book.

Messaging Service Access Modules 1-5

CHAPTER 1

Introduction to Service Access Modules

Catalog Service Access Modules

1-6

A catalog service access module (CSAM) provides a user with access to one or more
catalogs of information and with a consistent way of browsing and searching the
information. A CSAM implements the Catalog Manager API for an external catalog or
database and translates data between AOCE data formats and those of the external
catalogs that the CSAM supports.

AOCE catalog services grew out of the need to provide a way for users to browse and
search for the addresses of those they wanted to communicate with. Once an MSAM is
available to a user, it is useful only if the user knows one or more addresses reachable
through that MSAM. Typically, a user wants to look up addresses in an address
directory. For this reason, an MSAM is usually accompanied by a CSAM that gives the
user access to a catalog containing addresses available on a given messaging service.

AOCE catalogs can contain any type of information. You can write a CSAM that has no
association with an MSAM. The CSAM may provide access to a database containing, for
example, a native plant encyclopedia or a reference on human nutrients. A catalog can
contain any information that can be stored in AOCE records and attributes and that can
be displayed by AOCE templates.

Because not all external catalogs and databases have the same capabilities, a CSAM
must provide a set of capability flags to the Catalogs Extension to the Finder. The flags
indicate the capabilities of each catalog the CSAM supports. The user interacts directly
with the Catalogs Extension (CE) to search a catalog. Therefore, the user is limited to the
search capabilities of the CE and cannot use additional search or query capabilities that
may exist in the external catalog or database.

A CSAM is not limited to accessing traditional shared databases. You can write a CSAM
to access private devices that the user connects to the Macintosh computer. For example,
a catalog can reside on a compact disc.

Most users search or browse catalogs in real time. Because the task of retrieving informa-
tion is performance-sensitive, you implement a CSAM as a driver.

The AOCE software architecture does not prevent the development of server-based
CSAMs. However, support for server-based CSAMs is not currently implemented in
the AOCE software. If you want to make information available to networked users as a
server-based catalog, you can write an application that transfers your external catalog
information into a PowerShare catalog.

As is the case with MSAMs, there are numerous implementation decisions that you must
make when writing a CSAM. The AOCE system software architecture allows for much
flexibility. For example, you can cache information from your external catalog locally or
you can retrieve it when the user wants it. You make these decisions based on the
characteristics of the catalog services you support and the needs of your users.

For detailed information about writing a CSAM, see the chapter “Catalog Service Access
Modules” in this book.

Catalog Service Access Modules

CHAPTER 1

Introduction to Service Access Modules

AOCE Setup and Address Templates

A special catalog called the PowerTalk Setup catalog stores information about all of the
mail and messaging and catalog services available to the user of a given Macintosh. The
writer of a personal MSAM or CSAM must provide a setup template, which is a set of
AOCE templates that work with the PowerTalk Key Chain to allow the user to set up and
configure the mail or catalog service. The user enters such information as the account
name and password, automatic connection preferences, and so forth.

If you are writing an MSAM, you also need to provide an address template that allows
the user to create addresses for the external messaging system.

For detailed information about writing AOCE setup and address templates, see the
chapter “Service Access Module Setup” in this book.

AOCE Setup and Address Templates 1-7

CHAPTER 2

Messaging Service Access

Modules

Contents

Introduction to Messaging Service Access Modules 2-6
Personal MSAMs 2-9
Server MSAMs 2-11
MSAM Modes of Operation 2-12
Types of Messages 2-16
Basic Messages 2-16
Letters 2-17
Reports 2-23
AOCE Addresses 2-23
AOCE High-Level Events 2-32
System Location 2-35
Using the MSAM API 2-35
Determining Whether the Collaboration Toolbox Is Available
Determining the Version of the IPM Manager 2-36
Launching a Personal MSAM 2-36
Initializing a Personal MSAM 2-37
Initializing a Server MSAM 2-40
Handling Outgoing Messages 2-43
Enumerating Messages in an Outgoing Queue 2-44
Opening and Closing a Message 2-46
Determining the Message Family 2-47
Determining What Is in a Message 2-47
Reading Letter Attributes 2-47
Interpreting Creator and Type for Messages and Blocks
Reading Addresses 2-51
Reading Letter Content 2-57
Reading a Nested Message 2-59

Contents

2-36

2-50

2-1

CHAPTER 2

Marking Recipients 2-60
Generating a Report 2-61
Writing Incoming Messages 2-62
Choosing Creator and Type for Messages and Blocks 2-64
Creating a Letter’s Message Summary 2-64
Creating a Letter 2-70
Creating a Non-Letter Message 2-71
Writing Letter Attributes 2-72
Writing Addresses 2-73
Writing Letter Content 2-76
Submitting a Message 2-79
Receiving a Report 2-80
Deleting a Message 2-81
Translating Addresses 2-82
Translating From an AOCE Address 2-83
Translating to an AOCE Address 2-88
Logging Personal MSAM Operational Errors 2-91
Messaging Service Access Module Reference 2-93
Data Types and Constants 2-94
The MSAM Parameter Block 2-94
The Mail Buffer 2-96
The Mail Reply Structure 2-96
The Enumeration Structures 2-97
The Mail Time Structure 2-99
The Letter Attribute Structures 2-99
The Recipient Structures 2-106
The Segment Types 2-109
The Enclosure Information Structure 2-111
The Image Block Information Structure 2-112
The High-Level Event Structures 2-113
The Server MSAM Administrative Event Structures 2-116
The Personal MSAM Setup Structures 2-119
The Personal MSAM Letter Flag Structures 2-122
The Personal MSAM Message Summary Structures 2-124
The Personal MSAM Error Log Entry Structure 2-128
MSAM Functions 2-130
Initializing an MSAM 2-131
Enumerating Messages in a Queue 2-138
Opening an Outgoing Message 2-140
Reading Header Information 2-142
Reading a Message 2-150
Marking a Recipient 2-163
Closing a Message 2-167
Creating, Reading, and Writing Message Summaries 2-168
Creating a Message 2-176
Writing Header Information 2-178
Writing a Message 2-185

Contents

CHAPTER 2

Submitting a Message 2-200
Deleting a Message 2-202
Generating Log Entries and Reports 2-204
Shutting Down a Server MSAM 2-210
Setting Message Status 2-211
Personal MSAM Template Functions 2-213
Application-Defined Function 2-219
High-Level Events 2-220
Summary of the MSAM Interface 2-238
C Summary 2-238
Data Types and Constants 2-238
MSAM Functions 2-262
Application-Defined Function 2-264
Pascal Summary 2-264
Data Types and Constants 2-264
MSAM Functions 2-290
Application-Defined Routine 2-292
Assembly-Language Summary 2-293
Trap Macros 2-293
Result Codes 2-294

Contents

2-3

CHAPTER 2

Messaging Service Access Modules

This chapter describes Apple Open Collaboration Environment (AOCE) messaging
service access modules. A messaging service access module is a software component that
provides the PowerTalk user with access to external mail and messaging services. You
do not need to read this chapter if you are writing a mail or messaging application or
adding mail or messaging capabilities to your application.

To write a messaging service access module, you need to be familiar with many
components of AOCE software. You should read the chapters “Introduction to the Apple
Open Collaboration Environment” and “AOCE Utilities” in Inside Macintosh: AOCE
Application Interfaces before reading this chapter to get a general overview of AOCE
software components and the shared AOCE data types and the utility routines that act
on them. This chapter assumes that you are familiar with AOCE catalogs and records
and their structures, and that you know how to read and write data to them. The
chapters “Standard Catalog Package” and “Catalog Manager” in Inside Macintosh: AOCE
Application Interfaces describe the high-level application programming interface (API)
and the low-level API to AOCE catalogs, respectively.

To read and write AOCE records, you must obtain an authentication identity. Identities
are described in the chapter “Authentication Manager” in Inside Macintosh: AOCE
Application Interfaces.

Along with your messaging service access module, you need to provide a type of AOCE
template called an address template to allow the user to enter address information. If you
are writing a personal messaging service access module, you also need to provide a
setup template that allows the user to configure your access module. The chapter
“AOCE Templates” in Inside Macintosh: AOCE Application Interfaces describes how to
write an AOCE template. The chapter “Service Access Module Setup” in this book
provides additional specific information about setup and address templates and their
interaction with messaging service access modules and the PowerTalk Key Chain.

All messaging service access module developers need to be familiar with high-level
events. See the chapter “Event Manager” in Inside Macintosh: Macintosh Toolbox Essentials
for information about high-level events.

This chapter starts with an introduction to messaging service access modules.
Subsequent sections describe

n personal messaging service access modules

n Server messaging service access modules

n the types of messages that are read and written by messaging service access modules
n AOCE addresses

n the AOCE high-level events

n how to get messages out of an AOCE system

n how to put messages into an AOCE system

n the structures and routines in the messaging service access module API

2-5

CHAPTER 2

Messaging Service Access Modules

Introduction to Messaging Service Access Modules

2-6

A messaging system is a combination of hardware and software that provides people
and processes with the ability to exchange electronic messages—it provides messaging
services. Apple’s AOCE messaging system consists of PowerTalk system software and
PowerShare mail servers that allow Macintosh users and processes accessible over a
network or via a modem to exchange electronic messages. Today there are many types of
messaging systems, such as Internet, AppleLink, QuickMail, and so forth, with which
AOCE users might want to communicate. To facilitate the exchange of messages between
an AOCE messaging system and other existing and future messaging systems, the AOCE
architecture defines a messaging service access module (MSAM). An MSAM links
Apple’s AOCE messaging system to another messaging system, extending the reach of
messaging service clients.

The AOCE architecture defines two kinds of MSAMSs. A personal MSAM translates
messages and transfers them between a user’s Macintosh and the user’s account on
another messaging system. It runs on a user’s Macintosh. A server MSAM translates
and transfers messages between a PowerShare mail server and a non-AOCE messaging
system. A server MSAM transfers messages for any number of users located on the
AppleTalk network to which it is connected. It runs on a Macintosh with a PowerShare
mail server. Thus, the MSAM component of AOCE software architecture is scalable. It
can provide service to a single user who uses a non-networked Macintosh computer or
to large numbers of users in large internetworks.

Figure 2-1 shows how adding an MSAM to an AOCE system extends the reach of AOCE
users. Prior to adding an MSAM, AOCE users cannot exchange electronic messages with
others who are accessible only on a non-AOCE messaging system. Once an MSAM that
connects to the non-AOCE messaging system is added, the AOCE users can exchange
messages with people accessible on the non-AOCE messaging system.

The basic services provided by both personal and server MSAMs include

n transferring messages between an AOCE messaging system and another
messaging system
n translating the content of messages between AOCE-defined formats and other formats
n translating message addresses between AOCE-defined formats and other formats
n reporting the results of attempts to deliver messages
Personal and server MSAM s are described in more detail in the following sections.

A note on terminology

Throughout this chapter, the term message is used as an inclusive term
to refer to all types of messages. When information applies only to
letters (a specific type of message), the term letter is used. When
information applies only to messages that are not letters, the term
non-letter message is used. Letters and messages are defined in the
section “Types of Messages” beginning on page 2-16.

Introduction to Messaging Service Access Modules

CHAPTER 2

Messaging Service Access Modules

Figure 2-1 Adding an MSAM

Exlernal

messagng
wydem

Exlernal
messagng
Eem

FowerShae Sep el 2
“ener RS o8 A

L

Messaging systems that are not provided automatically with PowerTalk
system software and PowerShare servers are collectively referred to as
external messaging systems. An external messaging system may handle
only letters or non-letter messages or both.

The term mail refers to letters. Messaging systems that handle only
letters are sometimes referred to as mail systems.

As a convention, this chapter refers to messages coming into an AOCE
system from an external messaging system as incoming messages and
to those that are leaving an AOCE system to go into an external
messaging system as outgoing messages.

Throughout the chapter, the text distinguishes between personal and
server MSAMs where appropriate. The term MSAM is used when the
text applies to both personal and server MSAMs, unless it is clear from
the context that only a personal or server MSAM is meant. u

An MSAM is a low-level component in the AOCE software hierarchy. It does not directly
provide services to a user or process; rather, it provides services indirectly through either
the Standard Mail Package or the Interprogram Messaging (IPM) Manager. Thus, a client
has a standard interface to all messaging systems, including those that are accessible via

Introduction to Messaging Service Access Modules 2-7

CHAPTER 2

Messaging Service Access Modules

MSAMs as well as Apple’s PowerTalk and PowerShare services, regardless of underlying
differences in how messages are accessed and formatted. Figure 2-2 shows the relation-
ship of two clients, the Standard Mail Package, the IPM Manager, an MSAM, and an
external messaging system.

Figure 2-2 An MSAM's relationship to AOCE software

S| AU Stardare
- Wi Fackage

beail anplicatiar

@{E} Pl Monogzr [heg e | Ereend

nesEg by Soken

I ezzayiry
PPN

MSAMs interact with the IPM Manager. Either the MSAM or the IPM Manager can
initiate communication with the other. Figure 2-3 illustrates the way the IPM Manager
and an MSAM initiate communications with each other. An MSAM initiates communi-
cation with the IPM Manager by calling one of the functions provided in the MSAM API.
These functions are described in detail in the section “MSAM Functions” beginning on
page 2-130.

The IPM Manager initiates communication with an MSAM by sending it a high-level
event. The events that the IPM Manager may send to an MSAM, which typically instruct
the MSAM to take some action or advise it of a status change, are described in the
section “High-Level Events” beginning on page 2-220.

Figure 2-3 Communication between the IPM Manager and an MSAM

2-8

k]
Pt Marmger 5 S0
BOCE highekevel avants

Introduction to Messaging Service Access Modules

CHAPTER 2

Messaging Service Access Modules

Personal MSAMs

A personal MSAM allows a user or a mail or messaging application to transfer messages
between the user’s Macintosh and users or applications on one or more external
messaging systems. A personal MSAM connects to an external messaging system and
transfers messages between the user’s Macintosh and the external messaging system.
The user or process must have an account on the external messaging system to which the
personal MSAM provides access. The user’s Macintosh does not need to be connected to
an AppleTalk network.

A personal MSAM is a background-only application; that is, it has no user interface.

Every personal MSAM must be accompanied by AOCE templates that allow the user to
configure the MSAM and to enter address information. These templates, called the setup
template and address template, are described in the chapter “Service Access Module Setup”
in this book. Information that applies to all AOCE templates is provided in the chapter
“AOCE Templates” in Inside Macintosh: AOCE Application Interfaces.

A file containing a personal MSAM must have a file type of either ' nsam or' csan . If
you provide both a personal MSAM and a catalog service access module (CSAM) in the
same file, use the file type' csam (for “combined service access module™). If you
provide a personal MSAM only, use the file type ' nsamn . You must include your setup
and address templates in the same file as your personal MSAM.

Although personal MSAMs and server MSAMSs both connect to external messaging
systems and translate and transfer messages, there are a number of differences between
them. See Table 2-1 on page 2-11 for a list of these differences.

Aslot, as the term is used in the MSAM API and in this chapter, refers to a collection of
information about one account on an external messaging system. The information
includes whatever is necessary to allow an MSAM to access the account and retrieve and
send messages. Slot information determines what external messaging system the MSAM
connects to. The term mail slot refers to a slot that allows the transfer of letters. The term
messaging slot refers to a slot that allows the transfer of non-letter messages.

Slot information is stored in the form of AOCE record attributes in records in the
PowerTalk Setup catalog. The record types in which the information is stored differ
depending on whether you provide a combined MSAM/CSAM or a stand-alone MSAM.
If you provide a combined MSAM/CSAM, slot information and its associated catalog
information is stored in a single Combined record. If you provide a stand-alone MSAM,
slot information is stored in a Mail Service record (sometimes called aslot record) and
associated catalog information is stored in a Catalog record. The setup template that you
provide with your MSAM writes slot information to some of these records; the PowerTalk
Key Chain writes to others. The chapter “Service Access Module Setup” in this book
describes the required attributes of the Combined, Mail Service, and Catalog records,
and it explains who is responsible for writing those attributes to the different types of
records in the Setup catalog.

Personal MSAMs 2-9

CHAPTER 2

Messaging Service Access Modules

In addition to the required record attributes, slot information includes whatever is
necessary to allow the MSAM to service the slot—for instance, an access telephone
number and the line speed. MSAMs can define record attribute types to store slot
configuration information.

A personal MSAM can manage more than one slot. For example, if a user had two
accounts on an external messaging system of a given type, a personal MSAM

would manage two slots, one for each of the user’s accounts on that messaging system.
A personal MSAM also can connect to more than one external messaging system.

For example, if a user has an account on each of two independent messaging systems,
the same personal MSAM can connect to each system and manage a slot for the

user’s account there.

Each mail slot that a personal MSAM manages has two queues: an incoming queue and
an outgoing queue.

Each messaging slot that a personal MSAM manages has an outgoing queue. The notion
of an incoming queue does not apply to messaging.

An incoming queue contains AOCE letters that the personal MSAM translates from mail
received from its external messaging system and each letter’s associated message
summary. (See the section “MSAM Modes of Operation” beginning on page 2-12 for
information about message summaries.) An outgoing queue contains messages that the
personal MSAM must deliver to an external messaging system. A personal MSAM
retrieves a message from an outgoing queue, translates it, and delivers it to the intended
recipients on the external messaging system.

Note that any given queue contains either letters and message summaries or non-letter
messages. It does not contain both. Figure 2-4 shows an example of a personal MSAM
with three slots and their associated queues.

Figure 2-4 Personal MSAM with its slots and queues
Personal b i
i
] it 1) ;
ol 1 Hol 2 Hod 3 i
106 letlers 1or letlers 0 messages i
ncomin g : ncomin g Cuigoing i
quene | : s T[2TTT s T i
Cutgain g L cutgeng ;
quene s TR i

2-10 Personal MSAMs

CHAPTER 2

Messaging Service Access Modules

IMPORTANT

In release 1 of the AOCE software, the handling of non-letter messages is
not fully supported for personal MSAMs. Therefore it is not advisable
for a personal MSAM to implement the transfer of non-letter messages
using release 1 of the AOCE software. s

Server MSAMSs

A server MSAM allows users and processes on an AppleTalk network to exchange
messages with other users and processes on one or more external messaging systems. It
serves its clients indirectly by acting as a conduit for messages between a PowerShare
mail server and the external systems to which the MSAM is connected. It must run on
the same Macintosh as its PowerShare mail server.

Server MSAMs route messages between different messaging systems rather than between
individual accounts on those systems. Therefore, a server MSAM does not necessarily
need to know about specific accounts on an external messaging system, and, as a result, it
has no concept of slots.

A server MSAM can connect to different types of messaging systems. For instance, a
single server MSAM might connect to one or more Simple Mail Transfer Protocol
(SMTP), X.400, and X.500 systems.

A server MSAM is a foreground Macintosh application. Once a server MSAM is
launched, it should run continuously.

(A server MSAM and its PowerShare mail server do not have to run on a dedicated
Macintosh. However, performance of other applications on the same Macintosh may
suffer when the MSAM and server are very busy.)

Table 2-1 summarizes the differences between personal MSAMs and server MSAMS.
(Not all of the differences have been discussed at this point.) You may want to refer to
this table as you read succeeding sections in this chapter.

Table 2-1 Differences between personal MSAMs and server MSAMs

Characteristic Personal MSAM Server MSAM

Application type Background-only Foreground

Interconnects User/process to Multiple users/
specific account processes to

messaging system

Needs specific account Yes No

information

Uses slots Yes No

continued

Server MSAMs 2-11

CHAPTER 2

Messaging Service Access Modules

Table 2-1 Differences between personal MSAMs and server MSAMs (continued)

Characteristic Personal MSAM Server MSAM

Queues 1 outgoing queue per 1 outgoing queue
slot; 1 incoming queue
per mail slot

Writes message summaries Yes No

Can write incoming letters Yes No

on demand

Needs setup template Yes No

Needs address template Yes Yes

Runs on A user’s Macintosh A server Macintosh with

a PowerShare mail server

Must be connected to an No Yes

AppleTalk network

Transfers messages for more No Yes

than one user

Mode of operation Standard, online, Standard
guasi-batch

File type 'csam or' nsani " APPL'

Linked to its catalogs through Mail Service and Foreign dNodes in
Catalog records in AOCE catalog

the Setup catalog

Represented by MSAM record in the Forwarder record
Setup catalog

MSAM Modes of Operation

2-12

In addition to its type (either personal or server), another important characteristic of an
MSAM is its mode of operation. Mode of operation refers to the degree of control an
MSAM retains over messages that it puts into an AOCE system. Some MSAMs function
in some respects like a standard store-and-forward gateway; others function as an agent
for the user. This section explains these modes in more detail.

The store-and-forward gateway model consists of a source messaging system, a series
of one or more store-and-forward gateways, and a destination messaging system. A
store-and-forward gateway links different systems, providing temporary data storage
and, where necessary, address translation. Figure 2-5 illustrates the store-and-forward
gateway model. In such a model, the gateway hands off a message to the next link in the
store-and-forward chain. Once it transfers a message, its responsibility for (and control
of) that message ends. MSAMs that operate in this fashion are said to operate in
standard mode.

MSAM Modes of Operation

CHAPTER 2

Messaging Service Access Modules

Figure 2-5 Store-and-forward gateway model

kel

R storeardtotvard Stors ord Ferved
S galeway qolcws

Fovershara =5} ed J= L =
rers s e, e

A P P e

The online model consists of a source messaging system, a destination messaging
system, and a personal MSAM that acts as an agent for the user in connecting those
systems. In the online model, a personal MSAM does not act simply as a link in a series
of store-and-forward gateways. Rather, it actively manages letters in a user’'s AOCE
mailbox and in the user’s accounts on external messaging systems, reflecting changes in
one to the other, and keeping both ends synchronized as much as possible. Figure 2-6
illustrates the online model. MSAMSs that operate in this fashion are said to operate

in online mode. A personal MSAM operating in online mode can affect the user’s
experience quite directly, something an MSAM operating in standard mode cannot do.

Figure 2-6 Online model

1 s [
A g

L zer aoonunk

i r ".._ _- ar Sz,
LT R T EEseg i St
ACE . |
Finder |Eb Sullalarali E:} r'.iﬁ;:ﬂd Helyek,
bz Cunrzdiong

A significant difference between standard mode and online mode is the point at which
the MSAM is active. In standard mode, an MSAM is removed from any contact with the
user. In online mode, the MSAM is actively involved with the user experience through
the MSAM API and Finder interface.

MSAM Modes of Operation 2-13

2-14

CHAPTER 2

Messaging Service Access Modules

A server MSAM always operates in standard mode. It delivers messages to a PowerShare
mail server, at which point the MSAM’s responsibility for the message ends. The AOCE
system is responsible for delivering the message to its final destination. Similarly, from
an AOCE system perspective, a server MSAM is a store-and-forward gateway in that
messages sent to a server MSAM are addressed to a particular messaging system, not a
specific address within that system.

A personal MSAM may operate in standard mode, online mode, or a variation of online
mode referred to as quasi-batch mode. A personal MSAM always operates in standard
mode when it is dealing with incoming non-letter messages. Much as a server MSAM
hands off a message to a PowerShare mail server, the personal MSAM hands off a
non-letter message to the IPM Manager resident on the Macintosh. Once it submits
such a message to an AOCE system, the personal MSAM has no further control of or
responsibility for the message. The AOCE system delivers the message to its final
destination on the Macintosh. When a personal MSAM is dealing with incoming letters,
however, it operates in online mode or quasi-batch mode.

IMPORTANT
A single personal MSAM may operate in both standard and online or
quasi-batch modes; that is, it may handle both letters and non-letter
messages. The MSAM API is general enough to cover all variations. As a
result, the API contains features that do not apply in every case.

However, as noted earlier, the handling of non-letter messages is not
fully supported for personal MSAMs in release 1 of the AOCE software.
Therefore it is not advisable for a personal MSAM to implement the
transfer of non-letter messages using release 1 of AOCE software. s

The AOCE software architecture allows a personal MSAM to operate in online mode (act
as a user agent) by providing it with the means to deliver an incoming letter to a specific
queue and to manipulate that letter after placing it in the queue.

The user’s AOCE mailbox is a repository for letters from all of the different sources to
which the user has access. These sources include an incoming queue for each mail slot
managed by a personal MSAM installed on the Macintosh. On any given Macintosh with
AOCE software installed, there are some number of destination queues for incoming
messages, each of which contains either letters or non-letter messages. An incoming
queue is a special type of destination queue for letters. It is special because a personal
MSAM can manipulate an incoming queue and its contents. All other destination queues
are under the control of the IPM Manager.

A personal MSAM submitting letters to an AOCE system must conform to certain
minimal requirements of online mode. These requirements are to create, manage, and
delete information blocks about the letters that it puts into an incoming queue. The
information blocks are called message summaries. The AOCE Mailbox extension to the
Finder uses message summaries to display information about the letters to the user.
Message summaries are also the means by which a personal MSAM reflects changes in
the status of a letter from the local Macintosh computer to the remote system and vice
versa. Only personal MSAMSs create message summaries for incoming letters.

MSAM Modes of Operation

CHAPTER 2

Messaging Service Access Modules

Before a personal MSAM puts a letter into an incoming queue, it must first create
the letter’s message summary and put it into the incoming queue. A message
summary contains

n information that is needed to display the letter to the user (this includes the subject of
the letter, its timestamp, the sender’s name, and so forth)

n status information, such as whether the user has read the letter or deleted the letter (a
personal MSAM uses the status flags to maintain consistency between the letter’s
status on an AOCE system and on an external system)

n state information about the letter, such as whether the letter itself currently exists in
the incoming queue

n whatever private data that you wish to attach to this letter (for instance, you may
want to store the ID or reference number that uniquely identifies the letter on the
external messaging system)

A message summary is defined by the MSAMVsgSunmmar y structure, described on
page 2-127.

After creating and submitting a message summary for a letter, a personal MSAM may
immediately translate the letter into the AOCE letter format and put it into the incoming
queue. Alternately, the MSAM can delay writing the letter until the user actually opens
it. (The MSAM receives a high-level event when a user opens a letter.)

In general, a personal MSAM that connects to an external messaging system over a slow
link should create the message summary and put the letter into the incoming queue at
the same time. This gives a user faster access to the letter when he or she decides to

read the letter. Also, when a link is slow or expensive, the MSAM might keep the copy of
the letter the user has already read to avoid a retransmission if the user wants to read the
letter again.

A personal MSAM that connects to an external messaging system over a fast link such
as a local area network may choose to create just the message summary without auto-
matically translating and transferring the letter itself. The MSAM can retrieve the letter
on demand, that is, only when the user actually wants to read the letter. In these
circumstances, it can delete the letter after the user reads it because retransmission
would not cause much of a delay.

A personal MSAM may implement some features of online mode but not all, and it may
thus operate somewhere in between standard and online modes. Quasi-batch mode
represents a continuous gradation between standard and online modes. In quasi-batch
mode, a personal MSAM may simply create a message summary, transfer the letter to an
AOCE system, and do nothing further with regard to the letter. For example, a personal
MSAM for fax transmissions might simply download a fax and put it into the incoming
queue. Such a personal MSAM complies with only the minimal requirements of online
mode and operates as much as possible like a standard store-and-forward gateway.

MSAM Modes of Operation 2-15

CHAPTER 2

Messaging Service Access Modules

Table 2-2 shows the types of operating modes available to server and personal MSAMs.

Table 2-2 MSAM operating modes

Operating mode Type of MSAM

Standard Personal MSAM (for non-letter messages) and server MSAM
Online Personal MSAM (for letters)
Quasi-batch Personal MSAM (for letters)

This section has described the incoming queue as a special queue for incoming letters,
available only to personal MSAMs with mail slots. There is no analogous construct on
the outgoing side. All MSAMs, personal and server alike, have an outgoing queue from
which they obtain outgoing messages. A server MSAM has a single outgoing queue that
contains all of the messages addressed to external messaging systems to which it is
connected. A personal MSAM, regardless of its operating mode, has one outgoing queue
for each of its slots. Each queue contains the outgoing messages for the associated slot.

Types of Messages

2-16

The following sections discuss messages, letters, and reports.

Basic Messages

A message is the basic unit of communication defined by the Interprogram Messaging
(IPM) Manager. A message consists of a message header followed by zero or more
message blocks, each of which is a sequence of any number of bytes. The message
header contains control information about the message, such as the message creator and
message type, the total length of the message, the time it was submitted, addressing
information, and so forth. It also contains the length, creator, and type of each block in
the message. For more detailed information on the structure of messages and more
information on the IPM Manager and the services it provides, see the chapter
“Interprogram Messaging Manager” in Inside Macintosh: AOCE Application Interfaces.

Every message has a message creator and a message type. The message creator and type
are analogous to a Macintosh file’s creator and type. The message creator indicates
which application created the message. A message type indicates the semantics of the
message, the type of blocks the message should contain, and the relationships among the
various blocks in the message.

Similarly, every block has a block creator and a block type. The block creator indicates
which application created the block. A block type indicates the format of the data
contained within the block.

Types of Messages

CHAPTER 2

Messaging Service Access Modules

In addition to message types, AOCE software defines the concept of message families. A
message that belongs to a message family shares a similar form with all other messages
that belong to the same message family. Messages of the same family conform to the
syntax of a defined set of message block types and their associated semantics. The syntax
specifies which block types are optional and which are mandatory and specifies the
relationships between the various blocks. Messages that belong to the same message
family may also contain additional blocks whose types are not defined as part of the
message family.

Apple defines three message families for an MSAM’s use. All non-letter messages that an
MSAM transfers belong to the kI PMFani | yUnspeci fi ed family. Letters may belong to
either the kMai | Fami | yorkMai | Fam | yFi | e family, both of which are defined in the
next section. Although it is possible to distinguish a new class of messages by defining a
new message family, it is not recommended that you do so.

IMPORTANT
Apple Computer, Inc., reserves all values for message and block types,
message and block creators, and message families that consist entirely of
lowercase letters and special characters. You are free to create and use
other values except 0 and ' ????"' . Apple Computer, Inc., does not
provide a registry for message and block types, message and block
creators, and message families. s

A message can contain another message. A message that is contained within another
message is called a nested message.

Letters

A letter is a type of message, consisting of a defined set of message blocks, that is
intended to be read by a person.

A letter must contain a letter header block. A letter header block contains the address of
the sender and of each recipient. It also contains the letter’s attributes.

Letter attributes are bits of information about a letter. They include such things as the
time the letter was sent, the subject of the letter, the priority assigned to the letter by the
sender, and so forth.

Note

In this chapter, letter attributes are usually referred to simply as
attributes. Do not confuse these letter attributes with record attributes. A
record attribute refers to a part of an AOCE record. For information
about record attributes, see the chapters “AOCE Utilities” and “Catalog
Manager” in Inside Macintosh: AOCE Application Interfaces. u

A letter may have blocks that contain letter content, a nested letter, enclosures, and an
image of the letter content. The MSAM API provides functions that you can use to read
and write most of these blocks without specifying the block type. For example, the
function MSAMPut Cont ent automatically creates a block of type kMai | Cont ent Type.
However, to add a block of type image (kMai | | nageBodyType) or a private data block

Types of Messages 2-17

CHAPTER 2

Messaging Service Access Modules

(kMai | MSAMTy pe), you need to provide the block type to the MSAMPut Bl ock function.
Table 2-3 lists the AOCE-defined block types that a letter may contain and the functions
you use to read and write a block of a given type.

Table 2-3 Predefined letter block types

Block type Value Block contents To read/write

kMai | Lt r Hdr Type "Ithd Letter header MBAMZet Reci pi ent s
MBAMPUt Reci pi ent

MSAMGet At tri but es
MSAMPuUt Attri bute

kMai | Cont ent Type ' body' Body of letter MSAMCGet Cont ent
MSAMPut Cont ent

el st' List of enclosures MSAMZet Encl osur e
MSAMPut Encl osur e

kMai | Encl osur eLi st Type

kMai | Encl osur eDeskt opType " edsk’ Desktop Manager MBAMZet Encl osur e
information for MBAMPut Encl osur e
enclosures

kMai | Encl osur eFi | eType "asgl' A file enclosure MBAMzet Encl osur e

MSAMPut Encl osur e
kMai | | mageBodyType "img' Image of letter MSAMCGet Bl ock
MSAMPut Bl ock

kMai | MSAMTy pe "gwyi ' MSAM-defined MSAMCGet Bl ock
information MBAMPuUt Bl ock

kl PMENcl osedMsgType 'ensg’ Nested letter MBAMXpenNest ed

M5AMBegi nNest ed
kI PMDI gi t al Si gnature "dsig Digital signature MBAMZet Bl ock

MSAMPut Bl ock

Letter content is that part of the letter that the sender typically wants the recipient
to read first, like the body of a conventional hard-copy letter. Letter content may be
in three forms:

n acontent block (block type is kMai | Cont ent Type)
n an image block (block type is kMai | | mageBody Type)
n acontent enclosure (block type is kMai | Encl osur eFi | eType)

A content block contains the body of a letter in one or more data segments. Each
segment contains data of one of the following types:

n Plain text. A text segment contains data in one or more character sets (Roman, Arabic,
Kanji, and so on) with 1-byte or 2-byte character codes, depending on the character set.

2-18 Types of Messages

CHAPTER 2

Messaging Service Access Modules

n Styled text. The segment contains text and a St Scr pRec structure containing the style
information for that text.

n Pictures. The segment contains data in PICT format.
n Sounds. The segment contains data in Audio Interchange File Format (AIFF).
n Movies. The segment contains data in QuickTime movie file format (‘MooV').

These five data formats are collectively called standard content or standard interchange
format, sometimes referred to as AppleMail format. All MSAMs must support standard
content to facilitate interoperability. Any user with AOCE software installed can read
and write letters containing standard content using the AppleMail application.

Another way of communicating a letter’s content is to include it in an image block.
Data in an image block is stored in a structure of type TPf PgDi r followed by picture
elements (PICTs). The format of data in an image block is sometimes referred to as
snapshot format.

The AppleMail application can read image blocks. Thus, by including an image block in
a letter, an application that uses formats other than standard interchange format can
ensure that a user having the AppleMail application can view the formatted content. A
receiver cannot edit image data. MSAMSs should support image blocks.

The third form in which letter content may be transmitted or received is a content
enclosure, sometimes referred to as a main enclosure. Such an enclosure is typically in
the native format of the sending application. An MSAM is not required to support
translations of various application file formats. A recipient must have a copy of the
sending application to read a content enclosure. A letter can have only one content
enclosure.

The contents (if any) of a letter may be in any or all of these three forms. Typically, you
can expect letters to contain a content block as well as a content enclosure.

An enclosure is a file or folder sent along with a letter. An enclosure may be either a
regular enclosure or a content enclosure. A regular enclosure is a file or folder included
in a letter like an attachment in a conventional hard-copy letter. That letter may or may
not contain a content block.

A letter can have up to 50 enclosures. An enclosure file can be of any type. If an
enclosure is a folder, it can contain any number of files of any type, so long as the total
number of enclosures does not exceed 50. Each file and folder counts as one enclosure.
For example, if a letter had as an enclosure a folder containing three files, the total
number of enclosures in the letter is four: one folder and three files. A content enclosure
counts when totaling the number of enclosures in a letter.

Types of Messages 2-19

CHAPTER 2

Messaging Service Access Modules

A nested letter is a complete letter included whole within another letter. A letter can
have only one letter nested within it. However, the nested letter itself may contain a
nested letter. Figure 2-7 illustrates this concept.

Figure 2-7 Nested letters

2-20

Qglorm ook cber

Mezled lefer

boctoc chher

aa

The nesting level of a letter indicates how many letters are nested within it. The nesting
level of a letter that contains no nested letters is 0. A letter that contains a letter with a
nesting level of n has a nesting level of n + 1. Thus, if a reply letter contains a copy of the
original letter, the nesting level of the reply is one greater than the nesting level of the
original letter. Figure 2-8 illustrates an example of nesting letters. Sue sends a memo to
Dan. Her original memo has a nesting level of 0. Dan replies to Sue and includes a copy
of Sue’s original memo in the reply. His reply has a nesting level of 1. Sue sends a
different memo to Tim and includes Dan’s reply. The nesting level of her memo to Tim is
2. The theoretical limit to the number of nesting levels is very large.

Types of Messages

CHAPTER 2

Messaging Service Access Modules

A forwarded letter is always a nested letter. It is nested within a letter that has no content
and no enclosures. The letter that contains the forwarded letter has a nesting level of
n + 1, where n is the nesting level of the forwarded letter.

Figure 2-8 How the nesting level increments

kMaimi Im Tan
Mezled lewel = 2

: Mestcd Lozl = 1 -.'-.

-1 Beleimin [Sme H
+] mestec ewel =1

Figure 2-9 illustrates the structure of a hypothetical letter. In the message header, the
message creator and type (' | ap2' and' I ttr') indicate that this message is a letter
that was created by the AppleMail application. Next is the letter header block. The letter
header information includes the letter’s nesting level, set to 2, indicating that this letter
has two letters nested within it. The letter contains a content block. The blocks of type
kMai | Encl osur eLi st Type (' el st')and kMai | Encl osur eDeskt opType (' edsk")
are private to Macintosh system software. There are two enclosures in the letter, one

of which is a content enclosure. An image block is present. It contains an alternate
representation of the data in the content block. The letter also contains a nested letter in a

Types of Messages 2-21

CHAPTER 2

Messaging Service Access Modules

nested letter block. The nested letter is a complete letter consisting of a message header, a
letter header block, a content block, and a nested letter block. Its letter header shows that
its nesting level is 1. The nested letter block contains a complete letter consisting of a
message header, a letter header block, and a content block. Its nesting level is 0.

Figure 2-9 Structure of a letter

2-22

i MWessage Feader %

Eaccimi imiiinr ' lop 2'
(L TERIT TR B T

Ltz Faader Block
Ik imar " wpnl’
Ihe:klyp ' 1ERA'

i Fecilnp e = 2

Corbeat block

Ihekimvar " wpnl’
1 Ihezk lypn ' Eodsy!

Peiveate black

Ik imvar " wpnl’

Ihe:klvpr " alez!
Pvete black

Ik imar " wpnl’
Ihekivgn " ade:’

Eadozsune Hock

II|l:l\.|:'|-||-|l|rI ' 'nE-rl\-L' . Meszane Feader
i Ik iyp " wogl I | rseompuimannr C lwpdt
i tdn HdiEIm = keaa . Faccimpn lppn " 1k st
Excdosune block - Lekzr Feader Hock | Peessaye | eader
Ik immanr ' wpnl’ » Ik imuelir ' wpnl’ S| MEssmc credoE = Laps
Ihe:klypn " wogl! . Inm:kiypn ' 1R’ . Messme b= Lt sT
rdanmdizam = £1 loa - Medlny el 1 . Lezr | eader Lok
i | In=ge block ' Cotibaat block . Eleck creabr = * apnil’
! [NTTHAE T 1 . Ihm:kimuubir ' wprl! . Elpckbpie =" Lthd’
Ihe:klypn " irug’ . Ihm:k lypn ' Esdy! . HesHig loerd = U
i pot N pelt J1CRIREITIE 3
Edr<k cheahir = * apnil”
Eipck bic = * bodr”

Ordinarily, letters belong to one of two message families defined by AOCE software. A
letter that belongs to the kMai | Fami | y family may contain either a content block or any
type of enclosure or both. A letter that belongs to the kMai | Fam | yFi | e family does
not contain a content block or a content enclosure, but may contain a regular enclosure.
You should not put a content block into or expect to get a content block from a letter in
the kMai | Fami | yFi | e family.

Types of Messages

CHAPTER 2

Messaging Service Access Modules

Reports

A report communicates delivery information about a message to the sender of the
message. A report, like a letter, is a message with a defined set of message blocks.

The sender of a message can request information about successful delivery of the
message, failure to deliver the message, or both, for a message. The sender’s request
applies to all of the message’s recipients.

A single report may contain information about the outcome of delivery attempts to one
or more recipients of a message; that is, it may contain delivery indications, non-delivery
indications, or both. A delivery indication indicates the successful delivery of a specific
message to one or more specified recipients. A non-delivery indication indicates failure
to deliver a specific message to one or more specified recipients. A delivery or
non-delivery indication is sometimes referred to as a recipient report.

An MSAM can both create a report about an outgoing message and receive a report
about an incoming message.

Note

A report that an MSAM creates or receives (an MSAM report) differs
somewhat from a report created or received by other clients of the IPM
Manager (an IPM report). An IPM report may contain a copy of the
original message, but an MSAM report never does. An IPM report goes
directly to an IPM Manager client. An MSAM report goes to an AOCE
agent, which interprets the information in the MSAM report and creates
an IPM report to send to the ultimate report recipient. u

The sections “Generating a Report” on page 2-61 and “Receiving a Report” on page 2-80
describe how an MSAM generates and receives reports. For information on IPM reports,
see the chapter “Interprogram Messaging Manager” in Inside Macintosh: AOCE
Application Interfaces.

AOCE Addresses

The AOCE software architecture provides for the exchange of messages among different
types of messaging systems. The exchange of messages requires a way of uniquely
specifying the sender and receiver of a message. This unique specification is called an
address. This section discusses the syntax and semantics of the AOCE address structure.

To provide connectivity between AOCE messaging systems and other messaging
systems, the AOCE address structure is designed to accommodate already existing
address formats, in addition to address formats that may be developed for future
messaging systems.

One way that messaging systems can be differentiated is by the syntax and semantics of
their addresses. Messaging systems that share the same addressing conventions are said
to be of the same type.

AOCE Addresses 2-23

CHAPTER 2

Messaging Service Access Modules

An address is unique within a messaging system. To exchange messages between
messaging systems, a sender must specify an address plus the messaging system in
which the address is unique.

At the most general level, you can think of an AOCE address structure as having two
parts: a messaging system specifier and an entity specifier that uniquely identifies a
person or process within that messaging system. When an address specifies a recipient
within an AOCE messaging system, the AOCE software delivers the message to the
specific address. When an address specifies a recipient in a non-AOCE messaging
system, the AOCE software delivers the message to the MSAM responsible for that
messaging system.

For AOCE routing software, the basic problem can be stated as follows: assume an
external messaging system is named System X. System X contains many addressable
entities (users and processes). To send a message to an entity Y in System X, AOCE needs
away to say “Y in System X.” AOCE doesn’t care what Y is. Y is internal to, and should
be unique in, System X.

Figure 2-10 shows an AOCE messaging system, an AppleLink system, and two SMTP
systems. (SMTP stands for Simple Mail Transfer Protocol. Computers connected to the
Internet often use SMTP to exchange messages.) Within this environment, AOCE routing
software needs a way to specify each messaging system. Each messaging system is
partially described by a four-character extension type. An extension type identifies a
type of messaging system that uses a specific addressing convention—for example, an
AppleLink system or an X.400 system. Because there can be more than one messaging
system of a given type, an address based on the extension type alone is not sufficient to
distinguish between two or more messaging systems of the same type. In the illustration,
AOCE routing software could not distinguish between the two SMTP systems on the
basis of type. To solve this problem, AOCE software requires that each messaging system
have a unique name by which it is known within an AOCE system. In Figure 2-10, the
names Felines and Canines distinguish between the two SMTP messaging systems.

Figure 2-10 AOCE system connected to external messaging systems

2-24

Applel Ink =ipsten

.

Nam=:Tzrinac
vae: ST

AOCE Addresses

CHAPTER 2

Messaging Service Access Modules

In some cases, there is only one messaging system of a given type, and the messaging
system already has a unique, well-known name. The Internet is a good example of this.
In cases like this, if your MSAM provides a preassigned name, it should use the well-
known name. A unigue name for each messaging system is fundamental to AOCE
addressing.

Within some messaging systems, multiple address formats are allowed. The Internet, for
example, accepts both UUCP and SMTP addresses. An Internet MSAM has one unique
name associated with it, but it may service multiple extension types, one for each form of
Internet address that it knows how to translate.

Note

There is no registry for extension types. If you want to use an existing
extension type, you are responsible for ensuring that the extension type
always represents the same address syntax and semantics. If you want
to create a new extension type, it is recommended that you use your
application’s signature type, registered with Macintosh Developer
Technical Services, to ensure uniqueness. u

Before describing an AOCE address structure, it is helpful to understand a little about
how the AOCE software implements unique names for messaging systems. Within an
AOCE system, each external messaging system is associated with a unique catalog name.
The catalog name identifies to AOCE software the messaging system and the set of
addresses that belong to that messaging system.

For server MSAMs, the AOCE system administrator creates a reference to an external
messaging system by creating a dNode, sometimes called a foreign dNode, in an AOCE
catalog. Figure 2-11 illustrates the addition of a dNode that represents an external
messaging system. The original AOCE configuration has a catalog named Catalog A that
contains dNodes named Artists Unlimited and Legal Services. AOCE software routes
messages only among addresses in Catalog A. There exists an external messaging system
called TriColor Labs. People within the original AOCE messaging system may want to
communicate with people who are accessible only via the TriColor Labs messaging
system. A server MSAM is installed within the AOCE system to extend the messaging
environment to include people within the TriColor Labs messaging system. The AOCE
system administrator creates a new dNode representing the TriColor Labs system and
gives the dNode a unique name, TCL, within Catalog A. AOCE software still routes
messages only among addresses in Catalog A, but Catalog A now includes a new set of
addresses represented by the dNode TCL.

AOCE Addresses 2-25

CHAPTE

R 2

Messaging Service Access Modules

Figure 2-11

AOCECabg A

it
Lin Im [ed

Legal
P [

Adding a dNode for a messaging system

Mieradding dHode

AOCECakbg A

|

"--.H_‘_‘_‘-H-

ot
Linim [4=d

Legal
Sered

2-26

Expuwided AOCE seemragin syslem

POUErSNARe Sefuer

TriColor Lake
messaging
Ly tem

For personal MSAMs, the PowerTalk Key Chain creates a Catalog record in the Setup
catalog to represent the set of addresses belonging to a given messaging system. See the
chapter “Service Access Module Setup” for more information.

The name that uniquely identifies an external messaging system in an AOCE system is
the name of the dNode (for server MSAMSs) or the name of the Catalog record in the
Setup catalog (for personal MSAMS).

Figure 2-12 illustrates the following points about MSAMSs, messaging system names, and
extension types:

n An external messaging system must have a unique name.

n Different MSAMSs may connect to different external messaging systems of the same

extension type.

n A single MSAM may connect to more than one external messaging system, each
having a different extension type (it may also connect to more than one external
messaging system having the same extension type).

n A single external messaging system may have more than one extension type.

AOCE Addresses

CHAPTER 2

Messaging Service Access Modules

Figure 2-12 MSAMSs, messaging system names, and extension types

Mawe App LeLink

Pl Woa Ldwide HA02

Type: XHAOC Iype: ALHE
MSAR
m:;:ag:ﬁnq \ Poorne: Toive 2 200
i btk [Ty Tope:* B4 00
o) Hen ¥
MSAR

Hamz:Privata STHE
Tuoe: ' 20D

Marne: Intacnat
Towpe: WO ' UTCD

Now look at the AOCE address structure. AOCE software already defines a Recor dl D
structure to uniquely identify a record in an AOCE catalog. This structure is adapted and
extended for use as an address structure. In an AOCE messaging system, an address is
specified as an OCEReci pi ent structure, which is identical to a DSSpec structure.

struct DSSpec {

Recordl D *entitySpecifier;
OSType ext ensi onType;
unsi gned short ext ensi onSi ze;
Ptr ext ensi onVal ue;
b

typedef DSSpec OCEReci pi ent;

(The Recor dI Dstructure is described in the chapter “AOCE Utilities” in Inside
Macintosh: AOCE Application Interfaces.)

AOCE Addresses 2-27

CHAPTER 2

Messaging Service Access Modules

Figure 2-13 shows an exploded view of an OCEReci pi ent structure. An AOCE address
is a two-level specification that first identifies a messaging system and then identifies

an individual entity within it. This is roughly analogous to an address on a piece of
hard-copy mail that specifies a large organization and a mailstop within it. The postal
service uses part of the address—organization name, street number, city, state, and zip
code—to deliver the mail to the organization. The organization itself uses the remainder
of the address, the mailstop number, to deliver the mail to a specific internal address. With
an AOCE address, the OCEReci pi ent .enti t ySpeci fi er.rli substructure identifies
the messaging system. The value pointed to by the OCEReci pi ent .ext ensi onVal ue
field identifies the individual entity within that messaging system.

Figure 2-13 Exploded view of an OCEReci pi ent structure

* [hEFaildencHasdyies simc o [uns ghed Shor]]

a
i H
i LLITTEL 4 10 i
H Turm mRI1 i
i =| IHd nHnKk . ’
i My ok o " DireetoryHame i
i g i i
i = F koo dRL 1 s |zzr sk oratianerr R i
E Fcil name; : lHd nEnk I':l:' R :
i OCCEae i L o |dizirdrioat St tel s i
: : o B L P PH— i
H T : I'nqmi: i
[e S dozalinyt i
E Lo | et e e w i K = === 1= = TR :
1 R R A e
H r-.:I:P-H:-:-’]:'\--- . Al = e dRsdancl Eawk i
] Prva— Beaowd D o PE— :
H . Fl2H reiez: ey N o e K
j|estencacrne || - — o AR
I:lg,;Iu: Tic: .. -|.II'II1.':1PIIIK - :__ X
P EL HET T B = “ -
L) I;Jf ey [L'h el a
PR X ek 1o R Hhame: o| Coioei ezl =
................ o FIH“"H"E‘:
R pd ehore T L] by dbeglo
I':I"" - P omdliia 1 Fitrirg Taps2:
ek o 48 EL T v [Fctiame: Actil iiam: el e B &
e L | resirbaae Elarde Hupim:keil
i LEH sdiress 3 M .: |:H||IIIHIIII': .
= | rionr Clarae arie s areyat]
i Y At name: Fiedil name: S| Bikrdirg i
E < L o B] T B SHickArzs :
! - Lt HUI I A TRENL
i H s Tare: H
i [l E R R K I T T B i
H Achil name: i
i L L UL L i
1 -]
i Tope: 3
i uy M 3
i i
i i

AR AAAA A A A A AT A AT AT A A A A T A A A A A T A A A A A A A 480

2-28 AOCE Addresses

CHAPTER 2

Messaging Service Access Modules

Table 2-4 lists the elemental fields of the address structure and the type of information
each field contains when it is used to specify an address on an external system. The
structure identifies both the external system and a specific sender or receiver within it
that is the source or destination of a message.

Table 2-4

External address: Contents of an OCEReci pi ent structure

Field name
di rect or yName

di scri m nat or

dNodeNumber
pat h
cid

recor dNane

recordType

ext ensi onType

ext ensi onSi ze

ext ensi onVal ue

AOCE Addresses

Contents

A pointer to an RSt r i ng structure containing the unique name
of a catalog in the AOCE environment. The name identifies the
external messaging system to AOCE. The name is limited to
32 characters.

An 8-byte value that further describes the catalog. The first

4 bytes indicate the extension type of the associated messaging
system, for example, ALNK or SMTP. It is the same as the value
in the ext ensi onType field. The second 4 bytes are private to
the catalog.

Unused. Set to 0.
Unused. Settoni | .
Unused. Set to 0.

A pointer to an RSt r i ng structure containing the name of the
sender or receiver. This should be a displayable string.

A pointer to an RSt r i ng structure containing the type of the
sender or receiver—for example, “user” or “group”. This should
be a displayable string.

The four-character extension type that specifies a type of
messaging system, for example, ' ALNK' or' SMIP'. The
extension type is the same as the first 4 bytes of the associated
catalog’s discriminator value.

The length, in bytes, of the ext ensi onVal ue field.

A pointer to a buffer that contains the address of the sender or
receiver on the external system. The address is used only by the
MSAM. Its content and format are not examined by AOCE
software. However, for the type-in addressing feature in the
mailer to work, the address must be a single RSt r i ng structure.

2-29

2-30

CHAPTER 2

Messaging Service Access Modules

Table 2-5 lists the elemental fields of the OCEReci pi ent structure and the type of infor-
mation each field contains when it is used to specify an address within an AOCE system.

Table 2-5 AOCE address: Contents of an OCEReci pi ent structure

Field name Contents

di rect or yNane A pointer to an RSt r i ng structure containing the name of the
PowerShare catalog that contains the record representing the
sender or receiver. The name is limited to 32 characters.

di scri m nat or The discriminator value of the catalog that contains the record
representing the sender or receiver.

dNodeNumber A value that identifies the dNode that contains the record
representing the sender or receiver. Set to 0 if you use the pat h
field to specify the dNode.

pat h A pointer to a buffer that contains the names of all of the
dNodes on the path from the catalog node in which the sender
or receiver record resides, up to the catalog root node. Set
this field to ni | if you use thedNodeNunber field to identify

the dNode.
cid The creation ID of the record that represents the sender
or receiver.
r ecor dName A pointer to an RSt r i ng structure containing the name of the

sender or receiver. This is a displayable string.

recordType A pointer to an RSt r i ng structure containing the type of the
sender or receiver. It tells you what the entity is, such as a user.
This is a displayable string.

ext ensi onType A four-character extension type that specifies the format of the
data pointed to by the ext ensi onVal ue field. AOCE defines
the following extension types: kOCEal anXt n, kOCEent nXt n,
kOCEaphnXt n.

ext ensi onSi ze The length, in bytes, of the ext ensi onVal ue field.

ext ensi onVal ue A pointer to a buffer that contains the address of the sender or
receiver on the AOCE system. The address is used only by the
AOCE software. Its content and format need not be examined
by the MSAM.

Table 2-6 lists the extension types for addresses within an AOCE messaging system.
These extension types are discussed in more detail in the chapter “Interprogram
Messaging Manager” in Inside Macintosh: AOCE Application Interfaces. You do not need
to understand the semantics of the extension types. You do need to be sure that a
recipient to whom you transmit a message from an AOCE system can reply to the
message. Your MSAM might include the extension information with the outgoing
message and reconstruct it when it submits the reply to the AOCE system. Alternatively,

AOCE Addresses

CHAPTER 2

Messaging Service Access Modules

your MSAM might maintain mapping tables to convert between addresses within the
AOCE messaging system and external addresses. In this way, it can avoid sending to its
external system information that is only relevant inside an AOCE system. This
implementation decision is up to you.

Table 2-6 AOCE extension types

Constant Value Description

kOCEal anXt n "al an' Indicates an Ent i t yNane structure (an NBP name)
plus a queue name in the form of a Pascal string. It is
used for an address accessible on the local AppleTalk
network.

kOCEent nXt n "entn' Indicates a DSSpec structure. It is used for an address
accessible through a PowerShare mail server.

kCOCEaphnXt n "aphn’ Indicates a structure that specifies an address
accessible by telephone.

Before you submit an incoming message to AOCE, you must construct OCEReci pi ent
structures containing the addresses of the sender and each of the recipients. Table 2-4 on
page 2-29 describes the information you must provide in each field of the address
structure for (a) the sender from your external messaging system and (b) any recipient
in an external messaging system. Table 2-5 on page 2-30 describes the information

you must provide in each field of the address structure for a recipient within the

AOCE system.

When you read an outgoing message from AOCE, you must translate the OCEReci pi ent
structures that contain the address information for the sender and each of the recipients
into a format that your external messaging system understands. Table 2-4 on page 2-29
describes what information you will find in each field of the address structure when the
structure specifies a recipient on an external messaging system. Table 2-5 on page 2-30
describes the information contained in each field of the address structure when the
structure specifies the sender of an outgoing message or a PowerTalk recipient.

The address of a recipient in an AOCE messaging system might include only the entity
specifier portion of the OCEReci pi ent structure; that is, it may not have any data in the
ext ensi onType, ext ensi onSi ze, and ext ensi onVal ue fields. This form is called
an indirect address because it is not actually an address but points to a record in an AOCE
catalog that contains the address. It uniquely identifies the messaging system and
provides a displayable name and type to identify the sender or receiver. The direct form
of an address always includes both the entity specifier and the extension information.
The extension information gives a more detailed form of address. Addresses in external
messaging systems are always in the direct form. Addresses in PowerShare catalogs may
be in either the direct or indirect form. For more information about direct and indirect
addressing, see the chapter “Interprogram Messaging Manager” in Inside Macintosh:
AOCE Application Interfaces.

AOCE Addresses 2-31

CHAPTER 2

Messaging Service Access Modules

Table 2-7 shows examples of the content of the fields of an OCEReci pi ent structure for
an indirect AOCE address and an SMTP address.

Table 2-7 Sample addresses

AOCE system
OCEReci pi entields (indirect address form) SMTP system

di rect or yNanme Engineering Finance

di scri m nat or ACAP1234 SMTP0000
dNodeNunber 6 0

pat h nil nil

creationl D 44894489 00000000

r ecor dName Joe Bernard Suzy Durksen
recordType aoce User aoce User

ext ensi onType Not applicable 'SMTP'

ext ensi onSi ze Not applicable 16

ext ensi onVal ue Not applicable Suzy@finance.com

When the ent i t ySpeci fi er portion of the OCEReci pi ent structure contains infor-
mation about a sender or receiver on an external system, that information does not
specify a record in a PowerShare catalog that represents the sender or receiver. However,
when the structure contains information on a sender or receiver inside an AOCE
messaging system, it does specify an existing record.

With your MSAM, you need to provide a special kind of AOCE template, called an
address template, that allows a user to enter address information. Basic information about
AOCE templates is provided in the chapter “AOCE Templates” in Inside Macintosh:
AOCE Application Interfaces. Specific information about address templates is provided in
the chapter “Service Access Module Setup” in this book.

AOCE High-Level Events

2-32

Both personal and server MSAMSs must be prepared to receive and respond to high-level
events defined by AOCE software. The chapter “Event Manager” in Inside Macintosh:
Macintosh Toolbox Essentials describes the use of high-level events in detail; that
information is not repeated in this section.

AOCE High-Level Events

CHAPTER 2

Messaging Service Access Modules

Personal MSAMSs may receive the following high-level events:

Constant Event ID Description

kMai | EPPCCr eat eSl ot ‘crsl’ Slot created

kMai | EPPCModi f ySI ot "'mdsl’ Slot modified

kMai | EPPCDel et eSl ot "dl sl Slot deleted

kMai | EPPCMVaI | boxOpened ' mbop' User opened mailbox

kMai | EPPCMai | boxCl osed "mbcl’ User closed mailbox

kMai | EPPCMsgPendi ng ' megp’ Messages waiting to be sent
kMai | EPPCSendl medi at e "sndi’ Send letter now

kMai | EPPCShut Down ‘quit’ Shut down operations and quit
kMai | EPPCCont i nue ‘cont’ Resume operation after error fixed
kMai | EPPCSchedul e ' sked' Time for scheduled activity
kMai | EPPCI nQUpdat e "inqu' Incoming queue updated

kMai | EPPCVsgOpened ' mego’ User opened letter

kMai | EPPCDel et eQut QVsg "dl onm Delete outgoing queue message
kMai | EPPCWakeup "wkup' Launched due to wakeup

kMai | EPPCLocat i onChanged "l occ’ System location changed

Server MSAMs may receive these high-level events:

Constant Event ID Description
kMai | EPPCAdNI n "admm’ Server administration function
kMai | EPPCMsgPendi ng ' megp’ Messages waiting to be sent

Detailed descriptions of these events can be found in the section “High-Level Events”
beginning on page 2-220.

When an MSAM receives an AOCE high-level event, it manipulates a standard

Event Recor d structure (defined in the chapter “Event Manager” in Inside Macintosh:
Macintosh Toolbox Essentials). The fields of an event record associated with an AOCE
high-level event have a particular meaning.

struct EventRecord {

short what ;
| ong nmessage;
| ong when;
| ong wher e;
short modi fi ers;
b
Field descriptions
what Always contains the constant kHi ghLevel Event .
nmessage Always contains the event class kMai | Appl eMai | Cr eat or.

AOCE High-Level Events 2-33

2-34

CHAPTER 2

Messaging Service Access Modules

when Unused.

wher e Contains the event ID that identifies a specific event—for example,
kMai | EPPCAdM n.

modi fiers For personal MSAMSs, this field contains the slot ID when the event

applies to a particular slot; otherwise, it is set to 0. Server MSAMSs
can ignore this field.

Some AOCE high-level events require more information than that provided in the event
record. After you receive such an event, you should call the Accept Hi ghLevel Event
function to get the additional data associated with the event. The additional data is in the
form of aMai | EPPCMs g structure.

A Mai | EPPCMsg structure consists of a version number and a union field. The union
field may have any of the following contents: a pointer to an SMCA structure; a letter
sequence number; a Mai | Locat i onl nf o structure.

The version number indicates the version of the event. The MSAM should compare the
version number in the Mai | EPPCMs g structure with kMai | EPPCVsgVer si on. If they
are not the same, software incompatibilities may exist between the PowerTalk software
and the MSAM, and there is no guarantee that the Mai | EPPCMVs g structure used by the
MSAM and by the IPM Manager are the same. The MSAM should ignore the event.

Most of the AOCE high-level events are informational in nature. For example, a

kMai | EPPCVsgPendi ng event tells an MSAM that it has a new outgoing message.
Informational events sent by the IPM Manager are not guaranteed to be received by the
MSAM. The MSAM should consider these events as hints; that is, it should not rely on
them as the only mechanism to initiate an action. For example, to make sure it transfers
outgoing messages in a timely manner, it could check its outgoing queues every 20
minutes, each time it is launched, and each time it receives a kMai | EPPCVsgPendi ng
event.

A few events are more than informational in nature. An MSAM must receive the

kMai | EPPCCr eat eSl ot , kMai | EPPCModi f ySI ot , kMai | EPPCDel et eSl ot

kMai | EPPCVsgOpened, and kMai | EPPCSendl nmredi at e events in order to take the
relevant actions. For these events, the Mai | EPPCMs g structure contains a pointer to an
SMCA structure. The MSAM needs to set the r esul t field of the SMCAstructure to
acknowledge the event or to report the outcome of its effort to handle the event.
Additionally, the IPM Manager informs the client if the event does not reach the MSAM.
(An MSAM cannot acknowledge or set a result for an event whose Mai | EPPCVsg
structure does not contain a pointer to an SMCAstructure.)

Once the MSAM sets the r esul t field to acknowledge the event or to signal completion,
the SMCAstructure is no longer valid.

An MSAM defines the error codes that it returns in response to the

kMai | EPPCCr eat eSl ot , kMai | EPPCModi f ySI ot , kMai | EPPCDel et eSl ot , and
kMai | EPPCVMsgOpened events. For the kMai | EPPCSendl nmedi at e event, it typically
should return the kMai | Sl ot Suspended or kMai | TooManyEr r result code.

AOCE High-Level Events

CHAPTER 2

Messaging Service Access Modules

System Location

The concept of location serves users with mobile Macintosh computers. Personal MSAMSs
must understand the concept of location, whereas server MSAMSs need not. A personal
MSAM, residing on a user’s Macintosh, must be aware of the possibility that the system
location may change. For instance, a personal MSAM installed on a PowerBook may be
launched at different locations, such as the user’s business office, the user’s home, a
customer site, an airport, and so forth. The personal MSAM is likely to be affected by
such changes of location. A fax MSAM, for example, would use different telephone
numbers when running at home or in the office; an Internet MSAM cannot work if a
TCP/IP network connection is not available.

After it is launched, a personal MSAM gets the current system location from the Setup
record in the Setup catalog. Then it determines, for each slot, whether the slot is active at
that location by checking the location flags in the slot’s standard slot information. See
the section “Initializing a Personal MSAM” on page 2-37 for a description of how you
do this.

If a slot is not active at the current location, the personal MSAM should not perform any
work on behalf of that slot. If none of the personal MSAM'’s slots are active at the current
location, the MSAM should quit.

If the system location changes, the IPM Manager sends the MSAM one

kMai | EPPCLocat i onChanged high-level event for each slot. The event tells the
MSAM the slot to which it applies, the current system location, and the location flags
for the slot. If the location flags show that the slot is inactive at the current location,
the MSAM should immediately stop performing any activity on behalf of the slot,
such as downloading or sending letters.

A user can activate or deactivate a mail slot in a given location. In response, the IPM
Manager updates the location flags in the Mai | St andar dSl ot | nfoAttri bute
structure for that slot and sends a kMai | EPPCLocat i onChanged high-level event to
the MSAM. At that point, the MSAM needs to determine if the slot is active at the
current location. If the slot is active, the MSAM should continue to act for the slot; if it
is not, the MSAM should cease acting for the slot.

Using the MSAM API

This section shows you how to

n determine whether the Collaboration toolbox is available
n launch a personal MSAM

n initialize personal and server MSAMs

n transfer an outgoing letter from an AOCE system to another messaging system

System Location 2-35

2-36

CHAPTER 2

Messaging Service Access Modules

n transfer an incoming letter from another messaging system to an AOCE system
n delete a message
n translate addresses

n log personal MSAM operation errors

Determining Whether the Collaboration Toolbox Is Available

Before calling any of the functions in the MSAM API, a server MSAM should verify

that the Collaboration toolbox is available by calling the Gest al t function with the
selector gest al t OCETool boxAt t r. If the Collaboration toolbox is present but not
running (for example, if the user deactivated it from the PowerTalk Setup control

panel), the Gest al t function sets the bit gest al t OCETBPr esent in the r esponse
parameter. If the Collaboration toolbox is running and available, the function sets the

bit gest al t OCETBAvai | abl e in the r esponse parameter. The Gestalt Manager is
described in the chapter “Gestalt Manager” in Inside Macintosh: Operating System Utilities.
Because a personal MSAM is launched by the IPM Manager, it can assume that the
Collaboration toolbox is available.

If you want to be informed when the IPM Manager starts up or shuts down, you can
install an entry in the AppleTalk Transition Queue (ATQ). Then the AppleTalk
Link-Access Protocol Manager calls your ATQ routine with the transition selector

ATTr ansl PMSt art when the IPM Manager has finished starting up and with the
selector ATTr ans| PMShut down when the IPM Manager has started to shut down. The
ATQ is described in the “Link-Access Protocol (LAP) Manager” chapter in Inside
Macintosh: Networking.

Determining the Version of the IPM Manager

To determine the version of the IPM Manager that is available, call the Gest al t
function with the selector gest al t OCETool boxVer si on. The function returns the
version number of the Collaboration toolbox in the low-order word of the r esponse
parameter. For example, a value of 0x0101 indicates version 1.0.1. If the Collaboration
toolbox is not present and available, the Gest al t function returns 0 for the version
number. You can use the constant gest al t OCETB for AOCE Collaboration toolbox
version 1.0.

Launching a Personal MSAM

A personal MSAM must be launched by the IPM Manager. If you launch a personal
MSAM in any other manner, it will not work properly with the IPM Manager.

If a personal MSAM is not already running, the IPM Manager launches it in response to
any of the following events:

n The MSAM’s setup template calls the Mai | Cr eat eMai | Sl ot or
Mai | Modi fyMai | Sl ot function.

Using the MSAM API

CHAPTER 2

Messaging Service Access Modules

n An application calls the Mai | WakeupPMSAMfunction.

n The MSAM'’s scheduled send or receive time occurs, or its send/receive time
interval elapses.

Initializing a Personal MSAM

Before the IPM Manager launches a personal MSAM for the first time, the setup template
you provide with your personal MSAM must obtain information about the MSAM,

the accounts on external messaging systems to which it will connect, and the catalogs
associated with those external messaging systems. It gets this information from the user
and stores it in the Setup catalog.

Once launched, a personal MSAM needs to obtain a variety of information, much of it in
the Setup catalog. The information includes:

n the current system location

n information about each slot for which it is responsible (each slot represents one
account on a messaging system)

n the incoming and outgoing queue references for each of its slots
n any additional configuration or private information it may require

A personal MSAM obtains much of the necessary information by reading records in the
Setup catalog. It then often copies this information into private structures.

The following steps illustrate a typical sequence of actions your MSAM can take to
obtain the necessary startup information after it has been launched:

1. Get the creation ID of the MSAM’s record in the Setup catalog by calling the
PMSAMGet MSAMRecor d function. Build a record ID that contains your MSAM’s
record creation ID.

2. Get the local identity by calling the Aut hGet Local | dent i t y function. If the user
hasn’t set up a local identity yet, the function returns the k OCESet upRequi r ed
result code. If the local identity is locked, the function returns the
kOCELocal Aut henti cati onFai | result code. In either case, call the
Aut hAddTolLocal | denti t yQueue function to be notified when the local identity
is set up and unlocked. If the Aut hGet Local | dent i t y function returned
kOCELocal Aut hent i cati onFai | , you can pass the locked local identity provided
by the function to the Di r LookupGet and Di r LookupPar se functions. Therefore,
you should proceed with the initialization process.

3. Get the reference number of the Setup catalog and the creation ID of the Setup
record by calling the Di r Get OCESet upRef numfunction. You need to provide the
catalog’s reference number in the dsRef Numfield of the Di r LookupGet and
Di r LookupPar se parameter blocks when you want to read the records in the
Setup catalog. You need the creation ID to build a record ID for the Setup record.

4. Get the current location from the Setup record in the Setup catalog by calling the
Di r LookupGet andDi r LookupPar se functions. As the target of the aRecor dLi st
field in the Di r LookupGet parameter block, specify the record ID of the Setup record.
You can set all fields of the record ID except the creation ID to ni | . Set the creation ID

Using the MSAM API 2-37

2-38

CHAPTER 2

Messaging Service Access Modules

to the value you obtained in the previous step. Instead of providing record location
information, you provide the catalog’s reference number in the dsRef Numfield of the
Di r LookupGet function’s parameter block. As the target of the at t r TypeLi st field
in the parameter block, specify the At t ri but eType structure referenced by the
attribute type index kLocat i onAt t r TypeNum The function reads the Setup record
and places the location information into a buffer in a private data format.

Call the Di r LookupPar se function to read the data in the buffer. The function calls a
callback routine that you provide and passes it a pointer to an At t r i but e structure
containing the location information (type OCESet upLocat i on) that you requested.

. Get a reference to each Mail Service or Combined record that belongs to the MSAM

by calling the Di r LookupGet and Di r LookupPar se functions. If you provide a

stand-alone MSAM, attributes for a slot and its associated catalog are stored in a Mail
Service and a Catalog record, respectively. If you provide a combined MSAM/CSAM,
attributes for a slot and its associated catalog are stored in a single Combined record.

As the target of the aRecor dLi st field in the Di r LookupGet parameter block,
specify the Recor dl Dstructure that you created that contains the creation ID of
your MSAM record. As the target of the at t r TypelLi st field in the parameter
block, specify the At t ri but eType structure referenced by the attribute type index
kMai | Servi ceAttr TypeNum The function reads the MSAM record and places the
packed record ID of each Mail Service or Combined record that it finds into a buffer in
a private data format.

Call the Di r LookupPar se function to read the data in the buffer. The function calls
your callback routine and passes it a pointer to an At t r i but e structure containing

a packed record ID that points to either a Mail Service or a Combined record. The

Di r LookupPar se function calls your callback routine once for each packed record

ID in the buffer, each of which corresponds to a slot for which your MSAM is
responsible. Now you know how many slots you are responsible for and in what
records their specific information is stored.

. Unpack the packed record IDs of the Mail Service or Combined records by calling the

OCEUnpackRecor dI D utility function.

. Get the slot ID, standard slot information, and associated catalog information for each

slot by calling the Di r LookupGet and Di r LookupPar se functions. As the target of
the aRecor dLi st field in the Di r LookupGet parameter block, specify the unpacked
record IDs that point to your Mail Service or Combined records. As the target of the
attr TypelLi st field in the parameter block, specify At t ri but eType structures that
are referenced by the following attribute type indexes: kSl ot | DAt t r TypeNum

kSt dSI ot | nf oAt t r TypeNum and kAssoDi rect or yAttr TypeNum

Call the Di r LookupPar se function. It repeatedly calls your callback routine and
passes it a pointer to an At t r i but e structure containing one of the record attributes
you requested for each of your Mail Service or Combined records.

The value of each kS| ot | DAt t r TypeNumattribute is the slot ID you previously
assigned to the slot while processing the kMai | EPPCCr eat eS| ot high-level event
for that slot. It is a number (type Mai | Sl ot | D) that uniquely identifies the slot. (If
you have never received and processed a kMai | EPPCCr eat eS| ot high-level event,
nokSl ot | DAt t r TypeNumattributes exist.)

Using the MSAM API

CHAPTER 2

Messaging Service Access Modules

10.

11.

The value of each kSt dSl ot | nf oAt t r TypeNumattribute is a

Mai | St andar dSI ot | nf oAt t ri but e structure that indicates if the slot is active
and provides its send and receive timer information. For each slot, you must
determine if the slot is active at the current system location. The act i ve field of the
Mai | St andar dSl ot | nf oAt t ri but e structure is a bit array; each bit corresponds to
a possible system location. If the slot is active at that location, the bit is set. You can
test the bits with the Mai | Locat i onMask macro (see page 2-115)

The value of each kAssoDi r ect or yAt t r TypeNumattribute is a packed record ID
that points to the Catalog record associated with this slot or to the Combined record.

. If you provide a stand-alone MSAM, unpack the packed record ID for each slot’s

associated Catalog record by calling the OCEUnpackRecor dI D utility function. (If
you provide a combined MSAM/CSAM, attributes for the slot and catalog are both
stored in the Combined record— you already unpacked the Combined record 1Ds.)

. Get information about the catalog associated with each slot by calling the

Di r LookupGet andDi r LookupPar se functions. As the target of the aRecor dLi st
field in the Di r LookupGet parameter block, specify the unpacked record IDs that
point to your Catalog or Combined records. As the target of the at t r TypelLi st

field in the parameter block, specify Att ri but eType structures that are
referenced by the following attribute type indexes: kComment At t r TypeNum

kReal NaneAt tr TypeNum and kDi scri m nat or At t r TypeNum If you provide a
combined MSAM/CSAM, also specify kSFl agsAt t r TypeNum

Call the Di r LookupPar se function. It repeatedly calls your callback routine and
passes it a pointer to an At t r i but e structure containing one of the attributes you
requested from each Catalog or Combined record. Table 2-8 on page 2-40 describes
the information contained in those attributes.

Get the user’s account name and decrypted password by calling the
OCESet upGet Di r ect or yI nf o function. If the local identity is still locked, this
function returns an error. You cannot proceed until the local identity is unlocked.

Note that the value of the nat i veNan® field returned by the

OCESet upGet Di r ect or yI nf o function is the value of the Real Name attribute
(kReal NameAt t r TypeNumn) in the Catalog or Combined record. The content and use
of the Real Name attribute and the nat i veNane field are defined by the personal
MSAM and its setup template. A setup template can store the user’s account name

in the Real Name attribute.

At this point, you have obtained all of the standard information stored in your MSAM
and Combined records (or MSAM, Mail Service, and Catalog records) in the Setup
catalog. Using the Di r LookupGet and Di r LookupPar se functions, you may read
other attributes of private types that your setup or address template has added to

the records.

Get the incoming and outgoing queue references for each of the slots by calling the
PMSAMOpenQueues function for each slot.

Using the MSAM API 2-39

CHAPTER 2

Messaging Service Access Modules

Now the personal MSAM can begin performing its primary functions of translating and
transferring messages between an AOCE system and external messaging systems.

Table 2-8 Selected Catalog record attributes

Data type of

Attribute type attribute value Description
kDi scrim natorAttr TypeNum Di r Di scri m nator Discriminator value for this catalog.
kSFl agsAttr TypeNum | ong Bit array indicating the features

supported by this catalog. Present for
combined MSAM/CSAM only.

kComrent Att r TypeNum RString Displayable string describing this

catalog/external messaging system.

kReal NaneAttr TypeNum RString Defined by the MSAM and its setup

2-40

template. For example, it may be the
user’s account (logon) name or the
name of the external messaging
system and its address catalog.

The chapter “Service Access Module Setup” in this book describes the information that
your setup template obtains from the user and stores in the Setup catalog as well as the
process it uses to do so. See the chapter “Catalog Manager” in Inside Macintosh: AOCE
Application Interfaces for descriptions of the Di r Get OCESet upRef num Di r LookupGet
and Di r LookupPar se functions. For a description of the OCEUnpackRecor dI D
function and the record and attribute type indexes, see the chapter “AOCE Utilities” in
Inside Macintosh: AOCE Application Interfaces. The OCESet upGet Di r ect oryl nf o
function is described in the chapter “Authentication Manager” in Inside Macintosh: AOCE
Application Interfaces.

Initializing a Server MSAM

The first time a server MSAM is launched, it needs to solicit user input to obtain
information about itself. Then it initializes itself within the AOCE system by calling
the SMSAMSet up and SMS5AMSt ar t up functions.

The SM5AMSet up function creates the server MSAM'’s Forwarder record. The Forwarder
record (record type index kMnM~or war der Rec TypeNumj contains information about
the server MSAM. The Forwarder record name is the name of the server MSAM. The
record contains the record ID of the MSAM’s PowerShare mail server, an optional
comment string describing the server MSAM, and a list of the foreign dNodes to which
the server MSAM is connected. (See the chapter “Catalog Manager” in Inside Macintosh:
AOCE Application Interfaces for information about PowerShare catalogs, dNodes, and
foreign dNodes, as well as other concepts that pertain to AOCE catalogs.)

Using the MSAM API

CHAPTER 2

Messaging Service Access Modules

After being launched for the first time, a server MSAM must find out its name,
password, messaging system extension type, and a descriptive comment string about
the extension type. The MSAM should display one or more dialog boxes to obtain its
name and password from the system administrator. Typically, an MSAM has built-in
knowledge of the extension type it supports and a descriptive comment string about
the extension type; if it does not, it must obtain that information from the system
administrator.

Once a server MSAM has all this information, it calls the SMSAMSet up function to
create its Forwarder record. Prior to calling the function, the MSAM must allocate a
Recor dl Dstructure for its Forwarder record. Then the MSAM sets the r ecor dNamne
field to its name that the user provided, and the r ecor dType field to the constant
kMhMFor war der Rec TypeNum The MSAM passes to the function a pointer to the
Recor dI Dstructure, the MSAM'’s password, its extension type, and a string describing
its extension type. In the Recor dl Dstructure, the function returns the creation 1D for
the newly created Forwarder record and the record location information. In the

cat al ogSer ver Hi nt field, the function returns the AppleTalk address (an Addr Bl ock
structure) of the PowerShare catalog server that created the Forwarder record. The
MSAM can pass this address to a Catalog Manager function (in the ser ver Hi nt field of
the function’s parameter block) if it wants to direct the request to that particular catalog
server. This can be helpful in preventing failures in the setup process due to delays in
replicating the MSAM’s Forwarder record.

During the execution of the SMSAMSet up function, the PowerShare mail server prompts
the user for the system administrator’s name and password. You may find it helpful to
consult the PowerShare System Manager’s Guide, which describes the setup process from
the system administrator’s perspective.

If the system administrator does not provide this information, the function returns an
error. The function will also return an error if

n the PowerShare catalog server was unreachable

n the MSAM’s name is not unique

n the disk is full

n an error occurred in creating the Forwarder record (any record creation error)

If an error occurs, the MSAM must display an appropriate dialog box telling the user
about the error. If the PowerShare catalog server was unreachable, the MSAM should
give the user the option of trying the operation again and, if the user chooses to try
again, the MSAM should call the SM5AMSet up function once more. If the user chooses
not to try again, the MSAM should quit. If the MSAM’s name was not unique, the
MSAM should allow the user to enter another name. In any error, the MSAM should fix
the problem when it can or quit when it cannot. Until the SMSAMSet up function
executes successfully, the MSAM cannot proceed with its initialization process.

When the SMSAMSet up function completes successfully, the server MSAM must save
knowledge of this fact so that if it is launched again in the future, it does not call the
SMBAMBet up function again. It is recommended that the server MSAM create a
preferences file in the Preferences folder and save the record ID of its Forwarder record
in its preferences file.

Using the MSAM API 2-41

2-42

CHAPTER 2

Messaging Service Access Modules

Once the SMS5AMSet up function completes successfully, the server MSAM should call
the Aut hBi ndSpeci fi cl denti ty function, providing the record ID of its Forwarder
record and its encrypted password, to obtain its authentication identity. Once a server
MSAM has obtained its authentication identity, it should provide that information on
subsequent calls to AOCE functions that require an identity.

At this point, the server MSAM may present dialog boxes to the user to obtain any
additional configuration information it needs to function within an AOCE system and to
connect to its external messaging system, such as an IP address, a telephone number,
how often it should connect, and so forth. In general, an MSAM should ask for more
generic information first—that is, information that applies independently of a messaging
system. Then it should prompt for specific information for each messaging system that it
supports. It should then add this information to its Forwarder record in MSAM-defined
attribute types.

Note

In addition to its Forwarder record, a server MSAM should store a copy
of its configuration information in its preferences file for quick, efficient
access.

A server MSAM should keep a backup copy of its preferences file in

case the file is lost or damaged. If its preferences file is lost or damaged
and a server MSAM does not have a backup copy, it can retrieve the
information stored in the MSAM’s Forwarder record and rebuild the file.
To read its Forwarder record, an MSAM must have the Forwarder record
ID (which it obtains from the SM5AMSet up function). u

As the final step in the server MSAM’s initialization process, the MSAM calls the
SMBAMSt ar t up function to obtain a reference number for its outgoing queue. After
the SMSAMSE ar t up function completes successfully, the PowerShare mail server
may send high-level events to the server MSAM. The MSAM should respond to
high-level events, connect to external messaging systems, and begin to translate and
transfer messages.

A server MSAM must run on the same Macintosh computer as its PowerShare mail
server. If the PowerShare mail server is not running, the SMSAMSt ar t up function
returns the cor Er r result code. You can detect when the PowerShare mail server
becomes available by

n repeatedly calling the Gest al t function and using the
gest al t OCESFSer ver Avai | abl e mask onitsr esponse parameter to determine if
a PowerShare mail server is running on the local Macintosh computer

n repeatedly calling the SMSAMSt ar t up function

n adding an entry to the AppleTalk Transition Queue and waiting to receive a
notification that the PowerShare mail server is available

Using the AppleTalk Transition Queue is the recommended approach. The transition
event code ATTr ansSFSt ar t indicates that the PowerShare mail server has finished
starting up, and the code ATTr ans SFShut down indicates that the PowerShare mail
server has started to shut down.

Using the MSAM API

CHAPTER 2

Messaging Service Access Modules

The AppleTalk Transition Queue is described in the chapter “Link-Access Protocol (LAP)
Manager” in Inside Macintosh: Networking.

If the PowerShare mail server quits, your queue reference becomes invalid. You know
that the PowerShare mail server is not running when any of the MSAM API functions
return the cor Er r result code or you receive notification of the ATTr ans SFShut down
AppleTalk transition event. If the PowerShare mail server quits unexpectedly, you do not
receive an AppleTalk transition event.

When it starts up again, the PowerShare mail server does not know that your server

MSAM exists. You need to call the SMSAMSt ar t up function again to get a new queue
reference. You detect the restarting of the PowerShare mail server by any of the three
methods listed previously.

If the PowerShare mail server quits, your server MSAM can keep running. Although you
can no longer retrieve messages from your outgoing queue, you can continue to process
any outgoing messages you queued separately. You can mark recipients and send reports
for those messages after the PowerShare mail server resumes operations. If you have a
separate spool area to hold them, you can continue to process incoming messages while
the PowerShare mail server is not running.

Handling Outgoing Messages

This section describes what you need to do with messages in an outgoing queue. It
assumes you have already initialized your MSAM. Each subsection addresses a specific
task, such as

n enumerating messages in an outgoing queue
n opening and closing messages

n determining the message family

n determining what is in a message

n reading letter attributes

n reading addresses

n reading letter content

n reading nested messages

n marking recipients

n generating reports

There are some differences between how you read letters and how you read non-letter
messages. These differences are noted in the sections that address the specific tasks. For
convenience, Table 2-9 lists the tasks you perform while handling messages in an
outgoing queue and the functions you use to accomplish the task for a letter and a
non-letter message.

Using the MSAM API 2-43

CHAPTER 2

Messaging Service Access Modules

Table 2-9 Outgoing tasks and functions

Task Letters Non-letter messages

Enumerate a queue MSAMEnuner at e MSAMENnunmer at e

Open a message MSAMOpen MSAMOpen
MSAMXpenNest ed MSAMOXpenNest ed

Read header information MBAMZet At t ri but es MBAMzet MsgHeader
MBAMZet Reci pi ent s MBAMZet Reci pi ent s

Read letter content MBAMzet Cont ent Not applicable

Read an enclosure MBAMzet Encl osur e Not applicable

Enumerate a block MSAMENnuner at eBl ocks MSAMENnumer at eBl ocks

Read a block MSAMCet Bl ock MSAMCGet Bl ock

Close a message MBAMC ose MBAMC ose

Generate a report MSAMCr eat eRepor t MSAMCr eat eRepor t
MBAMPuUt Reci pi ent Report MBAMPuUt Reci pi ent Report
MBAMBuUbmi t MBAMBUbmi t

Mark a recipient MBAVnhMar kReci pi ent s MBAVhMar kReci pi ent s

Set message status PMBAMBet St at us PMSAMSet St at us

(personal MSAMs only)

2-44

The order in which functions are listed in Table 2-9 corresponds to the sequence in which
you would call the functions to process a message in an outgoing queue. You first
enumerate the messages in the queue. Then you open a specific message and read its
header information. Header information consists of such items as the message creator
and type, and address (recipient) information. Next, you read the substance of the
message—for a letter, its content block, other blocks it may contain, and enclosures; for a
non-letter message, its blocks. When you have finished reading the message, you close it.
After you have transmitted the message to the recipients for which you are responsible,
you indicate the outcome of your delivery attempts—that is, you generate a report
containing delivery and non-delivery indications if required and mark the recipients.
Setting the status of a message is a task that you perform at several points while you are
processing the message.

You should call the functions that handle outgoing messages asynchronously so that you
can receive and process an AOCE high-level event at any time.

Enumerating Messages in an Outgoing Queue

Before you can read a message from an outgoing queue, you must obtain its sequence
number. A sequence number uniquely identifies the message in the queue. You provide
it when you open the message. You get the sequence number of a message by calling the
MBAMENnumer at e function.

To make sure it transfers outgoing messages in a timely manner, an MSAM should
enumerate an outgoing queue on a regular basis. The MSAM should enumerate each

Using the MSAM API

CHAPTER 2

Messaging Service Access Modules

time it is launched and each time it receives a kMai | EPPCMsgPendi ng event. It should
also enumerate at periodic intervals—for instance, every 20 minutes. If an MSAM puts
itself into an idle state, it should enumerate before entering the idle state. A personal
MSAM should also enumerate when it receives a kMai | EPPCSchedul e event.

Listing 2-1 illustrates one way that you can enumerate messages in an outgoing queue.
For convenience, the function DoEnuner at eQut goi ngMessages in Listing 2-1 defines
the type MyEnunOut QRepl yType, a structure that contains a buffer that can hold a
2-byte count value plus exactly one MSAMEnurer at eCut QRepl y structure. As a result,
each time DoEnunrer at eQut goi ngMessages calls the MSAMEnurer at e function,
MSAMENnumer at e returns exactly one MSAMEnumer at eQut QRepl y structure, which
provides identifying information about one message in the queue, including its
sequence number.

Before the DoEnuner at eQut goi ngMessages function calls the MSAMEnuner at e
function, it always initializes the fields of the parameter block. It sets the queue reference
to an outgoing queue reference previously obtained from the PMSAMOpenQueues
function. The first time through the loop, DoEnurmer at eQut goi ngMessages sets the
starting sequence number to 1 to start with the first message in the queue. On subse-
quent executions of the loop, it sets the starting sequence number to the sequence
number of the next message in the queue, which is returned by MSAMEnuner at e.

The DoEnuner at eQut goi ngMessages function calls the MSAMEnuner at e function
once for each message in the queue. Into your buffer, MSAMEnuner at e places the count
of the number of MSAMEnuner at eOQut QRepl y structures followed by the reply
structures themselves. In Listing 2-1, the count is always 1.

Listing 2-1 Enumerating outgoing messages

OSErr DoEnuner at eQut goi ngMessages(MSAMQueueRef myQut goi ngQRef)

{

typedef struct MyEnumOut QRepl yType {
Mai | Repl y reply; /* nunmber of structures returned */
MBAMEnumer at eQut QRepl y message; /* enunerate reply structure */

} MyEnunmQut QRepl yType;

CSErr nmyErr;
MBAMENnuner at ePB my Par anBl ock;
MyEnuntut QRepl yType nyEnunut QRepl y;
| ong my Next MsgSeq;

my Next MsgSeq = 1;

nyErr = nokrr;

Using the MSAM API 2-45

2-46

CHAPTER 2

Messaging Service Access Modules

do {

}

nmyPar anmBl ock. i oConpl eti on
myPar anBl ock. queueRef

myPar anBl ock. st art SegNum

myPar anBl ock. buf fer. buffer Si ze
myPar anBl ock. buf f er. buf fer

(ProcPtr) DoMSAMConpl eti on;
my Qut goi ngQRef ;

my Next MsgSeq;

si zeof (MyEnunut QRepl yType) ;
(Pt r) &ryEnunQut Qrepl v;

MSAMENnuner at e((MBAMPar am *) &nyPar anBl ock, true) ;
[* poll for conpletion */

myErr = DoWai t PBDone(&mryPar anBl ock) ;
my Next MsgSeq = nyPar anBl ock. next SeqNum

/* save the MSAMEnunerateQut QReply structure */
DoSaveDat a((Pt r) &ryEnunmOut QRepl y) ;

while (nmyErr == noErr && myNext MsgSeq != 0);

return nyErr;

The DoWai t PBDone function, called here and in the listings in the following sections,
polls the i oResul t field to determine when an asynchronous request has completed.
While it is polling, it also yields time to other processes running on the computer by
calling the Wai t Next Event function. When the MSAMEnuner at e function completes,
DoWai t PBDone returns the MSAMEnunmer at e result code as its result code.

The DoMSAMConpl et i on completion routine, called when the MSAMEnurer at e function
completes execution, calls the WakeUpPr ocess function. Then WAkeUpPr ocess makes
the MSAM process, which suspended itself by calling the Wai t Next Event function,
eligible to receive CPU time.

After the MSAMEnuner at e function completes, DoEnuner at eCQut goi ngMessages
saves the enumeration information elsewhere by calling its DoSaveDat a function. It
needs to do this because MSAMEnuner at e overwrites the MyEnumOut QRepl yType
structure each time through the loop.

Opening and Closing a Message

Before you can read any part of an outgoing message, you must open it. To open a
specific message, you call the MSAMOpen function and provide the queue reference of
the outgoing queue in which the message is located and the sequence number of the
message. The MSAMOpen function returns a reference number for the opened message
that you use when you call other functions to read the various parts of the message, such
as the message header, recipient information, and the content data in the message. If the
message is a letter, you can also read the letter’s attributes. You cannot modify a message
in an outgoing queue.

Using the MSAM API

CHAPTER 2

Messaging Service Access Modules

When you have finished reading a message, call the MSAMCl ose function to close it.
Closing a message reduces PowerTalk software memory requirements. Once you have
closed a message, the message reference number is no longer valid, even though

the message itself remains in the outgoing queue. If you want to read any part of the
message again, you must call the MSAMOpen function and get a new reference number.
You can open and close a message as many times as you wish.

Determining the Message Family

You must determine if a message that you want to read is a letter or a non-letter message
because the functions you use to read a letter or a non-letter message differ somewhat (see
Table 2-9 on page 2-44). You determine the message family to which a message belongs
by examining the nsgFamni | y field in the MSAMEnuner at eQut QRepl y structure.
Letters may belong to either the kMai | Fani | y orkMai | Fami | yFi | e family. Non-
letter messages belong to the kI PMFami | yUnspeci fi ed family. Once you know the
message family, you can call the appropriate MSAM functions to read the attributes,
addresses, and contents of the letter or non-letter message.

Determining What Is in a Message

Typically, when you read a letter, you call the MSAMGet Cont ent , MSAMGet Bl ock,
MBAMZet Encl osur e, and MSAMOpenNest ed functions to read the letter’s content
block, image block, enclosures, and nested letter, respectively.

When you want to read a non-letter message, you need to enumerate the blocks in the
message. The MSAMEnurrer at eBl ocks function returns each block’s creator and type,
its offset in bytes from the beginning of the message, and its length in bytes. When you
want to read a given block, you call the MSAMzet Bl ock function and provide the
block’s creator and type.

Reading Letter Attributes

Every letter contains attributes that provide information about the letter, such as whether
the sender wants to receive a report containing delivery or non-delivery indications,
when the letter was sent, and so forth. You should read this information and include in
the letter as much of the information as is meaningful in your messaging system. You
can read most letter attributes with the MSAMCGet At t r i but es function. However, to
read the recipients of a letter—the fromt o, cc, and bcc attributes—you call the
MBAMZet Reci pi ent s function.

To the MSAMGet At t r i but es function, you provide a set of bit flags, known as the request
mask, that represents the attributes whose values you want to read and a buffer to hold
the attribute values. The Mai | At t ri but eBi t map structure, described on page 2-100,
defines the attributes that the bit flags in the request mask represent. The function
returns a second set of bit flags, known as the response mask, that indicates which of the
requested attribute values it has returned in your buffer.

Using the MSAM API 2-47

CHAPTER 2

Messaging Service Access Modules

The function DoReadLet t er At t ri but es in Listing 2-2 shows how you can

request attribute values, test for their presence in your buffer, and save the value

in afile. The DoReadLet t er Att ri but es function defines the structure type

Maxi munmlet t er Attri but es that is large enough to hold a value for each

of the attributes that the MSAMGet At t ri but es function can return. The

DoReadLett er Att ri but es function declares a variable of that type, myAt t ri bBuf,
and sets a pointer, myAt t ri bPt r, to point to the start of the buffer. Next, it initializes
the request mask to 0 and then sets the request mask to specify every attribute that

the MSAMzet At t ri but es function can return. If the messaging system to which you
provide access does not use some of this information, don’t ask for it. For instance, if
you know that your messaging system does not understand a reply ID, do not set the
bit for the reply ID in the attribute request mask.

Note

Because the Mai | Attri but eBi t map data type is defined as a

bit field structure, you cannot use predefined masks such as

kMai | Subj ect Mask, kMai | MsgTypeMask, and so forth to set or test
the value of a bit field in a variable of type Mai | Attri but eBi t map.
The masks operate on variables of type | ong. u

After the DoReadLet t er At t ri but es function sets its attribute request mask, it calls
the MSAMGet At t ri but es function. The MSAMGet At t ri but es function returns the
attributes that you request (if they are present in the letter header) packed into your
buffer, starting with the attribute specified by the least significant bit in the request mask.
The MSAMGet At t ri but es function also sets the bits in the response mask
corresponding to those attributes for which it returned a value.

Next, DoReadLet t er Att ri but es tests the bits in the response mask to find

out which attributes are in the buffer. Initially, myAt t ri bPt r points to the
beginning of thenyAt t r i bBuf buffer. For each bit in the response mask that is set,
DoReadLet t er At tri but es writes the corresponding attribute value to a file and
adds the size of the attribute value’s data type to nyAt t ri bPt r to position the
pointer to the start of the next attribute value in nyAt t ri bBuf .

Listing 2-2 Reading letter attributes

OSErr DoReadLetter Attri butes(Mail MsgRef myMail Ref)

{

/* maxi mum si ze structure for calling MSAMGet Attributes */

typedef str

Mai | | ndi
OCECr eat
Mai | Lett
Mai | Ti me
Mai | Nest
CSType

Mai | Lett

2-48

uct Maxi munmlietterAttributes {

cations i ndi cations;

or Type nmsgType;

erlD letterl D
sendTi neSt anp;

i ngLevel nestingLevel;
messageFam | y;

erlD replyl D;

Using the MSAM API

CHAPTER 2

Messaging Service Access Modules

Mai | Letterl D conversationl D,
RString subj ect ;
} Maxi nunletterAttri butes;

CSErr nmyErr;

MBAMGet At t ri but esPB my Par anBl ock;

Mai | Attri buteBitmap myRequest Bi t map;

Maxi mumLetter Attri butes nyAttri bBuf;

char *nyAttribPtr;

| ong *myC ear Bi t map;

myAttribPtr = (char *)&nyAttri bBuf; [* point to start of buffer */

/[* initialize the request mask to 0 */
myCl ear Bi t map (long *)&nyRequest Bi t map;
*myd ear Bi t map oL;

/* set bits for the attributes you want */

myRequest Bi t map. i ndi cati ons = nyRequest Bi t map. negType =
myRequestBitmap. l etterI D = nyRequest Bi t map. sendTi neSt anp
myRequest Bi t map. nesti ngLevel = nyRequestBit map. nsgFani |y
myRequest Bi t map. repl yl D = nmyRequest Bi t map. conversati onl D
myRequest Bi t map. subj ect = 1;

[* fill in the fields of the paranmeter block */

myPar anBl ock. i oConpl eti on = (ProcPtr) DoMSAMConpl et i on;

myPar anBl ock. mai | MsgRef myMai | Ref ;

myPar anBl ock. r equest Mask myRequest Bi t map;

myPar anBl ock. buf fer. bufferSi ze = si zeof (Maxi nunietterAttri butes);
myPar anBl ock. buf f er. buf f er = nyAttribPtr;

myPar anBl ock. nor e = fal se;

[* call function to get the attributes */
MBAMZet At t ri but es((MSAMPar am *) &y Par anBl ock, true) ;
myErr = DoWai t PBDone(&ryPar anBl ock) ;
if (nyErr!=noErr)
return nyErr;

/* save returned attributes to disk */
i f (nyParanBl ock. responseMask. i ndi cations) {
myErr = DoWiteToFil e(kMillndicati onsMask, nyAttribPtr,
si zeof (Mai | I ndi cati ons));

Using the MSAM API 2-49

/*

*/

2-50

CHAPTER 2

Messaging Service Access Modules

if (nyErr!=noErr)
return nyErr;
myAttribPtr += sizeof (Maillndications);

(myPar anBl ock. responseMask. msgType) {
myErr = DoWiteToFil e(kMail MsgTypeMask, nyAttribPtr,
si zeof (OCECr eat or Type)) ;
if (nyErr!=noErr)
return nyErr;
myAttribPtr += sizeof (OCECreat or Type);

(myPar anBl ock. responseMask. |l etterl D) {
myErr = DoWiteToFil e(kMail Letterl DVask, nyAttribPtr,
si zeof (Mai |l LetterlD));
if (nmyErr!=noErr)
return nyErr;
myAttribPtr += sizeof (Mail LetterlD);

Test for presence of the send tine stanp, nesting | evel, nessage
famly, reply ID, and conversation ID attributes. If present, wite
themto file.

(myPar anBl ock. responseMask. subj ect) {
myErr = DoWiteToFil e(kMail Subj ect Mask, nyAttribPtr, sizeof (RString));
if (nyErr!=noErr)
return nyErr;
myAttribPtr += sizeof (RString);

You can read information such as the message creator and message type from the
message header of non-letter messages by calling the MSAMGet MsgHeader function.

Interpreting Creator and Type for Messages and Blocks

An outgoing message may have any message creator and any message type. Typically,
an application that generates a message uses its own application signature as the
message creator and its document type as the message type.

The message creator value ' | ap2' indicates that the AppleMail application created
the message.

Using the MSAM API

CHAPTER 2

Messaging Service Access Modules

If the message type of an outgoing message is kMai | Lt r MsgType, the message is a
letter that contains any or all of the following: data in standard interchange format, data
in image format, or a regular enclosure.

Each block in an outgoing message has a block creator and block type. The AppleMail
application sets the block creator to kMai | Appl eMai | Cr eat or for blocks that it
creates. The block types that you may find in a letter are listed in Table 2-3 on page 2-18.

Reading Addresses

When you read the addresses associated with an outgoing message, you must get both
the original and the resolved recipients for that message. That gives you complete
addressing information for both display and routing purposes.

An original recipient can be a To, From, cc, or bcc recipient. These four types of original
recipients are defined as follows:

n From: the sender of a message
n To:a primary recipient of a message
n CC: a secondary recipient receiving a copy of a letter

n bcc: a secondary recipient whose address does not appear on the letter as received by
the To and cc recipients and other bcc recipients

An original recipient may be a group address (distribution list).

Aresolved recipient is a recipient to which you are responsible for delivering the
message. Usually, a resolved recipient is an individual address; sometimes it can be a
group address.

Reading Original Recipients

To get a list of original recipients, you call the MSAMGet Reci pi ent s function. You need
to get original recipients so that you can properly display them as From, To, cc, or bcc
recipients in the message you send to an external messaging system. The function
returns information about one type of original recipient. You specify the type of original
recipient you want by setting the att r | Dfield of the MSAMGet Reci pi ent sPB
parameter block appropriately. You can set the at t r | Dfield to any of the following
constants:

Constant Value Recipient type
kMai | FronBi t 12 From

kMai | ToBi t 13 To

kMai | CcBi t 14 cc

kMai | BccBi t 15 bce

If you are reading a letter, you need to get each original recipient type so that when you
translate the letter, it includes display information about all of the recipients. Display
address information refers to an address that may not be usable for routing within a
given messaging system but nevertheless shows that the letter went to the addressee.

Using the MSAM API 2-51

2-52

CHAPTER 2

Messaging Service Access Modules

(A bcc recipient is an exception, as it should be displayed only to the sender and the bcc
recipient itself.)

If you are reading a non-letter message, the only original recipient types that apply are
From and To. You may not need to get display information. If that is the case, do not call
the MSAMzet Reci pi ent s function to retrieve the To recipients. You may still want to
call it to get the From recipient. (You could also get the From recipient by calling the
MBAMCet MsgHeader function.)

When a letter has a bcc recipient, you must make every attempt to conform to the
following AOCE guidelines for bcc recipients: A bce recipient must know that he or she
is a bce recipient. A To or a cc recipient must not see any bcc recipient. It is less desirable,
but acceptable, for a bce recipient to see other bcce recipients.

To support these guidelines, your MSAM may need to generate a separate copy of the
letter for each bcc recipient for which it is responsible or employ other implementations
that are less straightforward or more expensive than usual. As a last resort, if your
MSAM cannot support AOCE guidelines, it must reject bcc recipients. In that case, it
must still apply the guidelines to the letter—that is, no other recipient must know of the
bcce recipients.

Reading Resolved Recipients

To get a list of resolved recipients, call the MSAMzet Reci pi ent s function and specify
the kMai | Resol vedLi st constantintheatt r| D field of the MSAMzet Reci pi ent sPB
parameter block. You need to get a list of resolved recipients so that you know to which
recipients you must send the message.

As you read the Mai | Resol vedReci pi ent structures that the MSAMGet Reci pi ent s
function places in your buffer, you must save the ordinal-position value for each
resolved recipient. The first recipient’s ordinal-position value is 1; the second recipient’s
ordinal-position value is 2; and so forth. The MSAMhMar kReci pi ent s function requires
you to provide the ordinal-position value to identify a recipient for whom you have
completed delivery attempts. If you need to call MSAMGet Reci pi ent s more than

once to get all of the resolved recipients, you must increment the ordinal-position

value continuously so that each resolved recipient is associated with a unique ordinal-
position value.

Personal MSAMs always find a one-to-one correspondence between their resolved
recipients and their displayable (original) recipients because the MSAMGet Reci pi ent s
function expands all group addresses into individual recipients before it returns
recipient information to the personal MSAM.

Server MSAMs may find more recipients in the resolved list than in the displayable
lists for this reason: the PowerShare mail server expands PowerShare group addresses
into individual addresses for the resolved list, but the original recipient lists may

have included PowerShare group addresses that were not expanded. The

MBAMCet Reci pi ent s function does not expand external group addresses.

Server MSAMSs may also find that there are recipients in the resolved list that are not
exactly the same as the corresponding recipients in the original list. These have been
resolved by the AOCE software to a more specific form.

Using the MSAM API

CHAPTER 2

Messaging Service Access Modules

The PowerShare mail server does not suppress duplicate external addresses. It does
suppress duplicate addresses resulting from the expansion of a PowerShare group
address. However, you are not guaranteed that the MSAMGet Reci pi ent s function will
not return duplicate PowerShare addresses.

Listing 2-3 illustrates a dispatch routine that calls the DoReadGener i cAddr ess
function (shown in Listing 2-4 on page 2-55) to get a list of resolved recipients and lists
of the original recipients that are appropriate to a letter or a non-letter message.

Listing 2-3 Getting resolved and original recipients

OSErr DoReadAddr ess(Mai | MsgRef nyMsgRef)

{

FSSpec my TenpFi | eSpec;
CSErr nmyErr;

[* initialize the file specification */

myErr = DoReadGeneri cAddress(&y TenpFi | eSpec, nyMsgRef,
kMai | Resol vedLi st);
if (nmyErr!= nokErr)
return nyErr;

myErr = DoReadCeneri cAddress(&myTenpFi | eSpec, nyMsgRef, kMail FronBit);
if (nyErr!= noErr)
return nyErr;

myErr = DoReadGeneri cAddress(&y TenpFi | eSpec, nyMsgRef, kMail ToBit);
if (nyErr!= noErr)
return nyErr;

if (nyMsg->nsgFanmily == kMailFamly) { /* it's a letter */
myErr = DoReadCeneri cAddress(&nyTenpFil eSpec, nyMsgRef, kMail CcBit);
if (nyErr!= noErr)
return nyErr;

myErr = DoReadGeneri cAddress(&y TenpFi | eSpec, nyMsgRef, kMail BccBit);
if (nyErr!= noErr)
return nyErr;

return nyErr;

Using the MSAM API 2-53

2-54

CHAPTER 2

Messaging Service Access Modules

The function DoReadGener i cAddr ess shown in Listing 2-4 actually reads the addresses
from an outgoing message and writes them to a disk file. The DoReadGener i cAddr ess
function takes three parameters: the file system specification of a temporary disk file to
which it writes the addresses, the message reference number for a given message, and an
attribute ID that identifies the type of address that the caller wants to retrieve from the
message.

First DoReadGener i cAddr ess allocates a buffer, pointed to by the addr essBuf f er
field, that it uses to hold addresses returned by the MSAMZet Reci pi ent s function. It
sets the size of the buffer to 1024 bytes. Your MSAM should determine the buffer size
that is appropriate for your needs.

Next, DoReadGener i cAddr ess determines if it is handling a request to get resolved or
original recipients and sets the doi ngResol ved Boolean variable accordingly. If it is
handling resolved recipients, DoReadGener i cAddr ess initializes its local variable
or di nal Posi ti onto0.Itusesordi nal Posi ti on to save the ordinal position of each
resolved recipient. It needs this information to mark a recipient when it has finished its
efforts to deliver the letter to the recipient. The ordinal-position value must be unique for
each recipient.

Then, DoReadGener i cAddr ess fills in all but one of the fields of the local variable
myPar anBl ock, which is an M5SAMGet Reci pi ent sPB parameter block. It sets the
myPar anBl ock.nai | MsgRef field to its message reference number parameter

(myMai | Ref) to identify the message and sets the nyPar anBl ock.at t r | Dfield to its
attribute 1D parameter (at t r | D) to indicate which type of address (To, From, cc, bcc,
or resolved) it wants the MSAMGet Reci pi ent s function to return. Although the

next | ndex and nor e fields are outputs of the MSAMGet Reci pi ent s function,
DoReadGener i cAddr ess sets them here to execute the f or statement that follows
and to initialize the myPar anBl ock.st ar t | ndex field properly the first time through
the loop.

To accomplish its main work, DoReadGener i cAddr ess usestwo f or loops, one nested
inside the other. Note that the outer f or statement contains only the logical expression
controlling the iteration of the loop. The loop executes as long as the value of

my Par amBl ock.nor e ist r ue and no error has occurred. The MSAMGet Reci pi ent s
function sets the nor e field to t r ue when there are more addresses to return than it
could fit into the caller’s buffer.

The outer f or loop sets the nyPar anBl ock.st art | ndex field to the value of the
myPar anBl ock.next | ndex field, which it previously set to 1. This tells the
MBAMZet Reci pi ent s function that it should begin returning addresses starting
with the first address of the specified type. Then DoReadGener i cAddr ess calls
MBAMZet Reci pi ent s asynchronously and polls for its completion.

If no error has occurred, DoReadGener i cAddr ess initializes two variables used by the
innerf or loop. The MBAMGet Reci pi ent s function always puts at the beginning of
your buffer the count of the number of addresses it placed in your buffer, followed by
the addresses themselves. Therefore, DoReadGener i cAddr ess setsr eci pi ent Pt r to
point into the address buffer at the byte where address information actually begins,
skipping over the count. It next sets the variable nunReci pi ent s to the count of the

Using the MSAM API

CHAPTER 2

Messaging Service Access Modules

number of addresses in the buffer. Then, it executes the inner f or loop to manipulate the
addresses returned in the buffer.

The inner f or loop extracts an address from the buffer and writes it to a disk file.

It executes until all of the addresses have been extracted and written or until an

error occurs. For convenience, DoReadGener i cAddr ess defines two new types,

Mai | Ori gi nal Reci pi ent Ext andMai | Resol vedReci pi ent Ext . Each consists of
aMil Ori gi nal Reci pi ent or Mai | Resol vedReci pi ent structure, respectively,
followed by an OCEPackedReci pi ent structure. The new types enable
DoReadGener i cAddr ess to manipulate all of the relevant information associated
with a particular address using a single structure.

If it is extracting resolved recipients, DoReadGener i cAddr ess first increments

the or di nal Posi ti on local variable. Then it sets the pointer r esol vedPt r to
reci pi ent Pt r, which in turn points to the beginning of the first resolved address.
The DoReadGener i cAddr ess function writes the Mai | Resol vedReci pi ent Ext
structure to a disk file, tagging it with its address type (attribute ID) and ordinal-position
value for later identification. Once that is done, DoReadGener i cAddr ess advances
the r eci pi ent Pt r pointer to the next address in the buffer. It moves r eci pi ent Pt r
past the Mai | Resol vedReci pi ent structure, past the dat aLengt h field in the
OCEPackedReci pi ent structure, and then past the number of bytes specified

in the dat aLengt h field. If r eci pi ent Pt r points to an odd byte address,
DoReadGener i cAddr ess increments it by 1 to point to an even byte boundary.

At this point, the f or loop is ready to execute again.

Because of differences in the sizes of the applicable structures, the f or loop has separate
but parallel logic to extract and write resolved and original recipients.

The logic of DoReadCGener i cAddr ess assumes that after it writes the addresses to disk,
the MSAM translates them from AOCE address format into the format of the destination
messaging system.

Listing 2-4 Reading addresses from an outgoing message

OSErr DoReadGeneri cAddr ess(FSSpec *nyTenpFi |l eSpec, Mil MsgRef nyMi | Ref,
Mai | AttributelD attrl D)

typedef struct Mil Oigi nal Reci pi ent Ext {
Mai | Ori gi nal Reci pi ent prefix;
OCEPackedReci pi ent packedReci p;

} Mail Oi gi nal Reci pi ent Ext ;

typedef struct Mail Resol vedReci pi ent Ext {
Mai | Resol vedReci pi ent prefix;
OCEPackedReci pi ent packedReci p;

} Mai | Resol vedReci pi ent Ext ;

Using the MSAM API 2-55

CHAPTER 2

Messaging Service Access Modules

OSErr myErr;
MSAMCGet Reci pi ent sPB nmy Par anBl ock;
short count, nunRecipients, ordinal Position;

Mai | Ori gi nal Reci pi ent Ext *origPtr;

Mai | Resol vedReci pi ent Ext *resol vedPtr;

Ptr addressBuffer, recipientPtr;
Bool ean doi ngResol ved;

addressBuf fer = NewPtr(1024L);
if (MenError()!= noErr)
return MenmkError();

if (attr1 D == kMil Resol vedLi st) {

doi ngResol ved = true;
ordi nal Position = 0;
el se

doi ngResol ved = fal se;

myPar anBl ock. i oConpl eti on = (ProcPtr) DoMSAMConpl et i on;

myPar anBl ock. mai | MsgRef = nyMai | Ref;

myPar anBl ock. attrI D = attrl D

myPar anBl ock. buf f er. buf f er = addressBuffer;

myPar anBl ock. buf fer. buffer Si ze = 1024L;

myPar anBl ock. nor e = true; /* to get into "for" |oop */
myPar anBl ock. next | ndex = 1,

nmyErr = noErr;
for (; myParanmBl ock.nore == true & nyErr == noErr;) {
myPar anBl ock. st art | ndex = myPar anBl ock. next | ndex;
MBAMZet Reci pi ent s((MSAMPar am *) &mryPar anBl ock, t rue) ;
myErr = DoWi t PBDone(&ryPar anBl ock) ;
if (nyErr !'= noErr) {
Di sposPtr (addressBuffer);
return nyErr;
} /* endif */
reci pientPtr addressBuf fer + sizeof(short);
nunReci pi ents (Mai | Reply *) addressBuffer->tupl eCount;
for (count = 0; count < nunRecipients & nyErr == noErr;
count ++) {
i f (doi ngResol ved) {
resol vedPtr = (Mail Resol vedReci pi ent Ext *)recipientPtr;
ordi nal Posi ti on++;
myErr = WiteRecipient(nyTenpFil eSpec, attrID, resolvedPtr,
ordi nal Posi tion);

2-56 Using the MSAM API

}

}

CHAPTER 2

Messaging Service Access Modules

reci pientPtr += (sizeof (Ml Resol vedReci pient) + sizeof(short)
+ resol vedPtr - >packedReci p. dat aLengt h) ;
if ((unsigned long)recipientPtr % 2)/*pad to even boundary */
reci pi ent Pt r++;
} /* endif */
el se {
origktr = (Mai | Origi nal Reci pient Ext *)recipientPtr;
myErr = WiteRecipient(nyTenpFil eSpec, attrID, origPtr, 0);
recipientPtr += (sizeof (Mail Oiginal Recipient) + sizeof(short)
+ origPtr->packedReci p. dat aLengt h);
if ((unsigned long)recipientPtr % 2)/*pad to even boundary */
reci pi ent Ptr++;
} /* end else */
/* end inner for loop */

/* end outer for |oop */

Di sposPtr (addressBuffer);
return nyErr;

Reading Letter Content

You read a letter’s content block by calling the MSAMGet Cont ent function. A content
block consists of a series of data segments. A segment contains data in any of these
formats: plain text, styled text, pictures, sound, and QuickTime movies. You select which
types of segment you want to read by setting the segrment Mask field in the function’s
parameter block appropriately.

To read the segments sequentially, set the segnent | Dfield to 0. The MSAMGet Cont ent
function returns data from the first segment of a type that you requested in your
segment mask. Continue resetting the segnent | Dfield to 0 on subsequent calls to the
MBAMZet Cont ent function to read the segments of interest sequentially.

To access the segments in any order you choose, set the segnent | Dfield to a given
segment’s segment ID. You can obtain the segment ID for each segment in a letter’s
content block by scanning the segments without actually reading in any data. To do this,
set the segnent Mask and segment | Dfields to 0 before calling the MSAMGet Cont ent
function. This tells the function that you do not want it to return data for any segment
type and that you want it to return information about the segments starting with the first
segment in the block. Save the values of the segnent Type, segnent Lengt h, and
segnent | D fields that the function returns. Reset the segnent | D field to 0 and call the
function again to get information about the next segment in the block. Continue saving
the values of the segnent Type, segnent Lengt h, andsegnent | D fields, resetting the
segrent | Dfield to 0, and calling the function. The function provides information about
the next segment in the content block. When it returns information about the last
segment in the content block, the function returnst r ue in the endCf Cont ent field.

Using the MSAM API 2-57

CHAPTER 2

Messaging Service Access Modules

At this point, you know the order of the segments in the block, the type of data each
contains, the number of bytes in the segment, and the segment IDs. You can then read
the data in the segments in any order you choose. Set the segnent Mask field to indicate
the types of segments from which you want to retrieve data. The types of segment data
you request depends on the capabilities of your messaging system. For instance, if your
messaging system understands only plain text data, there is no point in reading
segments that contain QuickTime movie data.

The function DoReadLet t er Cont ent in Listing 2-5 reads a letter’s content block. It
allocates buffer space for the segment data. In the MSAMGet Cont ent PB parameter block,
it sets the segment mask to request data from segments containing plain text, pictures,
and sound. Then it repeatedly calls the MSAMGet Cont ent function until the function
returnst r ue in the endOf Cont ent field, always resetting the segment ID to 0 to
proceed sequentially through the blocks. If MSAMGet Cont ent completes successfully,
DoReadLet t er Cont ent writes the segment data to a file. Later, it can read this file and
build its message in the format acceptable to its external messaging system.

Listing 2-5 Reading a letter’'s content block

#de

fine kMaxBufferSize 32767L

OSErr DoReadLett er Cont ent (FSSpec *nyTenpFi | eSpec, Mail MsgRef nyMai | Ref)

{

2-58

MBAMZet Cont ent PB my Par anBl ock;
Ptr dat aBuf fer;
OSErr myErr;

Bool ean start O Bl ock;
unsi gned short bl ockl ndex;

/* allocate data buffer */
dat aBuf f er = NewPt r (kMaxBuf fer Si ze) ;
if (MenmError() != noErr)

return MenkError();

/* fill in parameter block */
myPar anBl ock. i oConpl eti on
myPar anBl ock. mai | MsgRef myMai | Ref ;
myPar anBl ock. buf f er. buf f er dat aBuf fer;
myPar anBl ock. buf f er. buf fer Si ze = kMaxBuf f er Si ze;
myPar anBl ock. segment Mask kMai | Text Segnent Mask |

kMai | Pi ct Segnent Mask | kMai | SoundSegnent Mask;
myPar anBl ock. t ext Scr ap =nil;

(ProcPtr) DoMSAMConpl eti on;

Using the MSAM API

CHAPTER 2

Messaging Service Access Modules

/* read letter content */

start O Bl ock = true;
bl ockl ndex = 0;
do {

myPar anBl ock. segnent | D = O;
MBAMZet Cont ent ((MSAMPar am *) &y Par anBl ock, t rue) ;
myErr = Wi t PBDone(&y Par anBl ock) ;
if ((myErr == noErr) && (myParanBl ock. buffer.dataSize > 0)) {
if (startOf Bl ock) {
DoW it eCont ent ToFi | e(nyTenpFi | eSpec, nyParanBl ock. segnment Type,
myPar anBl ock. buf f er. buf fer,

myPar anBl ock. buf f er. dat aSi ze, bl ockl ndex) ;
start O Bl ock = fal se;

}

el se
DoAppendCont ent ToFi | e(myTenpFi | eSpec, mnyPar anBl ock. segrment Type,
myPar anBl ock. buf f er. buf fer
myPar anBl ock. buf f er. dat aSi ze, bl ockl ndex) ;
i f (nyParanBl ock. endOf Segnent == true) {
start O Bl ock = true;
bl ockl ndex++;

}
} while ((nmyErr == noErr) && (nyParanBl ock. endO Content == fal se));

Di sposPtr Chk(dat aBuffer);

return nyErr;

Reading a Nested Message

A message can have other messages nested within it. If you are reading a letter, you

can determine if the letter contains nested letters by calling the MSBAMGet At t ri but es
function and requesting the nest i ngLevel attribute. A nesting level of 0 means there
are no nested letters; a nesting level of 1 means there is one nested letter, and so forth.

If you are reading a non-letter message, you can determine if it contains a nested
message by calling the MSAMEnurrer at eBl ocks function and looking for a block of
type kl PMEncl osedMsgType. Such a block contains a complete message. That nested
message may in turn contain a message block of type kI PMEncl osedMsgType that
contains a complete message, and so on.

To open a nested message, you call the MSAMOpenNest ed function, which returns a
reference number to the nested message. To read the nested message, you pass this
nested message reference number to functions. An MSAM can call MSAMOpenNest ed
repeatedly to open a hierarchy of nested messages.

Using the MSAM API 2-59

2-60

CHAPTER 2

Messaging Service Access Modules

You can close a nested message explicitly by calling the MSAMCl ose function or you can
close it implicitly when you close the parent message.

Note

A letter can have only one nested letter per nesting level, although each
nested letter can itself contain a nested letter, and so forth. A non-letter
message may actually have more than one nested message per nesting
level. The IPM Manager API allows applications to create such
messages. However, the MSAM API restricts you to reading one nested
message per nesting level. You can read only the first occurrence of a
nested message in a sequence of message blocks. u

Marking Recipients

Once you have read a message from the outgoing queue, translated it into the format
understood by your external messaging system, and transmitted it, you can mark
one or more recipients. Marking a recipient indicates that you have completed your
efforts to deliver the message to that recipient. You mark a recipient by calling the
MSAMhMar kReci pi ent s function.

Marking a recipient does not indicate that you have successfully delivered the message,
but only that you are finished with your efforts to deliver it to that recipient.

You can use the MVSAMnMar kReci pi ent s function to help you keep track of your
delivery status for a message. The function clears the r esponsi bl e flag in the

Mai | Resol vedReci pi ent structure for the recipients you specify. Thus, if you later
call the MSAMzet Reci pi ent s function to get the resolved recipients for the message,
the r esponsi bl e flag indicates those recipients you have already processed.

You identify a recipient that you want to mark by its ordinal position in the buffer
returned by the MSAMGet Reci pi ent s function. That is, when you call the

MBAMZet Reci pi ent s function to get your resolved recipients, it places recipient
information in your buffer, and you must save the ordinal-position value of each
resolved recipient as you retrieve the recipient information from the buffer. The

first recipient’s ordinal-position value is 1; the second recipient’s ordinal-position

value is 2; and so forth. It is this value that you provide to the MSAVhMar kReci pi ent s
function to identify the recipient. If you use the recipient’s absolute index, contained

ina Mai | Resol vedReci pi ent structure, the MSAMhMar kReci pi ent s function does
not work correctly.

After you mark all of the recipients for a given message, the function sets the done
field in the MSAMEnuner at eQut QRepl y structure tot r ue. If you later call the
MBAMENnumer at e function to check the messages in your outgoing queue, you can
determine if you have finished processing a given message by checking the done field.

You can call the MSAMhMar kReci pi ent s function as many times as necessary for a
given message, specifying one or more recipients each time as you complete your
delivery efforts for those recipients.

Using the MSAM API

CHAPTER 2

Messaging Service Access Modules

Generating a Report

When you have completed your delivery attempts for an outgoing message, you may
need to generate a report to the sender. An MSAM determines whether it must create a
report for an outgoing message by reading information in the message header. An
MSAM should create a report about an outgoing message only in response to the
sender’s request.

If the message is a letter, an MSAM calls the MSAMGet At t ri but es function to

read the Mai | | ndi cat i ons structure. In the Mai | | ndi cat i ons structure, the
kMai | NonRecei pt Report sBit bitand the kMai | Recei pt Report sBit bit, if set,
indicate that the letter’s sender requested non-delivery and delivery indications,
respectively.

If the message is not a letter, an MSAM calls the VSAMGet MsgHeader function

with the constant kI PMFi xedl nf o as the value of the sel ect or field. The

| PMFi xedHdr | nf o structure returned by MSAMGet MsgHeader contains the

notifi cati on field, which contains the kl PMNonDel i ver yNot i fi cati onBit bit
and the kIl PMDel i ver yNot i fi cati onBi t bit. These bits, if set, indicate that the
sender of the message requested non-delivery and delivery indications, respectively.
Test these bits to determine if you need to create a report.

If a sender asks for delivery indications, non-delivery indications, or both, an MSAM
must provide information on the outcome of delivery attempts (a delivery or non-
delivery indication) for every recipient for which the MSAM is responsible. It is
important that an MSAM provide delivery information on all of the MSAM'’s recipients
whenever a sender requests any type of delivery information because an MSAM report
does not go directly to the report requestor. Instead, the report goes to an AOCE agent
that uses the MSAM report information to prepare an IPM report according to the
requestor’s specifications. If an MSAM fails to provide delivery information on all of its
recipients, the requestor may receive inaccurate IPM reports.

An MSAM should ignore the bit fields having to do with including a copy of the original
message in the report. If necessary, a copy of the original is added by the AOCE agent.

To create a report, an MSAM must
1. call the MSAMCr eat eReport function

2. call the MSAMPut Reci pi ent Report function to add delivery and non-delivery
indications for recipients for which it was responsible

3. call the MSAMSubmi t function to deliver its finished report

An MSAM must have certain information about a message in order to create a report
about the message. The MSAMCr eat eReport function requires the letter or message 1D
of the message to which the report applies and the address of the sender. You obtain
this information from either the MSAMGet At t r i but es and MSAMGet Reci pi ent s
functions (for a letter) or the MSAMGet MsgHeader function (for a non-letter message).
The MSAMPuUt Reci pi ent Report function requires the recipient index to identify
which recipient is being reported upon. You obtain this information from the

MBAMZet Reci pi ent s function.

Using the MSAM API 2-61

2-62

CHAPTER 2

Messaging Service Access Modules

Depending on how the external messaging system works, an MSAM may save this
information in its own data store or include it with the message. If, for example, more
than one MSAM connects to the same external messaging system, and the system
might acknowledge receiving the message to any of those MSe s, an MSAM should
include the information with the message. This enables the external messaging system
to extract the information from the message and then include the information with
the acknowledgment of the message. As a result, any MSAM that receives the
acknowledgment has the information necessary to create a report for that message.
You decide how to make sure that the information required to create a report is
available, given the characteristics of the external messaging system to which your
MSAM connects.

Your MSAM and its external messaging system define what constitutes successful or
failed delivery for outgoing messages.

Writing Incoming Messages

This section describes how you create and submit an incoming letter for delivery to its
AOCE recipients. It assumes you have already initialized your MSAM. Each subsection
addresses a specific task, such as

n creating a message summary for an incoming letter (for personal MSAMs only)
n creating a letter

n creating a non-letter message

n writing letter attributes

n writing addresses

n writing letter content

n submitting a letter for delivery

n receiving a report

The differences between writing letters and writing non-letter messages are noted in the
sections that address the specific tasks. For convenience, Table 2-10 lists the tasks you
perform while handling incoming messages and the functions you use to accomplish
each task for a letter and a non-letter message.

The order in which functions are listed in Table 2-10 corresponds to the sequence in
which you would call the functions to process an incoming message. A personal MSAM
first creates a message summary if it is dealing with a letter. Then all MSAMSs create the
message itself and begin adding information to it. First, you write header information
consisting of message attributes, such as the priority of the message, and address
(recipient) information. Next, you write the substance of the message—for a letter, its
content block, other blocks it may contain, and enclosures; for a non-letter message, its
blocks. You can include an entire message within another message by defining its
beginning and end with the MSAMBegi nNest ed and MSAMEndNest ed functions and

Using the MSAM API

CHAPTER 2

Messaging Service Access Modules

Table 2-10 Incoming tasks and functions

Task

Create a messaging summary

Letters
PMSAMCr eat eMsgSunmmar y

Non-letter messages
Not applicable

(personal MSAMs only)

Create a message

Write header information

Werite letter content
Write an enclosure
Write a block

Write a nested letter

MSAMCr eat e

MSAMPUt At t ri but e
MBAMPUt Reci pi ent

MSAMPut Cont ent
MSAMPut Encl osur e
MSAMPut Bl ock

MSAMBegi nNest ed
MSAMENndNest ed

MSAMBUbmi t

MSAMCr eat e

MSAMPuUt MsgHeader
MBAMPuUt Reci pi ent

Not applicable
Not applicable
MSAMPut Bl ock

MSAMBegi nNest ed
MSAMENndNest ed

MBAMSuUbmi t

Submit a message

Delete a message

MBSAMDel et e Not applicable

(personal MSAMs only)

Set message status

PMBAMSet St at us Not applicable

(personal MSAMs only)

Enumerate a queue

MSAMENnuner at e Not applicable

(personal MSAMSs only)

calling the appropriate functions to write the nested message’s header information,
blocks, enclosures, and so forth. When you have finished writing the message, you
submit it to the AOCE system for delivery to its recipients.

A personal MSAM may also delete a letter, or both the letter and the letter’s message
summary, from an incoming queue. For example, the MSAM may delete a letter (but
not the message summary) if it no longer wants the letter to be cached locally. If the
personal MSAM is mirroring the letter’s status on the external messaging system, it can
delete the letter and message summary when the letter is removed from the external
messaging system.

A personal MSAM may also set the status of a letter and enumerate an incoming queue.
Setting the status of a letter is a task that the MSAM performs at several points while it is
processing the letter. Enumerating an incoming queue is a task it may do in response to
receiving a kMai | EPPClI nQUpdat e high-level event.

You should call the functions that handle incoming messages asynchronously so that
you can receive and process an AOCE high-level event at any time.

The sample code in Listing 2-6 through Listing 2-15 illustrates one way a personal
MSAM can write a letter to an incoming queue. Most of the sample code and the text
also apply to a server MSAM. The text notes differences between the operation of
personal and server MSAMs where applicable.

Using the MSAM API 2-63

2-64

CHAPTER 2

Messaging Service Access Modules

Most of these listings contain code fragments from the Dol ncomi nglLet t er function,
but only Listing 2-6 on page 2-67 shows the Dol ncom nglLet t er function definition
and its local variables.

Choosing Creator and Type for Messages and Blocks

When you create an incoming message, you set the message creator to indicate the
application that should open the message. If you set the message creator for a letter to

"l ap2', the signature of the AppleMail application, the AppleMail application opens
the letter when the user double-clicks the letter’s icon. If the letter contains a content
enclosure, you can set the message creator to the signature of the application that created
the content enclosure. In this case, if the user has that application, that application will
open the letter.

The message type kMai | Lt r MsgType designates an AOCE letter that contains data in
standard interchange format or image format, or a regular enclosure. When you create
an incoming letter, you should use this message type when the letter contains data in
standard interchange format or image format, or when it contains a regular enclosure.

If the letter also contains a content enclosure or a private block, and you set the

message creator to the signature of the application that created the enclosure or private
block, then you can use a message type that you define that is consistent with the
message creator.

When you create a non-letter message, you typically use an application-defined message
creator and message type.

Each block in an incoming message has a block creator and block type. When you create
blocks such as header, content, enclosure, and report blocks by calling the appropriate
MSAM function, the function sets the block creator to kMai | Appl eMai | Cr eat or and
the block type to the correct predefined type. (Letter block types are listed in Table 2-3 on
page 2-18.)

When you call the MSAMPut Bl ock function to add a block to an incoming message, you
set the block creator and block type to values that you select. If you are writing a block of
a predefined type such as an image block or a private block, be sure to set the block type
to kMai | | mageBodyType or kMai | MBAMIype, respectively.

Creating a Letter's Message Summary

A personal MSAM must create a message summary for an incoming letter before
creating the letter itself. Server MSAMSs do not create message summaries at any time,
and personal MSAMs do not create message summaries for non-letter messages. The
need to create a message summary is related to the mode of operation in the personal
MSAM. See the section “MSAM Modes of Operation” beginning on page 2-12 for
information on this topic.

The function Dol ncomi nglLet t er shown in Listing 2-6 on page 2-67 illustrates how you
can create a message summary for an incoming letter. It assumes that you previously
read the letter from an external messaging system, translated it into AOCE data formats,

Using the MSAM API

CHAPTER 2

Messaging Service Access Modules

and saved it to disk. (Note that this method is just one way an MSAM can handle
incoming letters.)

The Dol ncom ngLet t er function first allocates the buffer dat aBuf f er that it uses to
hold a variety of data throughout the function’s execution. Then it initializes all of

the fields of the message summary structure to 0 prior to setting the fields that a
personal MSAM should set. At the top level of the message summary structure,

Dol ncom ngLet t er sets only the ver si on field. You always set it to the constant
kMai | MsgSunmrar yVer si on.

You set the bits in the attribute mask that correspond to the attributes that are present in
the letter. In the at t r Mask field of the nast er Dat asubstructure,Dol ncom ngLetter
sets the bits for the send timestamp, indications, the sender of the letter, the subject of the
letter, the message type, and the message family. Each external messaging system may
differ in the attribute information it routinely provides. In the sample code, the external
messaging system always provides a timestamp and does not provide a reply ID. For
this reason, the corresponding bits in the attribute mask in the message summary are set
and not set accordingly.

Once you have set the bits in the attribute mask, you write the attributes to the message
summary. At a minimum, you must write the message type, send timestamp, sender,
and subject attributes to the message summary. The Dol ncom ngLet t er function first
writes the send timestamp to the message summary by calling its DoGet Ti neSt anp
routine. Next, it calls its DoGet Let t er Lengt h utility routine to get the approximate
size of the letter.

In the cor eDat a substructure, Dol ncomi nglLet t er explicitly provides a value for all
of the fields except agent | nf o and| et t er Fl ags. (The Dol ncomi ngLet t er function
implicitly set the | ett er Fl ags field to 0 when it initialized the entire message
summary structure to 0.) Inthe | et t er | ndi cat i ons field, it sets those bits that
indicate the letter has normal priority and that it has a content block. This technique
assumes that the incoming letter has no priority setting, so Dol ncom nglLett er
supplies a default value here. (The Dol ncomi nglLet t er function also supplies a default
value for content if the letter has no content. See Listing 2-11 on page 2-78.)

The Dol ncomi ngLet t er function sets the message type to the constant

kMai | Lt r MsgType to indicate a standard AOCE letter. It sets the message creator to
kLett er Creat or,aconstant for' | ap2', the signature of the AppleMail application.
As a result, when a user double-clicks the letter, the Finder launches the AppleMail
application to open the letter. Usually, an MSAM does not set a letter’s creator to its own
signature because the MSAM cannot open the letter and allow the user to view and edit
it. However, if your MSAM is associated with a particular letter application, you should
use that application’s signature so that the application will launch when the user opens
the letter.

The Dol ncom ngLet t er function sets the message family to kMai | Fani | y, indicating
that the letter falls into the general class of mail messages. Next, it sets the nessageSi ze
field to the value returned by the DoGet Let t er Lengt h utility routine. The Finder uses
this value when a user chooses the Get Info command from the File menu.

Using the MSAM API 2-65

2-66

CHAPTER 2

Messaging Service Access Modules

The sender andsubj ect fields in the message summary deserve special attention.
Each is declared as an RSt r i ng32 structure in the Mai | Cor eDat a structure in the
message summary. However, those declarations only serve to allocate space and indicate
the relative order of the sender and subject data. They do not represent the actual data
layout. You should treat these two fields as a common buffer containing variable-length
sender and subject data. The correct order of information in the common buffer is an

RSt ri ng32 structure containing the sender information (character set, data length, and
sender data), padded to an even byte boundary if necessary, and followed immediately
by an RSt r i ng32 structure containing the subject information. (You should also pad the
subject information to an even byte boundary if necessary.) Thus, sender information
always starts at a fixed place whereas subject information does not. Neither subject nor
sender information may exceed kRSt ri ng32Si ze bytes although either, of course, may
be smaller.

The Dol ncom ngLet t er function illustrates one way to write the sender and subject
information to a message summary. The Dol ncom nglLet t er function calls its
DoReadFr onfFi | e utility routine to read a PackedDSSpec structure containing the
sender’s address information from the letter stored on disk. (The DoReadFr onFi | e
routine reads a file in which an incoming letter is stored and returns in a buffer the
requested letter component and the number of bytes it placed in the buffer.) If the read
operation succeeds, Dol ncomi nglLet t er unpacks the packed address and calls its
DoCopyFi t RSt ri ng utility routine. The DoCopyFi t RSt ri ng routine copies the
displayable string that identifies the sender from the r ecor dNane field of the unpacked
address into the sender field of the message summary, truncating it if it is longer than
kRSt ri ng32Si ze bytes.

Next, Dol nconi nglLett er reads into its local variable subj ect an RSt ri ngstructure
containing the subject from the stored letter. Every AOCE letter must have a subject. If
the read operation fails, Dol ncomi nglLet t er converts a constant C string containing a
default value for the subject into an RSt r i ng and writes it to its local variable subj ect .
Finally, it calls its DoCopyFi t RSt ri ng routine to copy its local variable subj ect into
the message summary, truncating it if it is longer than kRSt r i ng32Si ze bytes. (The
Dol ncom ngLet t er function copies the subject into its local variable subj ect instead
of directly into the message summary because it uses the local variable when adding the
subject attribute to the letter header. See Listing 2-8 on page 2-72.)

Now that both the subject and sender information are in a common buffer in the
message summary, Dol ncomi nglLet t er adjusts the byte position at which the subject
information begins. The subject information must start immediately after the sender
information. Dol nconi nglLett er calculates the total length of the sender RSt ri ng,
including the fields for length and character set. If the total is an odd number, it adds

1 to get an even word boundary, then calls the Bl ockMbove routine to move the subject
information immediately after the end of the sender information.

Using the MSAM API

CHAPTER 2

Messaging Service Access Modules

IMPORTANT
Because the sender andsubj ect fields form one common buffer

into which the information is packed, using the subj ect field to
access the subject information does not produce the desired result.
You must compute the beginning of the subject information in the
common buffer. s

At this point, the Dol ncomi nglLet t er function has filled in the relevant fields of
the message summary. Next, it sets up the fields of the parameter block for the

PMSAMCr eat eMsgSunmrar y function. One of the parameters to Dol ncomi nglLett er
isa MySl ot Spec structure, a data type defined by the personal MSAM that contains
information about a slot. The personal MSAM of which Dol ncomni ngLetter isa

part previously stored the incoming queue reference that it obtained from the
PMSAMOpenQueues function in the My Sl ot Spec structure. The Dol nconi nglLett er
function uses that incoming queue reference to fill in the queueRef field of the

MBAMCr eat e parameter block. Next, it sets the nsgSunmmar y field of the parameter
block to the address of the message summary structure it has just initialized.

Although Dol nconi nglLet t er does not do it, you can add up to

kMai | Max PMSAMVsgSunmrar yDat a bytes of private data in the buffer structure
pointed to by the buf f er field of the PMSAMCr eat eMsgSunmar y parameter block.

It is a convenient way for you to store additional information related to a specific

letter. Then Dol ncomi nglLett er calls the PMSAMCr eat eMsgSunmar y function, which
returns a sequence number for the letter. The Dol nconmi nglLet t er function must use
this sequence number when it calls the MSAMCr eat e function to create the letter itself.

Listing 2-6 Creating a message summary

OSErr Dol ncom ngLetter (FSSpec *nmyTenpFil eSpec, M/SI ot Spec *sl ot Spec)

{
CSEr r

nmyErr;

MSAMPar am myPar anBl ock;
MSAMMs gSummar y my MsgSum

Ptr dat aBuf f er;

unsi gned | ong buf f er Len;

unsi gned | ong cont ent Lengt h;

RString subj ect ;

Recordl D entitySpecifier;

OCEReci pi ent f r omAddr ess;

Mai | MsgRef |l etterRef;

| ong | etter SeqNum

char def aul t Text [256] ;

unsi gned char *subj ect O f set ;

#define kLetterCreator "l ap2' /* signature of AppleMil app */
#def i ne kDef aul t Subj ect "<no subject>"

Using the MSAM API 2-67

CHAPTER 2

Messaging Service Access Modules

#defi ne kDef aul t Body "<no message>"
#defi ne kMaxBufferSize 32767L
/* constants to identify conponents of stored letter on disk */

#def i ne kFronType ' 2FRM
#define KkToType ' 2MIO
#defi ne kCCType ' 2MCC
#defi ne kBCCType ' 2BCC
#def i ne kText Cont ent ' 2TXT
#define KkPictContent "2PIC
#def i ne kSoundCont ent ' 2SND
#define KkContentSectionType '2RTY
#defi ne kSubj ect Type ' 2SUB'

/* allocate buffer for reading fromdisk */
buf f erLen = kMaxBuf f er Si ze;
dat aBuf fer = NewPtr (bufferlLen);
if (MenkError() != noErr)
return Menmkrror();

/[* initialize the nmessage summary structure to 0 */
Dod ear Buf f er (&myMsgSum si zeof (MSAMMsEgSUMmary)) ;

/* set the version and attri bute nmask fields */

myMsgSum ver si on = kMai | MsgSunmmar yVer si on;
myMsgSum mast er Dat a. att r Mask. sendTi neSt anp = true;
myMsgSum nast er Dat a. att r Mask. i ndi cati ons = true;
myMsgSum mast er Dat a. att r Mask. from = true;
myMsgSum mast er Dat a. at t r Mask. subj ect = true;
myMsgSum nmast er Dat a. att r Mask. nsgType = true;
myMsgSum mast er Dat a. at t r Mask. msgFani | y = true;

/* get the tinestanp and wite it to nessage summary */
DoCet Ti meSt anp(nyTenpFi | eSpec, &yMsgSum cor eDat a. sendTi ne) ;

/* get length of stored |letter data in bytes */
content Length = kMaxBufferSi ze;
content Length = DoGet LetterLength(nmyTenpFil eSpec);

/* set other core data fields */

nmyMsgSum coreData. |l etterlndications.priority kl PMNor mal Priority;
myMsgSum coreDat a. |l etterlndi cati ons. hasContent = true;

myMsgSum coreDat a. | etterl ndi cati ons. hasSt andar dCont ent = tr ue;

2-68 Using the MSAM API

/*

/*

/*

/*

*/

CHAPTER 2

Messaging Service Access Modules

myMsgSum cor eDat a. nessageType. nsgType
myMsgSum cor eDat a. nessageType. nsgCr eat or
myMsgSum cor eDat a. nessageFani | y
myMsgSum cor eDat a. nessageSi ze

myMsgSum cor eDat a. addr essedToMe

kMai | Lt r MsgType;
kLett er Creator;
kMai | Fami | y;
cont ent Lengt h;
kAddr essedAs_TO,

get sender nanme fromstored letter and wite it to nessage summary */
bufferLen = kMaxBufferSi ze;
myErr = DoReadFronti | e(nyTenpFi | eSpec, kFronType, dataBuffer,
&buf f er Len);
if (nmyErr !'= noErr) {
Di sposPtr (dataBuffer);
return nyErr;
}
OCEUnpackDSSpec((PackedDSSpec*) dat aBuf f er, &f r omAddr ess,
&entitySpecifier);
DoCopyFit RSt ring(entitySpecifier.local.recordNane,
(RStringPtr)&ryMsgSum cor eDat a. sender, kRString32Si ze);

get subject fromstored letter and wite it to nessage summary */
buf f erLen = kMaxBufferSi ze;
myErr = DoReadFrontil e(nyTenpFi | eSpec, kSubj ect Type, &subject,
&buf f er Len);
if (nyErr != noErr)
OCECToRSt ri ng(kDef aul t Subj ect, snmRoman, &subject, kRStringMaxBytes);
DoCopyFi t RSt ri ng(&subject, (RStringPtr)&myMsgSum coreDat a. subj ect,
kRSt ri ng32Si ze) ;

cal cul ate subject offset and nove subject flush with sender */
subjectOfset = ((unsigned char *)&nyMsgSum coreDat a. sender) +
nmyMsgSum cor eDat a. sender . dat aLength + si zeof (1 ong);
if ((unsigned |ong)subjectOfset % 2)
subj ect O f set ++;
Bl ockMove(&myMsgSum cor eDat a. subj ect, subj ect O f set,
myMsgSum cor eDat a. subj ect. dat aLength + si zeof (long));

Al'l required fields have been set. Create the nessage sunmary. Save the
letter's sequence nunber.

myPar anBl ock. header . i oConpl eti on = (ProcPtr) DoMSAMConpl et i on;
myPar anBl ock. pmsantCr eat eMsgSummar y. i nQueueRef = sl ot Spec- >i nQueue;

Using the MSAM API 2-69

CHAPTER 2

Messaging Service Access Modules

myPar anBl ock. psanCr eat eMsgSummar y. msgSunmmar y
myPar anBl ock. pnmsantCr eat eMsgSurmmar y. buf f er
PMSAMCr eat eMsgSunmar y(&y Par anBl ock, t r ue) ;
myErr = DoWai t PBDone(&ryPar anBl ock) ;
if (nmyErr !'= noErr) {

Di sposPtr(dataBuffer);

return nyErr;

&myMsgSum
nil;

}
| etter SeqNum = nyPar anBl ock. pnsantCr eat eMsgSunmar y. seqgNum

Creating a Letter

After creating a message summary, a personal MSAM may write the letter associated
with the message summary to the incoming queue immediately or at a later time. The
choice of methods should depend on the speed of the link connecting your personal
MSAM to its external messaging system. If the link is fast, you can download the letter
on demand—that is, when the user opens it. If the link is slow, you should cache the
letter locally so that there is no untimely delay when the user opens it. The function

Dol ncom ngLet t er writes the letter immediately. Listing 2-7 is a code fragment from
Dol ncomi ngLet t er that shows how you create a letter.

The Dol ncomi nglLet t er function sets up the fields of the parameter block for the
MBAMCr eat e function. It checks whether the letter has a blind copy recipient and sets
the bccReci pi ent s field accordingly. It uses the incoming queue reference originally
obtained from the PMSAMOpenQueues function to fill in the queueRef field of the
parameter block. Then Dol ncom nglLett er setstheasLetter fieldtot rue to indicate
that the message it is creating is a letter. Because it is creating a letter, it must set the
msgType.f or mat field to kI PMOSFor mat Type. This setting indicates that the rest of
the | PMVsgType structure contained in themsgType.f or mat field consists of an
OCECr eat or Type structure. Then Dol nconi nglLet t er sets the letter’s creator and
type to the same values it used when it created the letter’s message summary. It sets the
segNumfield to the sequence number it obtained from the PMSAMCr eat eMsgSumar y
function.

Once Dol nconi nglLet t er has finished initializing the parameter block, it calls the
MBAMCr eat e function. The function returns a reference to the new letter, which

Dol ncomi nglLet t er saves. The Dol ncom nglLet t er function must provide the
reference to all subsequent functions that add various components to the letter.

Listing 2-7 Creating a letter

2-70

/* check for bcc recipients */

buf ferLen = kMaxBufferSi ze;

myErr = DoReadFronti |l e(nyTenpFi | eSpec, kBCCType, dataBuffer, &bufferlLen);
myPar anBl ock. msanCr eat e. bccReci pients = (myErr == noErr);

Using the MSAM API

I* fill

nmyPar anBl ock. header . i oConpl eti on
myPar anBl ock. nsantCr eat e. queueRef

CHAPTER 2

Messaging Service Access Modules

in the rest of the paraneter block and create the letter */
(ProcPt r) DoMSAMConpl et i on;
sl ot Spec- >i nQueue;

myPar anBl ock. msanCr eat e. asLetter = true;
myPar anBl ock. nsanCr eat e. nsgType. format = kl PMOSFor mat Type;
myPar anBl ock. msanCr eat e. nsgType. t heType. msgOSType. nsgCreat or =

kLett er Creat or;

myPar anBl ock. msanCr eat e. nsgType. t heType. mnsgOSType. nsgType =

myPar anBl ock. nsantCr eat e. seqNum

kMai | Lt r MsgType;
| etter SeqNum

myPar anBl ock. msanCr eat e. t unnel Form = fal se;
MBAMCr eat e(&ryPar anBl ock, true);

nyErr =

DoWai t PBDone(&y Par anBl ock) ;

if (nyErr !'= noErr) {
Di sposPtr(dataBuffer);
return nyErr;

}

| etterRef = nyParanBl ock. nsanCr eat e. newRef ;

A server MSAM does basically the same things to create a letter, with the following
differences. A server MSAM uses the queue reference that it obtained from the
SMBAMSt ar t up function to fill in the queueRef field. Because server MSAMSs do not
create message summaries, there is no need to ascertain that the values provided to the
MBAMCr eat e function for the creator and type exactly match those in the message
summary. A server MSAM does not supply a value in the segNumfield of the

MBAMCr eat e parameter block.

Creating a Non-Letter Message

When you create a non-letter message instead of a letter, the following differences apply
for both personal and server MSAMs:

n You must set the nyPar anBl ock. nsantCr eat e. asLet t er fieldto f al se.

n You can set the myPar anBl ock. nsanCr eat e. megType.f or mat field to either
kIl PMOSFor mat Type (which specifies that the message creator and message type
information is formatted as type OCECr eat or Type) or kl PVMSt ri ngFor nat Type
(which specifies that the message creator and message type information is formatted
as type St r 32). Typically, you use type OCECr eat or Type; type St r 32 is included
for compatibility with the Program-to-Program Communications (PPC) Toolbox.

n You may set the nyPar anBl ock. msantCr eat e. r ef Con field to a private value. The
MSAMCr eat e function stores that value in the message header. A recipient can
retrieve the value with the MSAMzet MsgHeader function.

n You do not supply a value in the nyPar anBl ock. nsanCr eat e. bccReci pi ent s
field.

In addition, a personal MSAM does not supply a value in the
nmyPar anmBl ock. nsantCr eat e. seqNumfield.

Using the MSAM API 2-71

CHAPTER 2

Messaging Service Access Modules

Writing Letter Attributes

Once you have created a letter, you add the component parts to the letter. To add
information to a letter’s header, you use the MSAMPut At t r i but e function. Listing 2-8, a
code fragment from the Dol nconi ngLet t er function, shows how you add attributes to
a letter header.

The MSAMPut At t ri but e function allows you to add one attribute each time you call it.
The Dol ncom ngLet t er function adds the send timestamp, indications, message
family, and subject attributes to the letter’s header by copying the values it previously
stored in the letter’'s message summary. Each time it calls the MSAMPut Att ri but e
function,Dol nconi nglLet t er setsthe mai | MsgRef field to indicate the letter to which
it wants to add the attribute. It sets the at t r | D field to a constant that indicates the type
of attribute it wants to add. Then it specifies the buffer in which the attribute data is
located, specifies the buffer size, and calls the MSAMPut At t r i but e function to add the
attribute to the letter header. Note that when it writes the subject, Dol nconi nglLet t er
does not use the C function si zeof to get the size of the subject attribute because that
would return the size of an RSt r i ng structure. Instead, it computes the exact size of the
subject string in the buffer by using the actual length of the subject, which is specified

in the subj ect . dat aLengt h field, and then adding 4 bytes for the dat aLengt h and
char Set fields of the RSt r i ng structure. If the number of bytes turns out to be odd, it
adds 1 to make an even length.

The Dol ncomi ngLet t er function does not add the letter creator and type to the letter
header. That information was already added when Dol ncomni ngLet t er called the
MSAMCr eat e function.

Once the parameter block is initialized, Dol ncomi ngLet t er calls the

MBAMPuUt At t ri but e function. If the function returns an error, Dol ncom nglLetter
calls its DoCancel OnSubmi t function, which disposes of the data buffer, calls the
MBAMSUbmi t function to delete the unfinished letter, and calls the MSANVDel et e function
to delete the message summary.

Listing 2-8 Adding attributes to a letter header

2-72

/* add the time */
myPar anBl ock. msanmPut At tri but e. mai | MsgRef | etterRef;
myPar anBl ock. msanPut Attri bute.attrl D = kMai | SendTi meSt anpBi t;
myPar anBl ock. nsanPut Attri bute. buffer. buffer =

(Ptr)&rwMsgSum cor eDat a. sendTi ne;
nmyPar amBl ock. msanPut Attri bute. buffer. bufferSi ze = sizeof (Mail Ti ne);
MBAMPuUt At t ri but e(&ryPar anBl ock, true);
myErr = DoWai t PBDone(&ryPar anBl ock) ;
if (nyErr !'= noErr) {

DoCancel OnSubnit (Il etterRef, |etterSeqNum sl ot Spec->i nQueue,
dat aBuf fer);

return nyErr;

Using the MSAM API

CHAPTER 2

Messaging Service Access Modules

/* add the indications */
nmyPar amBl ock. msanPut Attri but e. mai | MsgRef
myPar anBl ock. nsanPut Attri bute.attrl D
myPar anBl ock. nsanPut Attri bute. buffer. buffer =
(Ptr)&rwMsgSum coreData. |l etterl ndi cations;

myPar anBl ock. msanmPut Attri bute. buffer. bufferSi ze = sizeof (Mail | ndi cations);
MBAMPUt At t ri but e(&y Par anBl ock, true);
/*

Cal | DoWait PBDone and check for error. Then use the sane |ogic used

to add the tine and indications to add the nessage famly.

| etterRef;
kMai | I ndi cationsBit;

*/

/* add the subject */

myPar anBl ock. msanmPut At tri but e. mai | MsgRef = |l etterRef;
myPar anBl ock. nsanPut Attri bute.attrlD = kMai | Subj ectBit;
myPar anBl ock. nsanPut Attri bute. buffer. buffer = (Ptr) &subj ect;

myPar anBl ock. msanmPut Attri but e. buf fer. bufferSi ze = subj ect. datalLength + 4;
if ((myParanBl ock. msanPut Attribute. buffer.bufferSize %2) = 0)
myPar anBl ock. nsanPut Attri bute. buf fer. bufferSi ze++;
MBAMPuUt At t ri but e(&ryPar anBl ock, true);
/* call DoWaitPBDone and check for error */

A server MSAM does not have a message summary from which to copy attribute values,
so it would extract the attribute values from the incoming letter itself.

Note

The MSAMPut At t ri but e function does not apply to non-letter
messages. In dealing with an incoming non-letter message, both
personal and server MSAMs can add attributes to the message header
by calling the MSAMPut MsgHeader function. u

Writing Addresses

Although the different types of recipients—From, To, cc, and bcc—are letter attributes,
you do not add them to a letter using the MSAMPut At t r i but e function. Instead, you
use the MSAMPut Reci pi ent function. Each time you call the MSAMPut Reci pi ent
function, you can add one recipient to a letter. This function requires you to add all of the
recipients of one type before adding any recipient of another type. The code fragment
from the Dol ncomi ngLet t er function shown in Listing 2-9 demonstrates how you can
add recipients to a letter.

The Dol ncom ngLet t er function calls its DoAddTheReci pi ent s function four times,
once for each type of recipient, to actually add the recipient information to the letter. It
passes several parameters to DoAddTheReci pi ent s:

n the reference number of the letter to which it wants to add a recipient

n a pointer to the file specification of the temporary file containing the translated
incoming letter

Using the MSAM API 2-73

CHAPTER 2

Messaging Service Access Modules

n a constant that identifies the disk file component for a given type of recipient
n the type of recipient to add (an attribute ID)

n a pointer to its buffer

n the size of the buffer

If DoAddTheReci pi ent s returns an error for any type of recipient,
Dol ncom nglLett er terminates writing the letter.

Listing 2-9 Adding recipients to a letter

2-74

/*
Add the recipients. Check for error after calling DoAddTheReci pi ents
for each recipient type.(Shown only the first tinme in the follow ng
code.)
*/
myErr = DoAddTheReci pi ents(l etterRef, nyTenpFil eSpec, kFroniflype,
kMai | FronBit, dataBuffer, kMaxBufferSize);
if (nyErr !'= noErr) {
DoCancel OnSubnit (letterRef, |etterSeqNum sl ot Spec->i nQueue,
dat aBuf fer);
return nyErr;

}

myErr = DoAddTheReci pi ents(l etterRef, nyTenpFil eSpec, kToType, kMil ToBit,
dat aBuf f er, kMaxBufferSize);

myErr = DoAddTheReci pi ents(l etterRef, nyTenpFil eSpec, kCcType, kMil CcBit,

dat aBuf f er, kMaxBufferSize);

myErr = DoAddTheReci pi ents(l etterRef, nyTenmpFil eSpec, kBccType,
kMai | BccBit, dataBuffer, kMaxBufferSize);

The DoAddTheReci pi ent s function is shown in Listing 2-10. It is a utility routine that
can add any type of recipient to a given letter. It assumes that the MSAM has previously
written the letter’s recipient information to a file in the form of a PackedDSSpec
structure. For a given type of recipient, DoAddTheReci pi ent s reads one recipient at a
time, and places the information in a buffer. Then it unpacks the PackedDSSpec
structure and fills in the fields of the parameter block for the MSAMPut Reci pi ent
function.

The DoAddTheReci pi ent s function sets the mai | MsgRef andat t r | Dfields to the
values it was passed by Dol ncom nglLett er for the letter’s reference number and the
recipient type attribute ID, respectively. It sets the r eci pi ent field to the unpacked
DSSpec structure it got by calling the OCCEUnpackDSSpec routine. Then it sets the
responsi bl e field to f al se.

Using the MSAM API

CHAPTER 2

Messaging Service Access Modules

A personal MSAM always sets the r esponsi bl e field of the parameter block for
MBAMPuUt Reci pi ent tof al se when it is adding a recipient to a letter. For a non-letter
message, however, it should set the r esponsi bl e field to f al se only when the
recipient address is not local to the computer on which the personal MSAM is running.
Setting the r esponsi bl e field to t r ue for a non-letter message indicates that you want
the AOCE system to be responsible for delivering the message to its destination on the
local computer.

A server MSAM should set the r esponsi bl e field to t r ue to indicate that the AOCE
system should deliver the message to the recipient. This applies to both letter and
non-letter messages.

Finally, DoAddTheReci pi ent s calls the MSAMPut Reci pi ent function. The
DoAddTheReci pi ent s function repeats this cycle until either the MSAMPut Reci pi ent
function returns an error or there are no more recipients of a given type for the letter.

Listing 2-10 Adding a specific type of recipient

OSErr DoAddTheReci pi ent s(Mai | MsgRef nmai |l Ref, FSSpec *nyTenpFil eSpec,

CSEr r

OSType reci pType, Mil AttributelD attrl D,
Ptr dataBuffer, unsigned |ong bufferLen)

nmyErr;

Bool ean nmor eReci pi ents = true;
unsi gned | ong gotLength;
OCEReci pi ent recipi ent;

Recordl D entitySpecifier;
MBAMPar am myPar anBl ock;
do {

got Lengt h = bufferLen;
myErr = DoReadFrontil e(nyTenpFi | eSpec, recipType, dataBuffer,

i f

&got Lengt h) ;
(nmyErr == noErr && gotlLength > 0) {

/* unpack a recipient, initialize the paraneter bl ock,
add the recipient */
OCEUnpackDSSpec((PackedDSSpec*) dat aBuf f er, &reci pi ent,
&entitySpecifier);
myPar anBl ock. msanmPut Reci pi ent. i oConpl eti on =
(ProcPt r) DoMSAMConpl et i on;
myPar anBl ock. nsanPut Reci pi ent. mai | MsgRef = mai | Ref;
myPar anBl ock. msanmPut Reci pi ent. attrl D = attrl D

Using the MSAM API 2-75

2-76

myPar anBl ock. msanPut Reci pi ent . r eci pi ent
myPar anBl ock. nsanPut Reci pi ent. responsi bl e = fal se;
MBAMPuUt Reci pi ent (&y Par anBl ock, true);

myErr = DoWi t PBDone(&ryPar anBl ock) ;

CHAPTER 2

Messaging Service Access Modules

&r eci pi ent;

}
el se {
nmor eReci pi ents = fal se;
nyErr = nokrr;
}
} while (nyErr == noErr && noreReci pients);

return nyErr;

Writing Letter Content

A letter’s content block consists of a series of one or more segments, each containing
data of one of the following types: plain text, styled text, pictures, sounds, and
QuickTime movies. To add a content block to an incoming letter, you call the
MSAMPut Cont ent function.

You provide the function with a buffer containing data of a given type and tell it what
type of data is in the buffer. The first time you call the MSAMPut Cont ent function, set
the append field to f al se to tell the function to begin a new segment. On subsequent
calls to the function, you set the append field to t r ue or f al se, depending on whether
you want your data placed in a new segment or appended to the current one.

When you add a text segment, you must specify values for the st ar t NewScr i pt
andscri pt fields. The value of the st art NewScr i pt field (t rue orf al se) tells the
MBAMPUt Cont ent function whether the data in your buffer uses a different character
set than that of text data you previously wrote. You set the scri pt field to a code

that indicates the character set of your data. (See Inside Macintosh: Text for a list of

script codes.)

When you add a styled text segment, you provide the style information in a style scrap
structure (St Scr pRec structure). You should allocate the St Scr pRec structure
dynamically because it is a very large structure. See the MSAMPut Cont ent function
description on page 2-186 for more information on adding styled text.

You must add all of a letter’s content sequentially. For instance, you cannot call

MBAMPuUt Cont ent to add some of the content, call MSAMPut Bl ock to add a private
block, and then call MSAMPut Cont ent again to add the remainder of the content. Once
you call MSAMPut Cont ent , calling any other function in the MSAM API terminates the
content block for the letter. If you call the MSAMPut Cont ent function again for the same
letter, it returns the kMai | | nval i dOr der result code. The MSAMPut Cont ent function
adds the segments to the letter in the order you provide them.

Using the MSAM API

CHAPTER 2

Messaging Service Access Modules

The DoW it eLet t er Cont ent function in Listing 2-11 shows one way to add content to
an incoming letter. It assumes the MSAM has previously stored a letter from its external
messaging system in a disk file. The file is composed of a series of sections corresponding
to different components of the letter. The content component of the stored letter consists
of a series of sections, similar to the segments in a letter’s content block, each of which
contains a single type of data.

The DoW it eLet t er Cont ent function starts by initializing the fields of the

MBAMPuUt Cont ent function’s parameter block that won’t change regardless of what it
reads from its file. It sets the mai | MsgRef field to the letter’s reference number. It sets
the t ext Scr ap field to ni | because it does not handle styled text. Because this MSAM
handles just one character set, DoOW i t eLet t er Cont ent sets the scri pt field to
smRonman and never changes this setting. It sets the append field to f al se because it
intends that each block of data that it previously stored on disk be written to a separate
segment in the letter’s content block.

The DoW it eLett er Cont ent function initializes its local variable cont ent Type to
indicate that it wants to read the content section of its stored letter. It sets the local
variable content Wi tten tof al se because it has not yet written a segment to the
incoming letter.

Then DoW i t eLet t er Cont ent reads sequentially through the content sections of

the stored letter. It repeatedly calls the DoReadFr onfi | e utility routine to read a buffer
of data from the file. The DoReadFr onti | e function returns one content section fromthe
file each time it is called. The buffer is large enough to hold any content section that

the MSAM previously stored. After reading each section, DoW i t eLet t er Cont ent
determines the type of data in the section and sets the segnment Type field accordingly.
Because this MSAM handles only plain text, picture, or sound data, the content sections
can contain only these types of data. If DoReadFr onti | e returns plain text data,
DoW it elLetterContent setsthe startNewScri pt field to true. This tells the
MBAMPuUt Cont ent function to examine the scri pt field to discover the character

set of the text in the buffer. Typically, you set this field to t r ue when you first add a plain
text segment and thereafter whenever the character set of the text changes (which does
not apply to this MSAM) or you’ve called MSAMPut Cont ent to add some other type of
segment. Last, DOW i t eLet t er Cont ent sets the buf f er Si ze field to the number

of bytes it read from its disk file and calls the MSAMPut Cont ent function to write

the data to the letter’s content block. If the MSAMPut Cont ent function returns
successfully, DoW i t eLet t er Cont ent sets the local variable content Wi ttento
true. The DoWit eLetter Cont ent function continues to read from its file and write
segments to the letter’s content block until it has read all the content sections in the file or
it encounters an error.

When DoW i t eLet t er Cont ent has finished reading the content sections, it tests

the local variable cont ent Wi t t en. If it failed to write any data successfully,

DoW it elLetter Cont ent copies a default string into its buffer and calls the

MBAMPUt Cont ent function. It must do this to provide some content since it set the
hasCont ent bitin thei ndi cat i ons attribute in the letter’s header. (See Listing 2-6 on
page 2-67.)

Using the MSAM API 2-77

CHAPTER 2

Messaging Service Access Modules

Listing 2-11 Writing letter content

OSErr DoWiteletterContent (FSSpec *nyTenpFil eSpec, Mil MsgRef nyMi | Ref,
Ptr dataBuffer)

{
unsi gned | ong bufferlLen;
OSType cont ent Type;
Bool ean contentWitten;
MBAMPar am my Par anBl ock;
OSEr r nyErr, nyErr2;
nmyPar anmBl ock. header . i oConpl eti on = (ProcPtr) MSAMConpl et i on;
myPar anBl ock. nsanPut Cont ent . mai | MsgRef = nyMai | Ref;
myPar anBl ock. msanmPut Cont ent . t ext Scr ap =nil;
myPar anBl ock. nsanPut Cont ent . buf fer. buf fer = dataBuffer;
myPar anBl ock. nsanPut Cont ent . scri pt = snRonman;
myPar anBl ock. msanmPut Cont ent . append = fal se;

cont ent Type kCont ent Secti onType;
contentWitten = fal se;

do { /* for each content section in the tenp file */
buf f erLen = kMaxBufferSi ze;
myErr = DoReadFrontil e(nyTenpFi | eSpec, content Type, dataBuffer,
&buf f er Len);
switch (contentType) { /* determ ne segnent type */
case kText Content:
myPar anBl ock. nsanPut Cont ent . segnent Type = kMai | Text Segnent Type;
myPar anBl ock. msamPut Cont ent . st art NewScri pt = true;
br eak;
case kPictContent:
myPar anBl ock. msanmPut Cont ent . segnent Type
br eak;
case kSoundContent:
myPar anBl ock. msanmPut Cont ent . segnent Type
br eak;
} /* endswitch */
myPar anBl ock. msanmPut Cont ent . buf f er . buf f er Si ze= buf f er Len;
if (nyErr == noErr) {
MBAMPuUt Cont ent (&y Par anBl ock, t rue) ;
myErr2 = Wi t PBDone(&mryPar anBl ock) ;
if (nmyErr2 !'= noErr)
return nyErr2;
contentWitten = true; /* don't need default content */

kMai | Pi ct Segnent Type;

kMai | SoundSegmnent Type;

2-78 Using the MSAM API

CHAPTER 2

Messaging Service Access Modules

} /% endif */

} while (nyErr !'= noErr);

if

/| *
if

(myErr == kEndOf Cont ent Sect i ons)
nyErr = nokErr;

if no content witten, wite default content */

(contentWitten == false) {

strcpy(dat aBuf f er, kDef aul t Body) ;

myPar anBl ock. msanmPut Cont ent . segnent Type = kMai | Text Segnent Type;

myPar anBl ock. msanPut Cont ent . buf fer. buffer Si ze = strl en(kDef aul t Body) ;
MBAMPuUt Cont ent (&y Par anBl ock, t rue) ;

myErr = Wi t PBDone(&y Par anBl ock) ;

return nyErr;

You call the MSAMPut Cont ent function to add content to letters only. You do not call it
to write data to a non-letter message.

Submitting a Message

After composing a message, an MSAM calls the MSAMSubni t function to submit the
message to the AOCE system for delivery. A message must be complete before you
submit it because, when the MSAMSubmi t function completes execution, the message’s
reference number is invalid and you cannot change the message in any way.

Listing 2-12 is a code fragment from the Dol ncomi ngLet t er function that shows

how you can submit a letter for delivery. The Dol ncomni ngLet t er function sets

the mai | MsgRef field to the letter’s reference number and the subni t Fl ag field to

t r ue to indicate that the letter is ready for delivery. If you set the subni t Fl ag field
tof al se, the function deletes the letter. Then Dol ncom nglLet t er calls the
MBAMSuUbmi t function.

If MSAMSubni t returns an error, Dol nconi nglLet t er calls the MSAMDel et e function
to delete the message summary associated with the letter. The Dol ncomi nglLett er
function sets the queueRef field to the reference value that identifies the incoming
queue in which the message summary is located. (It originally obtained this value from
the PMSAMOpenQueues function.) Then it sets the seqNumfield to the sequence number
that identifies the message summary. Last, Dol ncom nglLet t er sets the msgOnl y field
tof al se. This tells MSAMDel et e to delete the letter and its message summary. In this
case, there is no letter to delete. The MSAMDel et e function deletes the message
summary and returns the result code noErr.

Using the MSAM API 2-79

CHAPTER 2

Messaging Service Access Modules

Listing 2-12 Submitting a letter

/[* submt the letter */

nmyPar amBl ock. msanBSubni t . mai | MsgRef = | etterRef;
myPar anBl ock. nsanBSubmi t. submitFlag = true;
myErr = MSAMSubmi t (&y Par anBl ock) ;
if (nyErr !'= noErr) { /* del ete message sumary */
myPar anBl ock. nsanDel et e. queueRef = sl ot Spec- >i nQueue;
myPar anBl ock. msanDel et e. segNum = nsgSeqNum
myPar anBl ock. msamDel ete. nsgOnly = fal se;
myPar anBl ock. nsanDel ete. resul t = noErr;

MSAMDel et e(&ryPar anBl ock, true);
DoWai t PBDone(&mryPar anBl ock) ;

}

Di sposPtr (dataBuffer);

return nyErr;

2-80

If Dol ncomi ngLett er had been dealing with a non-letter message, it would not need to
delete a message summary, because a personal MSAM only creates a message summary
for a letter. A server MSAM, of course, does not need to delete a message summary
because it never creates one.

Because it normally has continuous access to the PowerShare mail server, a server
MSAM should translate incoming messages immediately and submit them to the
PowerShare mail server. If the PowerShare mail server quits, the server MSAM should
either stop accepting incoming messages or store the incoming messages until the
PowerShare mail server is available again.

Receiving a Report

An MSAM can receive reports about incoming messages. Server MSAMS can receive
reports on both letters and non-letter messages. Personal MSAMSs can receive reports on
non-letter messages only.

To request a report on a non-letter message, an MSAM should set the appropriate

bits in the del i veryNot i fi cati on field when it calls the MSAMPut MsgHeader
function. You set the bits by using the kI PMDel i ver yNot i fi cati onMask or

kI PMNonDel i ver yNot i fi cat i onMask masks to request delivery and non-delivery
indications.

To request a report on a letter, a server MSAM should set the r ecei pt Report s bit, the
nonRecei pt Report s bit, or both in the letter’s Mai | | ndi cat i ons attribute.

Because personal MSAMSs do not receive reports on letters, the IPM Manager ignores

the setting of the r ecei pt Report s andnonRecei pt Report s bits in a letter’s

Mai | | ndi cati ons attribute for any letter submitted by a personal MSAM. Instead,
the result code of the MSAMSubmi t function tells a personal MSAM if the letter delivery
attempt was successful or not.

Using the MSAM API

CHAPTER 2

Messaging Service Access Modules

The report that an MSAM receives never includes a copy of the original message. Thus,
the IPM Manager ignores the bits in a letter’s indications attribute and a non-letter
message’s header that have to do with enclosing a copy of the original with the report.

An MSAM can identify a report from the IPM Manager in its outgoing queue because
all such reports have a message creator of kI PMSi gnat ur e and a message type of
kl PMReport Noti fy.

An MSAM reads a report by calling the MSAMOpen, MSAMzet MsgHeader, and
MBAMzet Bl ock functions. Reports consist of a recipient report block (type

kMai | Report Type) and possibly a private data block (type kMai | MSAMIype).
The recipient report block contains a report header and information about some
number of recipients. (See the chapter “Interprogram Messaging Manager” in

Inside Macintosh: AOCE Application Interfaces for a description of the report

header | PMRepor t Bl ockHeader and the recipient report information structure
OCEReci pi ent Report.) If an MSAM added a private data block to a message, the
IPM Manager includes a copy of that block in the report.

A report may contain information on one or more AOCE recipients. The IPM Manager
attempts to report as quickly as possible on each recipient. If there is some difficulty in
reporting, it sends a report on the recipients about which it has information and sends
another report about the remaining recipients at a later time. Therefore, if a message that
the MSAM put into an AOCE system has several recipients, the MSAM may get several
reports. If the MSAM plans to forward that information to its external messaging system,
it may want to consolidate the information from the reports before forwarding it.

Note

The AOCE software defines successful delivery to mean that the
message was placed in the recipient’s incoming queue. It does not imply
that the message was actually opened or read. u

Deleting a Message

A personal MSAM should not delete messages from its outgoing queues. Messages
should stay in an outgoing queue so that the user can look at them. An exception to

this rule occurs when a user wants to delete a letter rather than send it. In that case,

the IPM Manager sends the personal MSAM a kMai | EPPCDel et eQut QVsg event, and
the MSAM should delete the letter. A server MSAM does delete messages from its
outgoing queue.

A personal MSAM can delete letters from an incoming queue. It can delete only a letter
or both a letter and the associated message summary. For example, the MSAM may want
to delete a letter, but not the message summary, when it decides the letter no longer
needs to be cached locally. If the MSAM is trying to mirror the letter’s status on its
external messaging system, it can delete the letter and the message summary when the
letter is removed from the external messaging system.

Using the MSAM API 2-81

2-82

CHAPTER 2

Messaging Service Access Modules

Note

The IPM Manager may also delete a letter from a personal MSAM’s
incoming queue in response to a user action. In that case, it sets the
nmsgDel et ed flag in the letter’'s message summary and sends the
kMai | EPPCI nQUpdat e event. u

The MSAMDel et e function removes a message from the queue that you specify.

You identify the message by its sequence humber, which you obtain from the
MSAMENnumer at e function. Once you have deleted a message, it is no longer available
to you on the Macintosh computer on which your MSAM is running. (The message
may still exist on the external messaging system.)

Translating Addresses

One of an MSAM’s primary tasks is translating address information from AOCE format
to the format of its external messaging system and vice versa. Within AOCE software, an
address is defined by an OCEReci pi ent structure, a complex structure that contains
other structures and elemental fields. It is described on page 2-106. Figure 2-13 on

page 2-28 illustrates the fields in an OCEReci pi ent structure and their relationship to
each other. Table 2-4 on page 2-29 lists what each field should contain for a non-AOCE
address. Table 2-5 on page 2-30 lists the contents of each field when the OCEReci pi ent
structure contains an AOCE address. If you are already familiar with the information in
Figure 2-13, Table 2-4, and Table 2-5, you’ll find the listings and descriptions in the
sections “Translating From an AOCE Address” and “Translating to an AOCE Address”
easier to understand.

Note that an OCEReci pi ent structure is identical to a DSSpec structure.

Within this chapter and the MSAM API, an address is often referred to as an xxx recipient,
where xxx specifies a type of recipient—To, From, cc, or bcc.

A non-letter message contains only From and To recipients. A letter may contain any
type of recipients.

An address can become known to an AOCE system by any of the following methods:

n the user provides the address information by means of an address template
(see the chapter “Service Access Module Setup” in this book for an explanation
of address templates)

n the address is read from an incoming message

n the user types in the address when using a mailer (this works only if the extension
value portion of the address is formatted as a single RSt r i ng; see the chapter
“Standard Mail Package” in Inside Macintosh: AOCE Application Interfaces for an
explanation of the mailer and type-in addressing)

n the address exists in a catalog and can be retrieved by the user or an application

The MSAM whose code is shown in the sections that follow is a personal MSAM that
connects to an SMTP messaging system. The address format understood by the SMTP
messaging system is a string of this form: username@systemlocation. The information
presented applies to server MSAMs as well.

Using the MSAM API

CHAPTER 2

Messaging Service Access Modules

Translating From an AOCE Address

Prior to transmitting a letter to its external messaging system, an MSAM must convert
the address information from AOCE format (an OCEReci pi ent structure) to the format
understood by its external messaging system.

The function DoBui | dSMITPAddr essl nf o in Listing 2-13 provides an example

of building a non-AOCE address from an OCEReci pi ent structure. The

DoBui | dSMIPAddr essl nf o function first allocates a buffer pointed to by

addr essBuf . This address buffer will eventually hold all of the SMTP address
information for a given letter except the bcc recipients, which are stored in a
separate buffer. The DoBui | dSMITPAddr ess| nf o function sets the first byte in the
address buffer to 0 to indicate an empty string.

When it is launched, this MSAM creates and maintains a My Sl ot Spec structure

for each mail slot for which it is responsible. This privately defined structure contains
all the information relevant to a individual slot. To build the From address, the

DoBui | dSMITPAddr essl nf o function begins by copying the user name from the

My Sl ot Spec structure for the slot it is processing into the local variable f r omAddr.
Then the function appends to the user name the @character and the SMTP server name,
which it also copies from the My S| ot Spec structure. Once it has finished building the
string holding the actual From address, DoBui | dSMIPAddr ess| nf o builds a second
string in the address buffer that includes formatting information. First, it copies the
constantk MyFr onmHeader into addr essBuf to label the address. The constant’s value
is"From ".Next, it appends the From address in f r omAddr to the contents of the
address buffer. Finally, it appends a carriage return. At this point, the contents of the
address buffer look like this:

From username@ysteniocati on(CR)0

Next, DoBui | dSMIPAddr ess| nf o adds the To addresses. To the address buffer, it adds
the string” To: " to label the address. It initializes the hasReci pi ent Boolean variable
to f al se to indicate that at this point it has found no To recipients. Then it repeats the
following procedure until it encounters an error:

n Read a To address from a temporary file. The MSAM created this file when it read the
letter from AOCE. If there are no more To addresses, it will get an error here.
n If the read succeeded

n call the DOAOCCEToSMIPAddr ess function (see Listing 2-14 on page 2-87), which
converts an AOCE address into an SMTP address

n append the SMTP address and a comma to the contents of the address buffer
n set the hasReci pi ent Booleantotrue
At this point, DoBui | dSMIPAddr essl nf o completes the formatting. If it added any To

addresses to the address buffer, it overwrites the last comma with the string terminator 0
and then appends a carriage return. The contents of the address buffer now look like this:

From username@ystenlocati on(CR)To: recipientl@ ocation,
reci pient2@ocation, ..., recipi ent N@ocati on(CR)0

Using the MSAM API 2-83

CHAPTER 2

Messaging Service Access Modules

If it has not added any To addresses to the address buffer, it positions the string
terminator 0 immediately before the " To: " label, in effect erasing it.

The DoBui | dSMIPAddr essl nf o function processes a letter that has no To recipient
for two reasons. First, AOCE software considers valid a letter whose header has at least
one To, cc, or bece recipient. Therefore, it is possible for an MSAM to get a letter from

its AOCE system that has no To recipient. Second, as you will see in Listing 2-14 on

page 2-87, this MSAM translates only SMTP addresses. It is possible that all of the To
recipients for a given letter are non-SMTP addresses, but that one or more of the cc or bcc
addresses are SMTP addresses. This topic is discussed in more detail in the explanation
of Listing 2-14.

The DoBui | dSMIPAddr essl nf o function adds the cc addresses to the address buffer
in exactly the same manner as it added the To address. At this point, the address buffer
contains a string that includes the From, To, and cc addresses, formatted with commas
and carriage returns, and terminated by a NULL character.

For bcec addresses, DoBui | dSMIPAddr essl nf o uses the same procedure but a separate
buffer, bccBuf . Typically, an SMTP messaging system does not display a bcc address
even to a bcce recipient. Therefore, DoBui | dSMIPAddr essl nf o places any bcec addresses
in a separate buffer so they can be handled separately. In code not shown in Listing 2-13,
the DoBui | dSMTPAddr essl nf o function uses the information in the address buffer for
both routing and display purposes, but it uses the address information in the bcc buffer
for routing only.

When DoBui | dSMIPAddr essl nf o has finished building its two address buffers, it
adds them to the letter.

Listing 2-13 Building SMTP addresses

OSErr DoBui | dSMTPAddr essl nf o(FSSpec *nyTenpFi | eSpec, MSI ot Spec *sl ot Spec)

{
#def i

#def i
#def i
#def i
#def i
#def i
#def i

OSEr r
char
char
char
char

ne

ne
ne
ne
ne
ne
ne

kMyMaxAddr Buf Si ze 4096 /* this MSAMs limt on address
info */

kMyFr onHeader "From "

kMyToHeader "To: "

kMyCCHeader "Cec: "

kMyBCCHeader "Bcc: "

kMyAddressDel imter ", "

kMyCRSt r "\r"

nmyErr;

tmpStri ng[256] ;
bccBuf [256] ;
fromAddr [256] ;
*addr essBuf ;

unsi gned | ong tnpLen;

2-84

Using the MSAM API

CHAPTER 2

Messaging Service Access Modules

char packedReci p[kMaxReci pSi ze] ;
Bool ean hasReci pi ent ;

/* allocate menory to hold addresses in external form?*/
addressBuf = NewPtr (kMyMaxAddr Buf Si ze) ;
if (MenkError() != noErr) {

return (Menkrror();

}
addressBuf [0] = O;

/* build 'from address */

strcpy(fromAddr, sl otSpec->dirldentity.userNane);
strcat(fromAddr, "@);

strcat (fromAddr, sl ot Spec->specl nfo. sntpServer);
strcpy(addressBuf, kMyFronHeader);

strcat (addressBuf, fromAddr);

strcat (addressBuf, kM/CRStr);

/[* build 'To' address */
hasReci pi ent = fal se;
strcat (addressBuf, kM/ToHeader);
for (nmyErr = noErr; nyErr == noErr;) {
tmpLen = kMaxReci pSi ze;
myErr = DoReadFrontil e(nyTenpFi | eSpec, kToType, (Ptr)packedRecip,
&t mpLen) ;
if (nyErr == noErr) {
i f (DoACCETOoSMIPAddr ess(
(OCEPackedReci pi ent *) packedRecip, tnmpString)) {
strcat (addressBuf, tnmpString);
strcat (addressBuf, kMyAddressDelimter);
hasReci pi ent = true;

i f (hasRecipient) {
addressBuf [strl en(addressBuf) - strlen(kM/AddressDelimter)] = O;
strcat (addressBuf, kM/CRStr);

}
el se {
addressBuf [strl en(addressBuf) - strlen(kMyToHeader)] = O;
}
/* not shown here -- build 'cc' address just like 'To' address */

Using the MSAM API 2-85

2-86

CHAPTER 2

Messaging Service Access Modules

/* build "bcc' address just like 'To' address but in separate buffer */
hasReci pi ent = fal se;
strcpy(bccBuf, kMyBCCHeader) ;
for (nmyErr=noErr; nyErr==noErr;) {
tmpLen = kMaxReci pSi ze;
myErr = DoReadFronti | e(nyTenpFi | eSpec, kBCCType, (Ptr) packedReci p,
&t mpLen) ;
if (nmyErr==noErr) {
i f (DoACCEToSMIPAddr ess(
(OCEPackedReci pi ent *) packedReci p,tnmpString)) {
strcat (bccBuf, tmpString);
strcat (bccBuf , kMyAddressDel im ter);
hasReci pi ent = true;

i f (hasRecipient) {
bccBuf[strlen(bccBuf)-strlen(kM/AddressDelimter)] = 0;
strcat (bccBuf , KM/CRSt 1) ;

/* not shown here -- add address information to the letter */

Di sposPtr (addressBuf);
return noErr;

The DoAOCEToSMIPAddr ess function in Listing 2-14 converts an SMTP address
contained in an OCEPackedReci pi ent structure into string format. It returnst r ue
when it produces an SMTP address from an OCEPackedReci pi ent structure.

The DoAOCEToSMIPAddr ess function calls the OCEUnpackDSSpec AOCE utility
routine to unpack the packed recipient information pointed to by its packedReci p
parameter. If the extension type of the unpacked address specifies an SMTP address, it
calls the Bl ockMove function to copy the value from the ext ensi onVal ue field into
the RSt ri ng structurer eci pRSt ri ng, convertsthe RStri nginreci pRStringintoa
C string, and stores the C string in the buffer pointed to by its uni xReci p parameter.
Then it returnst r ue. If the extension type specifies some other type of address, the

Do AOCEToSMIPAddr ess function makes no effort to translate the address and simply
returnsf al se.

A user can send a single letter to recipients in different types of messaging systems; thus,
a single AOCE letter header may contain addresses with different extension types. This
creates a potential problem for an MSAM, which is illustrated in the following example.
The SMTP messaging system to which our sample MSAM is connected understands

Using the MSAM API

CHAPTER 2

Messaging Service Access Modules

Listing 2-14 Converting from AOCE to SMTP address

Bool ean DoACCEToSMIPAddr ess(OCEPackedReci pi ent *packedReci p,
char *uni xReci p)

#defi ne kMySMIPAddr Type' SMIP

OCEReci pi ent recip;

Recordl D entitySpecifier;
OSType reci pType;
RString reci pRString;

OCEUnpackDSSpec((PackedDSSpec*) packedReci p, &recip, &entitySpecifier);
reci pType = recip. extensi onType;
switch (recipType) {
case kMySMIPAddr Type:
Bl ockMove(reci p. extensi onVal ue, &reci pRString, recip.extensionSize);
DoRToCSt ri ng(& eci pRString, uni xRecip);
br eak;
def aul t: /* if not SMIP address, don't convert it */
return fal se;
br eak;

}

return true;

only SMTP addresses. When the messaging system receives a letter, it tries to route the
letter to all of the addresses in the letter header. If it cannot do this, it generates an error
reply to the sender. Suppose an AOCE user sends a letter to a fax address and sends a
copy to a recipient with an SMTP address. Our sample MSAM is responsible for this
SMTP address and must deliver the letter to the SMTP recipient. How should the MSAM
handle the fax address? It cannot add the fax address as the To recipient because the
SMTP messaging system will complain. Yet, it should provide the SMTP recipient with a
letter that shows that the letter’s primary recipient was a fax address.

The solution to this dilemma is up to the MSAM and its messaging system. For instance,
the MSAM can copy the displayable strings from the r ecor dNane andr ecor dType
fields of an address into a display area in the letter header. A messaging system does not
interpret information in the header’s display area. If no such display area exists, the
MSAM can append the displayable strings to the body of the letter and note that the
letter was also sent to that address.

An MSAM can add an actual address for which it is not responsible instead of the
displayable strings from the r ecor dNanme andr ecor dType fields of the address. To do
this, it must know the address format specified by a given extension type and how an

Using the MSAM API 2-87

2-88

CHAPTER 2

Messaging Service Access Modules

address of that type is stored in an OCEReci pi ent structure. Knowing this, the MSAM
can translate the extension value into an actual address. (Apple does not define the
syntax and semantics for non-AOCE address extension types. MSAM developers must
work together to define agreed-upon extension types, and the associated address syntax
and semantics.)

Suppose, for example, an AppleLink MSAM knows how an SMTP address is stored in
an OCEReci pi ent structure. If an AOCE user sends a letter to an AppleLink address
and to an SMTP address, the AppleLink MSAM can translate the SMTP address to its
proper SMTP form and add it to the letter header as a display address.

Remember that an MSAM only delivers a letter to those recipients for which it is
responsible. All other recipient information with the letter is for display purposes only,
regardless of whether the other recipient information is included in actual address
format or as displayable strings, and regardless of where the information is stored (a
display area in the letter header or the body of the letter).

Note

Given that an MSAM routes a letter only to those recipients for which it
is responsible, a recipient on the MSAM’s messaging system cannot
necessarily reply to all other recipients. An MSAM must consider what
to do when a recipient wants to reply to addresses that the MSAM
cannot reach. Regardless of how it handles this situation, the MSAM
should avoid sending the AOCE user a reply that looks as if it went to
all recipients of the original message if in fact it did not. u

Although an MSAM is limited by the characteristics of the messaging system to which it
is connected, it should always attempt to represent all recipients of an outgoing letter
that it translates and transmits.

Translating to an AOCE Address

When an MSAM receives a message from its external messaging system, it must
translate the addresses associated with the message before it can deliver the message
to an AOCE system.

The function DoConver t TOAOCEAddr ess in Listing 2-15 on page 2-90 provides an
example of building an AOCE OCEReci pi ent address structure from a non-AOCE
address. The DoConver t TOACCEAddr ess function takes an address from a letter it
received from its SMTP system and puts that address into AOCE format. The
DoConvert TOACCEAddr ess function calls several AOCE utility routines to facilitate
the process of constructing an AOCE address; the utility routines are described in the
chapter “AOCE Utilities” in Inside Macintosh: AOCE Application Interfaces.

Listing 2-15 picks up at the point where DoConver t TOAOCCEAddr ess begins assembling
the pieces of an OCEReci pi ent structure. The DoConvert TOACCEAddr ess function
begins by constructing the record ID part of the OCEReci pi ent . A record ID, in turn,
consists of a local record ID and record location information. It makes an RLI structure
that contains the record location information by calling the AOCE utility routine
OCENewRL| and providing it with an RLI structure’s component parts: a catalog name,
a discriminator, a dNode number, and a path. The OCENewRLI function returns

Using the MSAM API

CHAPTER 2

Messaging Service Access Modules

the RLI structure. The MSAM retrieves the catalog name from the private slot
specification structure (type MySl ot Spec) that the MSAM builds when it is
launched. Because dNode numbers and paths are not used with non-AOCE
addresses, DoConver t TOACCEAddr ess passes OCENewRLI a nul | dNode number
and ani | pointer to a path. After OCENewRLI| returns the RLI structure,

DoConvert TOACCEAddr ess calls the AOCE utility routine OCEVal i dRLI to check
its validity.

Next, DoConver t TOAOCEAddr ess calls the OCEPackRLI utility routine to convert the
RLI structure into packed form and calls the OCEVal i dPackedRLI utility routine to
check the validity of the packed form.

Having prepared the record location information, DoConver t TOACCEAddr ess next
prepares the local record ID, which consists of a creation 1D, a record name, and a record
type. A creation ID is not used in a non-AOCE address, so DoConver t TOACCEAddr ess
calls the OCESet Cr eat i onl Dt oNul | utility routine to set the Cr eat i onl Dstructureto
0. The buffer pointed to by the local variable r eal Name contains a displayable form of
the sender or receiver’s name in C string format. The DoConver t TOACCEAddr ess
function converts the C string into an RSt r i ng and stores the RSt r i ng in the local
variable r ecor dNane. It tells the OCECToRSt r i ng utility routine what character set the
string uses and how many bytes, at maximum, it should place in the data portion of

the RSt ri ng, which in this example is the maximum number of bytes. Then
DoConvert TOACCEAddr ess calls the OCECToRSt r i ng utility routine again to get an
RSt r i ng that contains the sender or receiver’s type. In this example, the type is always
set to the constant kUser Rec Ty peBody, indicating a user.

At this point, DoConvert TOAOCEAddr ess calls the OCENewLocal Recor dI D utility
routine to build a local record ID from the creation ID, record name, and record type. The
DoConvert TOACCEAddr ess function then calls the OCENewRecor dI D utility routine
to build a record ID from its packed RLI and local record ID.

At last, DoConvert TOACCEAddr ess is ready to build the OCEReci pi ent itself. It sets
the enti t ySpeci fi er field to point to the record ID it has just constructed. Then it sets
the extension fields. It specifies its extension type in the ext ensi onType field. The
buffer pointed to by the local variable st ar t Addr contains the SMTP address in C
string format. The DoConver t TOAOCEAddr ess function converts the C string into

an RSt ri ng and stores the RSt ri ng in the local variable xt nVal ueRSt ri ng. (The
DoConvert TOACCEAddr ess function converts the extension value from C string to

RSt ri ng format so that the mailer can correctly display the SMTP address to the user.)
Then, DoConver t TOAOCEAddr ess sets the ext ensi onSi ze field to the number

of bytes in the body field of xt nVal ueRSt ri ng plus 4 more to account for the

dat aLengt h andchar Set fields in an RSt ri ng structure. This produces a count of

the total number of bytes in xt nVal ueRSt ri ng. Last, DoConver t TOACCEAddr ess
sets the ext ensi onVal ue field to point to xt nVal ueRSt r i ng.

Before writing the address to a disk file, DoConver t TOACCEAddr ess converts the
address into packed form. It calls the OCEPackedDSSpecSi ze utility routine, passing
it the unpacked structure. In response, OCEPackedDSSpecSi ze returns the size

of the packed structure into which the unpacked structure could be converted. Then
DoConvert TOACCEAddr ess calls the OCEPack DSSpec utility routine and passes the

Using the MSAM API 2-89

CHAPTER 2

Messaging Service Access Modules

size value to it. Finally, DoConver t TOAOCEAddr ess writes the packed structure to a
disk file.

Listing 2-15 Building an OCEReci pi ent structure

OSErr DoConvert TOAOCEAddr ess(FSSpec *nyTenpFi | eSpec, MySI ot Spec *sl ot Spec)

{

#defi ne kMySMIPAddr Type ' SMIP
#defi ne kMyDi rectoryType ' SMIP'
#def i ne kMyDi scri mi nat or {kMyDi rect oryType, OL}

OSEr r nyErr,;

char *start Addr, *real Nane;
RLI myRLI ;

PackedRLI myPackedRLI ;

DirDiscrimnator discrimnator = kMyDi scri m nat or;

CreationlD cid;
RString recor dName, r ecor dType;
Local Recordl D | ocal RI D
Recordl D Rl D
OCEReci pi ent t heReci pi ent ;
char packedReci pi ent [kMaxReci pSi ze] ;
unsi gned | ong packedReci pLengt h;
RString xt nVal ueRSt ri ng;
/*
Not shown here -- parse the address information in the letter fromthe

ext ernal nessaging system Put the SMIP address into a buffer pointed
to by start Addr. Put the displayable string that identifies the sender
or receiver into a buffer pointed to by real Name.

*/

/* make an RLI and check it for validity */
OCENewRLI (&myRLI, (DirectoryNanePtr) &sl ot Spec->di r ect or yNane,
&di scrim nator, kNULLDNodeNunber, nil);
if (!'CCEvalidRLI (&yRLIY))
return kUnexpect edOCECondi ti on;

/* pack the RLI and check it for validity */
myErr = OCEPackRLI (&yRLI, &nyPackedRLI, kRLI MaxBytes);

2-90 Using the MSAM API

CHAPTER 2

Messaging Service Access Modules

if (nyErr != noErr)
return nyErr;

if (!OCEValidPackedRLI (&ryPackedRLI))
return kUnexpect edOCECondi ti on;

/* prepare nane and type rstrings and creation ID for local RID */
OCESet Creat i onl Dt oNul | (&ci d) ; [* set cid to null */
OCECToRSt ri ng(real Nane, snRonman, &recordName, kRStringMaxBytes);
OCECToRSt ri ng(kUser RecTypeBody, snRoman, &recordType, kRStringMaxBytes);

/* the conmponents have been prepared; nmake the local RID and the RID */
OCENewLocal Recordl D (& ecordNane, &recordType, &cid, & ocal RID);
OCENewRecor dl D(&ryPackedRLI, &l ocal RID, &RID);

/* build the OCEReci pi ent address structure */
theReci pient.entitySpecifier = &R D

t heReci pi ent . ext ensi onType = kMySMIrPAddr Type;

OCECToRSt ri ng(start Addr, snmRoman, &xtnVal ueRString, kRStringMaxChars);
t heReci pi ent . ext ensi onSi ze = xtnVal ueRStri ng. | engt h+4;

t heReci pi ent . ext ensi onVal ue = (Ptr)é&xtnVal ueRStri ng;

/* pack the OCERecipient and wite it to a disk file */
packedReci pLengt h = OCEPackedDSSpecSi ze(& heReci pi ent) ;
OCEPackDSSpec(& heReci pi ent, (PackedDSSpec *) &packedReci pi ent,
packedReci pLengt h);
myErr = DoW it eAddressToFil e(nmyTenpFil eSpec, (Ptr)&packedReci pi ent,
packedReci pLengt h);

Note

If a personal MSAM receives an incoming letter that contains more than
one AOCE recipient, the MSAM translates all of the addresses. However,
a personal MSAM cannot forward letters from the user’s Macintosh to
other AOCE users. A personal MSAM can deliver an incoming letter
only to the owner of the local Macintosh computer, even if the letter
contains the addresses of other AOCE users. u

Logging Personal MSAM Operational Errors

When an operational error occurs, such as a modem not functioning properly or an
access number being out of service, the personal MSAM should log the error by calling
the PMSAMLogEr r or function.

You can log four general classes of information: informational messages, warnings,
errors that are not correctable by the user, and errors that are correctable by the user.

Using the MSAM API 2-91

enum {

kMai | ELECor r ect abl e
kMai | ELEEr r or =
kMai | ELEVr ni ng

kMai | ELEI nf or mat i onal

2-92

CHAPTER 2

Messaging Service Access Modules

These classes are referred to as error types; they are represented by four enumerated
constants. You use one of these constants in the er r or Type field of the
Mai | Er r or LogEnt r yl nf o structure when you log an error:

/* error correctable by user */

/* error not correctable by user */

/* warning requiring no user intervention */
[* informational message */

w N = O

For example, you would log an error of type kMai | ELEI nf or mat i onal if you wanted
to inform the user that it took 12 connection attempts before a connection with the
external messaging system was actually achieved. If you wanted to warn the user that
his or her password on the external messaging system was about to expire, you would
log an error of type kMai | ELEVAr ni ng. You use the kMai | ELEET r or error type to log
an error that cannot be fixed by the user, for example, a missing resource in the personal
MSAM. If an error occurs that requires user intervention, you log an error of type

kMai | ELECor r ect abl e.

In general, you should log all errors that require user intervention, but you should be
selective about logging other types of errors. Logging many warnings and informational
messages can fill the error log and cause problems at the user interface.

An error may apply to a specific slot or to the personal MSAM as a whole. When you log
an error, you set the nsantl ot | Dfield of the Mai | Err or LogEnt r yl nf o structure to 0
if the error applies to the personal MSAM as a whole. Otherwise, you set it to the slot ID
of the affected slot.

When you log an error of type kMai | ELECor r ect abl e, the IPM Manager considers
either the personal MSAM or the affected slot to be suspended. While a personal MSAM
is suspended, the IPM Manager does not send it any high-level events or restart it at
scheduled times if it quits. While a slot is suspended, the user cannot modify or delete it.
Moreover, if you specify the suspended slot in a call to the PMSAMOpenQueues function,
the function returns the kMai | Sl ot Suspended result code. Other than these
exceptions, a personal MSAM can continue whatever activity it deems appropriate

while it or one of its slots is suspended.

For example, suppose a user configures an SMTP personal MSAM to start up every night
at midnight. At midnight, the IPM Manager launches the MSAM, and the MSAM fails to
connect to its external messaging system because MacTCP, which is required for this
MSAM, is not installed. The MSAM should log an error of type kMai | ELECor r ect abl e.
The IPM Manager will not try to launch the SMTP personal MSAM again until the user
has installed MacTCP.

Because logging an error of type kMai | ELECor r ect abl e implies that the problem is
not transient in nature, the PMSAM_ogEr r or function does not provide you with a
mechanism for canceling these errors or accessing logged entries. Correctable errors,
by their definition, require a user’s attention, and you should not log them unless
absolutely necessary.

Using the MSAM API

CHAPTER 2

Messaging Service Access Modules

AOCE software defines the following error codes:

enum { [* predefined val ues of Muil LogErrorCode */
kMai | MSAMVEr r or Code = 0, /* MSAM defined error */
kMai | M scError = -1, /* mscell aneous error */
kMai | Novbdem =-2 /* nodem required, but mssing */
b

Because a personal MSAM is a background application, it has no user interface and
therefore cannot notify the user of runtime errors. Because each MSAM can potentially
encounter errors specific to its implementation, the Finder cannot adequately notify the
user of these errors without help from the MSAM. To solve this problem, an MSAM
needs to provide two ' STR#' string list resources. The first ' STR#' resource contains a
list of the MSAM'’s error messages, each describing a problem that may occur. This
resource must have a resource ID of kVai | MSAMETr r or St ri ngLi st | D. The second

' STR#' resource contains a list of strings specifying the action that the user can take to
fix a specific error. It must have a resource 1D of kMai | MSAMAct i onStri ngLi st D.

To cause the Finder to display one of your error messages, you must set the er r or Code
field of the Mai | Er r or LogEnt r yI nf o structure to kMai | MSAMET r or Code and set the
error Resour ce field. The err or Resour ce field is an index into the list of your error
messages in the ' STR#' resource. The index of the first message in the string list is 1.

When you log an error that requires user intervention (kMai | ELECor r ect abl e), you
must specify an action that the user should take to correct the error. You provide the action
messages ina' STR#' resource (resource ID =kMai | MSAMAct i onSt ri ngLi st | D). You
set the acti onResour ce field to an index into the list of your action messages in the

" STR#' resource. The index of the first message in the string list is 1.

The Finder displays all errors to the user, regardless of the error type. A user reports that
an error is corrected by clicking the Resolve button on a problem report in his or her In
Tray. (See the PowerTalk User’s Guide for a description of the PowerTalk user interface.)

The IPM Manager reinstates a suspended personal MSAM or slot when the user reports
that the error is corrected or when the computer on which the personal MSAM is
running is restarted. If the personal MSAM is not running when the user reports that the
problem has been corrected, the IPM Manager launches it. If the personal MSAM is
running, it gets a kMai | EPPCCont i nue high-level event.

Messaging Service Access Module Reference

This section describes the structures and functions that constitute the messaging
service access module API. It also includes descriptions of the high-level events an
MSAM might receive.

Messaging Service Access Module Reference 2-93

CHAPTER 2

Messaging Service Access Modules

Data Types and Constants

This section describes the data structures in the MSAM API. The chapters “AOCE
Utilities” and “Interprogram Messaging Manager” in Inside Macintosh: AOCE Application
Interfaces contain descriptions of other structures that you use.

The MSAM Parameter Block

Every function in the MSAM API takes a pointer to an MSAMPar amparameter block as
input. The parameter block has a standard header followed by function-specific fields.
Each function description in the section “MSAM Functions” describes the fields of that
function’s parameter block.

MailParamBlockHeader

The parameter block header for an MSAMPar amstructure has the following definition:

define Mil Par anBl ockHeader

Ptr gLi nk; /* reserved */\

| ong reservedHi; /[* reserved */\

| ong reservedHz; /* reserved */\

ProcPtr i oConpl etion; [/* your conpletion routine */\

OSEr r i oResul t; /* result code */\

| ong saveAb; /* location of app gl obal variables */\
short r eqCode; /[* reserved */

Field descriptions

gLi nk Reserved.
reservedHl Reserved.
reser vedH2 Reserved.

i oConpl eti on Pointer to a completion routine that you can provide. When a
function that you called asynchronously completes execution, it
calls your completion routine. See page 2-219 for a description of
the completion routine. Set this field to ni | if you do not wish to
provide a completion routine. This field is ignored if you call a
function synchronously.

i oResul t The result of a function. You can poll thei oResul t field to
determine when a function has finished executing. When you
execute the function asynchronously, the function sets this field
to 1 as soon as the function has been queued for execution. When
the function completes execution, it sets this field to the actual

result code.
saveA5 The contents of your application’s A5 register.
r eqCode Reserved.

2-94 Messaging Service Access Module Reference

CHAPTER 2

Messaging Service Access Modules

MSAMParam

The MSAMPar amstructure is a union of function-specific substructures, each of which
contains standard header fields.

uni on MSAMPar am{
struct {Mil ParanBl ockHeader} header;

PMSAMGet MSAMRecor dPB prmsantet MSAMRecor d;
PVBAMOpenQueuesPB pnmsanmOpenQueues;
PMSAMSet St at usPB pnsanfet St at us;
PMSAMLogETr r or PB prmsaniogError;
SMSAMSet upPB snsantSet up;

SMBAMSt ar t upPB snmsantt art up;
SMVBAMShut downPB snsanthut down;
MSAMENnuner at ePB nmsanEnuner at e;
MSAMDel et ePB msamDel et e;
MSAMOpenPB nmsanOpen,;
MSAMOpenNest edPB nmsanmOpenNest ed;
MBAMCl osePB nmsanCl ose;

MBAMCet MsgHeader PB msamCet MsgHeader ;
MSAMGet At t ri but esPB msanGet Attri but es;
MBAMCet Reci pi ent sPB nmsamnmCet Reci pi ent s;
MSAMGet Cont ent PB nsantet Cont ent ;
MSAMCGet Encl osur ePB nmsantGet Encl osur e;
MSAMEnumer at eBl ocksPB nmsanmEnuner at eBl ocks;
MSAMGet Bl ock PB nmsanGet Bl ock;
MSAMVEr kReci pi ent sPB nmsanmvar kReci pi ent s;
MBAWnhMar kReci pi ent sPB msamMar kReci pi ent s;
MSAMCr eat ePB nsantCr eat e;

MBSAMBegi nNest edPB nsanBegi nNest ed;
MSAMEndNest edPB nmsanmEndNest ed;
MBAMSuUbmi t PB nmsanSubm t ;

MBAMPuUt MsgHeader PB nmsanPut MsgHeader ;
MBAMPut At t ri but ePB msanmPut At tri but e;
MSAMPut Reci pi ent PB nmsanPut Reci pi ent;
MBAMPuUt Cont ent PB nmsanPut Cont ent ;
MBAMPut Encl osur ePB msamnPut Encl osur e;
MSAMPut Bl ockPB nsanPut Bl ock;
MSAMCr eat eRepor t PB nmsantCr eat eReport ;

MBAMPuUt Reci pi ent Report PB msanPut Reci pi ent Report ;
PMSAMCr eat eMsgSunmar yPB pnmsanCr eat eMsgSummar y;
PVBSAMPUt MsgSummrar y PB pnsanmPut MsgSunmar y;
PMSAMGet MsgSunmmar y PB pnmsanmGet MsgSunmar y;

Messaging Service Access Module Reference 2-95

CHAPTER 2

Messaging Service Access Modules

Mai | WakeupPMSAMPB wak eupPMSAM
Mai | Cr eat eMni | Sl ot PB createMil Sl ot;
Mai | Modi f yMai | Sl ot PB nmodi f yMai | Sl ot ;

H

typedef uni on MSAMPar am MSAMPar am

The Mail Buffer

You use the Mai | Buf f er structure to pass data between your MSAM and the
IPM Manager.

MailBuffer

The mail buffer structure is defined by the Mai | Buf f er data type.

struct Mail Buffer {

| ong bufferSize; /* size of your buffer */
Ptr buf f er; [* pointer to your buffer */
| ong dat aSi ze; /* ampount of data returned in or read out

of your buffer */

b
typedef struct Mail Buf fer Mil Buffer;

Field descriptions

buf fer Si ze When reading, you set this field to the size of your buffer in bytes.
When writing, you set this field to the number of bytes that you
want to write.

buf f er A pointer to your buffer. You allocate a buffer of whatever size
you need.
dat aSi ze When it successfully completes execution, the function sets this

field to the actual number of bytes that it read or wrote.

The Mail Reply Structure

AMai | Repl y structure is a model. Many functions in the MSAM API format the data
they place in a Mai | Buf f er structure according to the Mai | Repl y model format.

2-96 Messaging Service Access Module Reference

CHAPTER 2

Messaging Service Access Modules

MailReply

A structure of type Mai | Repl y consists of a single field, t upl eCount , that contains
a count. It is followed immediately by t upl eCount occurrences of a data item or
structure. The format of the data item or structure depends on the particular
function that returns the data in the Mai | Repl y structure format. For instance, the
MSAMEnurmer at e function returns MSAMEnuner at eQut QRepl y or

MBAMEnumer at el nQRepl y structures.

struct Mail Reply {
unsi gned short tupl eCount;
[* tuple[tupl eCount] */

b

typedef struct Mail Reply Mil Reply;

The Enumeration Structures

The enumeration structures, MSAMEnuner at eCut QRepl y and

MSAMENnuner at el nQRepl y, return information about messages in an outgoing or
incoming queue, respectively. The MSAMEnuner at e function returns a list of one
or the other of these structures. Each structure gives enough information about a
message for you to know what to do next with the message.

MSAMEnumerateOutQReply

When a personal or server MSAM calls the MSAMEnumer at e function to enumerate an
outgoing queue, the function returns information about the messages in the outgoing
queue in a list of MSAMENnuner at eQut QRepl y structures, one for each message.

struct MSAMEnuner at eQut QReply {

| ong segNum /* sequence nunber of nessage */
Bool ean done; /* resolution of message */

| PMPriority priority; /* priority of message */
OSType msgFam ly; /* nessage famly */

| ong approxSi ze; /* size of nmessage */

Bool ean tunnel Formy /* reserved */

Byt e padByt e; /* pad to even byte boundary */
Net wor kSpec next Hop; /* reserved */

OCECr eat or Type nsgType; /* nmessage creator and type */

b

typedef struct MSAMEnuner at eQut QReply MSAMEnuner at eQut QRepl vy;

Messaging Service Access Module Reference 2-97

MSAMEnumeratelnQReply

CHAPTER 2

Messaging Service Access Modules

Field descriptions
segNum

done

priority

msgFam | y

appr oxSi ze

tunnel Form
next Hop
msgType

A sequence number that identifies a specific message in the
outgoing queue. It is valid until you delete the message. You
pass this value to the MSAMOpen function to identify a message
you want to open.

A Boolean value that indicates if you have sent—or completed your
attempts to send—the message to each of the recipients for which
you are responsible. The IPM Manager sets this field to t r ue when
you have finished sending or attempting to send the message to all
of the recipients for which you are responsible. You tell the IPM
Manager which recipients you have processed by calling the
MSAWnhMar kReci pi ent s function.

A value that indicates the priority with which the message was sent.
Possible values are: kI PMNor mal Pri ority, kl PMLowPriority,
and kIl PVHi ghPriority.

A value that indicates the message family to which the message
belongs. The AOCE-defined message families are kMai | Fami | vy,
kMai | Fam | yFi | e, and kl PMFami | yUnspeci fi ed. Developers
can define other message families.

The size of the message itself, not including some overhead bytes
associated with the message when it resides in the outgoing queue.
Reserved.

Reserved.

A structure that specifies the creator and type of the message. The
creat or field indicates the creator of the message. The t ype field
identifies the type of message.

2-98

When a personal MSAM calls the MSAMEnuner at e function to enumerate an incoming
queue, the function returns information about the letters in the queue in a list of
MBAMEnumer at el nQRepl y structures, one for each letter.

struct MSAMEnunerat el nQreply {
| ong seqNum /* letter sequence nunber */
Bool ean nsgDel eted; /* should |etter be del eted? */
Bool ean nsgUpdated; /* was nmessage summary updat ed? */
Bool ean nsgCached; /* is letter in the incom ng queue? */
Byt e padByt e; /* pad to even byte boundary */

H

typedef struct MSAMEnuner atel nQRepl y MSAMEnurmer at el nQRepl y;

Messaging Service Access Module Reference

CHAPTER 2

Messaging Service Access Modules

Field descriptions

segNum A sequence number for a specific letter in the incoming queue. It is
valid until you delete the letter.
nmsgDel et ed A Boolean value that indicates whether you should delete the letter.

Only the IPM Manager sets and clears this field. If this field is set to
t r ue, you should delete the letter.

msgUpdat ed A Boolean value that indicates if the IPM Manager has updated the
message summary associated with the letter. Only the IPM Manager
sets and clears this field. This field is set to t r ue if the IPM
Manager has updated the message summary.

msgCached A Boolean value that indicates if the letter is attached to its message
summary. Only the IPM Manager sets and clears this field. This
field is set to t r ue if you wrote the letter into the incoming queue.

The Mail Time Structure

The Mai | Ti me structure appears in the sendTi meSt anp attribute in a letter’s header
and in the sendTi ne field of a letter’s message summary.

MailTime

The Mai | Ti e structure is the standard structure for reporting time in an AOCE system.

struct Ml Tinme {
UTCTi ne time; [* current UTC(GMI) */
UTCO f set offset; [/* offset fromUTC */
}

typedef struct Mail Tine Mail Ti nme;

Field descriptions

time Current time expressed as universal coordinated time (UTC) in
seconds since 00:00 hours, January 1, 1904. (The UTCTi e data type
isunsi gned | ong.)

of f set Offset from UTC in seconds. The offset is a signed value added to
the ti me value. (The UTCOf f set data type is | ong.)

The Letter Attribute Structures

Letter attributes identify a letter and indicate who wrote it, when it was sent, what its
priority for delivery is, who the recipients are, and so forth. Most attributes are stored in
the letter header; a few are stored in the message summary.

Messaging Service Access Module Reference 2-99

CHAPTER 2

Messaging Service Access Modules

MailAttributelD

When calling the MSAMPut At t ri but e or MSBAMPUt Reci pi ent function, you use the
Mai | At t ri but el Ddata type to indicate the letter attribute whose value you are
passing to the function. When calling the MSAMzet Reci pi ent s function, you use it
to indicate the recipient type about which you want information.

typedef unsigned short Mil Attributel D

A variable of type Mai | Attri but el Dmay have any of the following values:

enum {
kMai | LetterFl agsBit =1, [/* letter flags bit */
kMai | I ndi cati onsBit =3, /* indications bit */
kMai | MsgTypeBi t =4, [|* letter creator & type bit */
kMai | Letter| DBit =5 [/* letter IDbit */
kMai | SendTi meSt anpBi t =6, /* send timestanmp bit */
kMai | Nest i nglLevel Bit =7, [/* nesting level bit */
kMai | MsgFani | yBi t =8, /* nessage fanmly bit */
kMai | Repl yI DBi t =9, /* reply IDbit */
kMai | ConversationlDBit = 10, /* conversation ID bit */
kMai | Subj ect Bi t = 11, /* subject bit */
kMai | FronBi t = 12, /* Fromrecipient bit */
kMai | ToBi t = 13, /* To recipient bit */
kMai | CcBi t = 14, /* cc recipient bit */
kMai | BccBi t = 15 /* bcc recipient bit */

MailAttributeBitmap

When calling the MSBAMGet At t ri but es function, you usea Mai | Attri but eBi t map
structure to indicate the letter attributes about which you want information. Each
defined bit in the attribute bitmap represents a letter attribute. This structure is also a
component part of the MSAMVsgSunmar y structure.

struct Mail AttributeBitmp {

unsi gned int /* 32 bits */
reservedA: 16, /* bits 17 to 32--reserved */
reservedB: 1, /[* bit 16--reserved */
bcc: 1, [* bit 15--blind carbon copy recipients */
cc: 1, [* bit 14--carbon copy recipients */
to: 1, [* bit 13--To recipients */
fromi1l, [* bit 12--sender of letter */

2-100 Messaging Service Access Module Reference

CHAPTER 2

Messaging Service Access Modules

subject: 1, /[* bit 11--subject of letter */
conversationl D: 1, /* bit 10--1D of conversation thread */
replyl D: 1, [* bit 09--1D of letter being replied to */
msgFam | y: 1, /* bit 08--nessage famly */

nesti nglLevel : 1, /* bit 07--nesting level of letter */
sendTi nmeSt anp: 1, /[* bit 06--tinme letter was sent */
letterlD: 1; /* bit 05--letter's unique |ID nunber */
nmsgType: 1, /[* bit 04--letter's creator and type */
i ndi cations: 1, /* bit 03--indications */

reservedC: 1, /* bit 02--reserved */

letterFlags:1 /* bit 01--letter flags */

s
typedef struct MailAttributeBitmap Mail Attri buteBit map;

Field descriptions

bcc Secondary recipients whose addresses do not appear on the letter as
received by the To and cc recipients and other bcc recipients.

cc Recipients who are being sent a courtesy copy of the letter.

to Primary recipients of the letter.

from The sender of the letter.

subj ect The subject of the letter.

conver sati onl D The letter ID number of the original letter that began a sequence of
replies or forwards that resulted in the current letter.

replyl D The letter ID number of the letter to which the current letter is
areply.

nmsgFam | y A value that indicates the message family to which the message
belongs.

nesti ngLevel The nesting level of the letter. A letter that is newly created (that is,

not a reply to or forward of an existing letter) has a nesting level of
0. A reply to or forward of a letter whose nesting level is 0 has a
nesting level of 1. A reply to or forward of a letter whose nesting
level is 1 has a nesting level of 2, and so on. See the section “Letters”
beginning on page 2-17 for information on nested letters.

sendTi neSt anp The time the letter was sent.

letterl D The letter ID number for the letter. This number is generated by the
IPM Manager.

nmsgType The creator and type of the letter. Each letter has a creator and type.

i ndi cations Indications of the properties of the letter, such as whether the letter

contains a digital signature, whether the originator requested
non-delivery reports, and so on. The Mai | | ndi cat i ons structure
is described on page 2-102.

| etterFl ags Flags that indicate the status of the letter, such as whether it has
been opened by the user. The Mai | Let t er Fl ags structure is
described on page 2-123. Server MSAMSs should ignore this attribute.

Messaging Service Access Module Reference 2-101

CHAPTER 2

Messaging Service Access Modules

The following table summarizes letter attributes. In the column headed “O/M”, an M
indicates mandatory—that is, this attribute must always be present. An O means optional—
the attribute may or may not be present in a letter. In the column headed “F/V”, an F
indicates fixed—that is, this attribute has a fixed size—while a VV means variable—the
attribute size is variable.

Constant Value Attribute data type O/M FIV
kMai | Lett er Fl agsBi t 1 Mai | Letter Fl ags M F
kMai | I ndi cati onsBit 3 Mai | I ndi cati ons M F
kMai | MsgTypeBi t 4 OCECr eat or Type M F
kMai | Let t er | DBIi t 5 Mai | Letter|D M F
kMai | SendTi neSt anpBi t 6 Mai | Ti me M F
kMai | Nesti ngLevel Bi t 7 Mai | Nest i ngLevel M F
kMai | MsgFani | yBi t 8 OSType M F
kMai | Repl yI DBi t 9 Mai | Letterl D o) F
kMai | Conversati onl DBi t 10 Mai |l Letterl D (0] F
kMai | Subj ect Bi t 11 RSt ri ng o) Y
kMai | FronBi t 12 OCEReci pi ent M Y
kMai | ToBi t 13 OCEReci pi ent M \%
kMai | CcBi t 14 OCEReci pi ent o) Y
kMai | BccBi t 15 OCEReci pi ent 0 Y

An MSAM should allocate the largest possible buffer for attributes whose size is variable.

Note

All letter attributes except the | et t er FI ags attribute are stored in the
letter header. Both personal and server MSAMSs read or set all letter
attributes in the letter header. The | et t er Fl ags attribute is stored in a
letter’s message summary. Server MSAMSs do not create message
summaries and therefore do not set or read al et t er Fl ags attribute
for letters they handle. The | et t er Fl ags attribute applies only to
letters submitted by a personal MSAM. u

Maillndications

The Mai | | ndi cat i ons structure further defines the letter attribute called

i ndi cati ons. Itis a bit field structure that contains information about several
characteristics of the letter, such as what priority level the originator set for the
letter, whether it has been sent, what type of reports the originator wants, and so
on. An MSAM sets many of these bits for an incoming letter and reads the bits
for an outgoing letter.

2-102 Messaging Service Access Module Reference

CHAPTER 2

Messaging Service Access Modules

The following constants define bits in the Mai | | ndi cat i ons structure:

enum {
kMai | Ori gi nal | nReportBit =1
kMai | NonRecei pt Report sBit =3
kMai | Recei pt ReportsBit =4
kMai | For war dedBi t = 5,
kMai | PriorityBit =6
kMai | | sReportWthOriginal Bit = 8
kMai | | sReportBit =9

kMai | HasCont ent Bi t = 10,
kMai | HasSi gnat ur eBi t = 11,
kMai | Aut henti cat edBi t =12,
kMai | Sent Bi t = 13
b
Note

Constants for the has St andar dCont ent , hasl mageCont ent, and
hasNat i veCont ent bit fields are not defined. u

struct Maillndications {
unsi gned i nt
reservedB: 16,
hasSt andardContent: 1,/* |letter has a content bl ock */

hasl mageCont ent : 1, /* letter has an image block */
hasNativeContent:1, /* letter has a content enclosure */
sent: 1, /* letter sent, not just conposed */
aut henti cat ed: 1, /* letter was created and transported with

aut hentication */
hasSi gnature: 1, /* letter was signed with a digital signature */
hasContent: 1, /* this letter or a nested letter has content */
i sReport:1, /[* not a letter, is really a report */
i sSReportWthOriginal:1,/* report contains the original letter */
priority: 2, /* letter has normal, low, or high priority */
f orwar ded: 1, /* letter contains a forwarded letter */
recei pt Reports: 1, [* originator requests delivery indications */

nonRecei pt Reports: 1, /* originator requests non-delivery indications */
originallnReport:2, /* originator wants original letter enclosed in
reports */

b

typedef struct Maillndications Millndications;

Messaging Service Access Module Reference 2-103

2-104

CHAPTER 2

Messaging Service Access Modules

Field descriptions

has St andar dCont ent

hasl mageCont ent

If this bit is set, this letter has a block of type kMai | Cont ent Type
that contains data in standard interchange format.

If this bit is set, this letter has a block of type kMai | | mageBody Type
that contains data in standard image format.

hasNat i veCont ent

sent

aut henti cat ed

hasSi gnat ure

hasCont ent

i sReport

If this bit is set, this letter contains content in the form of a
content enclosure.

If this bit is set, this letter was sent, not just composed. This bit is
clear for nested letters and those that exist on disk and have not yet
been submitted.

If this bit is set, this letter was created by an authenticated user and
transported over a secure path using the Apple Secure Data Stream
Protocol. In release 1, a letter entering an AOCE system via an
MSAM is not authenticated. This bit will always be set to 0 on
letters read by a personal MSAM. On letters read by a server
MSAM, the bit may be set or clear. In either case, it is for

the MSAM’s information only.

If this bit is set, the sender signed the letter with a digital signature.
The signature applies to the letter as a whole. If a portion of the
letter is signed, the bit is not set. See the chapter “Digital Signature
Manager” in Inside Macintosh: AOCE Application Interfaces for
information about digital signatures. The AOCE software sets this
bit to 0 for letters submitted by an MSAM. If this bit is set for an
outgoing letter, the MSAM can ignore it or add a note to the letter
indicating that the letter was originally signed with a digital
signature.

If this bit is set, this letter, or a letter nested within it, contains
content. The content can be a content block, an image block,

or a content enclosure. Although this bit doesn’t indicate the
type of content or the nesting level at which the content exists,
it provides useful information to AOCE letter applications that
display letter content by indicating if a letter has some type of
content at some nesting level.

If this bit is set, this is an IPM report. Because an IPM report is not a
report that an MSAM creates or receives, you never set this bit for a
report that you create, nor will it be set on a report that you receive.
For more information about reports, see the section “Reports” on
page 2-23. IPM reports are discussed in the chapter “Interprogram
Messaging Manager” in Inside Macintosh: AOCE Application
Interfaces.

Messaging Service Access Module Reference

CHAPTER 2

Messaging Service Access Modules

i SReport Wt hOri

priority

f or war ded
recei pt Reports

nonRecei pt Repor

ori gi nal I nRepor

gi nal

If this bit is set, this is an IPM report that contains the original letter
to which the report pertains. Because an IPM report is not a report
that an MSAM creates or receives, you never set this bit for a report
that you create, nor will it be set on a report that you receive. For
more information about reports, see the section “Reports” on

page 2-23. IPM reports are discussed in the chapter “Interprogram
Messaging Manager” in Inside Macintosh: AOCE Application
Interfaces.

The priority of the letter, as set by the sender. This 2-bit field can be
set to any of the following values: kIl PMNor nal Priority,
kl PMLowPriority,orkl PMH ghPriority.

enum {
kl PMANyPriority = 0,/* not used by MSAM */
kl PMNormal Priority 1,
kl PMLowPriority,
kI PMHI ghPriority

H

It is up to the recipient to decide how to handle letters of
different priorities.

If this bit is set, this letter is a forwarded letter.

If this bit is set, the originator of this letter has requested a report
containing delivery indications.

ts
If this bit is set, the originator of this letter has requested a report
containing non-delivery indications.

t
This 2-bit field can be set to either of the following values:

enum {
kMai | NoOri gi nal = 0,
kMai | Encl oseOnNonRecei pt = 3
b

If this field is set to kMai | NoOri gi nal , the originator of this letter
specified that the original letter not be enclosed in reports. If this
field is set to kai | Encl osedOnNonRecei pt, the originator of
this letter specified that the original letter be enclosed in reports
containing non-delivery indications. An MSAM ignores this field
and never includes a copy of the original letter in a report it creates.
The AOCE toolbox is responsible for including originals when
appropriate.

Messaging Service Access Module Reference 2-105

CHAPTER 2

Messaging Service Access Modules

The following table indicates who sets the bits in the Mai | | ndi cat i ons structure for
an incoming letter. In the column labeled “Responsible for setting,” MSAM refers to both
personal and server MSAMSs.

Maillndications bit field Responsible for setting
has St andar dCont ent MSAM

hasl mageCont ent MSAM
hasNat i veCont ent MSAM

sent IPM Manager
aut henti cat ed IPM Manager
hasSi gnat ure IPM Manager
hasCont ent MSAM

i sReport Not applicable
i sSReport Wt hOrigi nal Not applicable
priority MSAM

f or war ded MSAM

recei pt Reports MSAM
nonRecei pt Reports MSAM

ori gi nal | nReport MSAM

The Recipient Structures

The structures in this section define the sender or receiver of a message. You use these
structures when you get recipient information from a message that you have opened or
when you put recipient information into a message that you are creating. The chapter
“Interprogram Messaging Manager” in Inside Macintosh: AOCE Application Interfaces also
describes the OCEReci pi ent and OCEPackedReci pi ent structures. The structures are
described here from the perspective of an MSAM’s use of them.

OCERecipient

2-106

The OCEReci pi ent structure completely specifies an address. It should contain
whatever information is needed to deliver a message to that address.

You use an OCEReci pi ent structure to specify a reply address when you call the
MBAMPUt MsgHeader function.

An OCEReci pi ent structure is the unpacked form of the OCEPackedReci pi ent
structure (described next). The utility routines OCEPackReci pi ent and
OCEUnpackReci pi ent allow you to transform the address information from one
format to the other. The routines are described in the chapter “Interprogram
Messaging Manager” in Inside Macintosh: AOCE Application Interfaces.

Messaging Service Access Module Reference

CHAPTER 2

Messaging Service Access Modules

struct OCEReci pi ent {

Recor dl D* entitySpecifier;
OSType ext ensi onType;
unsi gned short extensionSize;
Ptr ext ensi onVal ue;

b

Field descriptions

entitySpecifier
Pointer to a Recor dI Dstructure. The record ID contains part of the
address. The section “AOCE Addresses” beginning on page 2-23
explains what each field of the Recor dl Dstructure should contain
when it holds either an AOCE address or an external address.

ext ensi onType Identifies the type of messaging system with which this recipient is
associated. It determines the format and the meaning of the data
pointed to by the ext ensi onVal ue field. You must provide an
extension type.

ext ensi onSi ze The number of bytes in the ext ensi onVal ue field.

ext ensi onVal ue A pointer to the part of the address that is specific to the messaging
system. You should provide the address extension information in an
RSt r i ng structure. This allows the information to be displayed
properly to the user and allows the user to create new addresses of
this type using the type-in addressing feature. (Type-in addressing
is a feature of PowerTalk software’s human interface.)

Table 2-5 on page 2-30 and Table 2-4 on page 2-29 list the contents of each field in an
OCEReci pi ent structure for an AOCE address and an external address, respectively.

t ypedef OCEReci pi ent Mil Reci pi ent;

The Mai | Reci pi ent structure is defined as an OCEReci pi ent data type. You use it
in exactly the same way as you would an OCEReci pi ent structure. You provide a
Mai | Reci pi ent structure to specify a recipient of a letter or a report when you call
the MSAMPuUt Reci pi ent or MSAMCr eat eReport function, respectively.

OCEPackedRecipient

An OCEPackedReci pi ent structure is the packed form of the OCEReci pi ent
structure (described in the previous section).

You cannot read the packed address directly. Before you can read it, you must

convert it to the unpacked format using the OCEUnpackReci pi ent utility routine.

The utility routines OCESi zePackedReci pi ent , OCEGet Reci pi ent Type, and
OCESet Reci pi ent Type allow you to manipulate an OCEPackedReci pi ent structure.
They are described in the chapter “Interprogram Messaging Manager” in Inside
Macintosh: AOCE Application Interfaces.

Messaging Service Access Module Reference 2-107

CHAPTER 2

Messaging Service Access Modules

A structure of type OCEPackedReci pi ent isa minimum-sized structure and should
not be allocated on the stack. Instead, use the NewPt r or NewHandlI e routine to allocate
the structure.

struct OCEPackedReci pi ent {

unsi gned short dat aLengt h; /* length of recipient data */
Byt e dat a[kOCEPackedReci pi ent MaxByt es] ;
b
Field descriptions
dat aLength Length of the packed recipient address that immediately follows
this field.
dat a Packed recipient address.

MailOriginalRecipient

The Mai | Ori gi nal Reci pi ent structure consists of a single field, i ndex, that contains
an index value for a given recipient. The Mai | Ori gi nal Reci pi ent structureisa
model of how address information is stored in a buffer. It is always followed immedi-
ately by an OCEPackedReci pi ent structure that contains the address information of
that recipient. The MSAMGet Reci pi ent s function returns recipient information in

Mai | Ori gi nal Reci pi ent format when you call the function requesting information
about recipients of a particular type (From, To, cc, or bcc).

struct Mail Origi nal Reci pi ent {
short i ndex; /[* index for recipient */
/* foll owed by OCEPackedReci pi ent structure */
b

typedef struct Mil Oiginal Reci pient Mil Oiginal Reci pi ent;

Field descriptions
i ndex An absolute index value associated with the recipient.

MailResolvedRecipient

2-108

The Mai | Resol vedReci pi ent structure contains an index value for the recipient,
an indication of whether the recipient is a bcc recipient, and a Boolean value that
indicates whether you are responsible for delivering the message to this recipient.
The Mai | Resol vedReci pi ent structure is a model of how address information is
stored in a buffer. The fields of the structure are always followed immediately by an

Messaging Service Access Module Reference

CHAPTER 2

Messaging Service Access Modules

OCEPackedReci pi ent structure that contains the address information of the
recipient. The MSAMZet Reci pi ent s function returns recipient information in

Mai | Resol vedReci pi ent format when you call the function requesting informa-
tion about resolved recipients.

struct Mail Resol vedReci pi ent {

short i ndex; /* index for recipient */

short reci pientFlags;/* recipient information */
Bool ean responsi bl e; /* responsible for delivery? */
Byt e padByt e;

/* foll owed by OCEPackedReci pi ent structure */
H

typedef struct Mail Resol vedReci pi ent Mi | Resol vedReci pi ent;

Field descriptions

i ndex An absolute index value associated with the recipient. You need this
value when you call the MSAMPuUt Reci pi ent Report function to
identify the recipient to whom the report pertains. The index is also
useful if you want to match an original recipient with a resolved
recipient.

reci pi ent Fl ags A value that tells you if this recipient is a bcc recipient. Use
the mask kI PMBCCRecMask to determine if this recipient is
a bcc recipient.

responsi bl e A Boolean value that is set to t r ue if you are responsible for
sending the message to this recipient.

The Segment Types

A content block (type kMai | Cont ent Type) contains the body or main content of a letter
in standard interchange format (see the section “Letters” beginning on page 2-17 for more
information about interchange format). A content block consists of segments of data in
plain text, styled text, picture, sound, or movie format. The Mai | Segrment Type data
type identifies one of the five standard data segment types. The Mai | Segnent Mask data
type specifies one or more of these segment types. You read and write content blocks with
the MSAMzet Cont ent (page 2-150) and MSAMPut Cont ent functions (page 2-186).

MailSegmentType

A variable of the Mai | Segnent Type data type specifies the format of data in a
data segment.

typedef unsi gned short Mail Segnment Type;

Messaging Service Access Module Reference 2-109

CHAPTER 2

Messaging Service Access Modules

A variable of type Mai | Segnment Type can contain one of the following values:

enum { /* val ues of Mail Segnment Type */
kMai | I nval i dSegnent Type =0,
kMai | Text Segnent Type =
kMai | Pi ct Segnent Type =
kMai | SoundSegnent Type =
kMai | Styl edText Segnent Type
kMai | Movi eSegment Type

U~ WN P

b

Constant descriptions

kMai | I nval i dSegnent Type
This value is included as a convenience. An MSAM can initialize a
variable of type Mai | Segment Type to this known value before
calling the MSAMzet Cont ent function.

kMai | Text Segnent Type
The segment contains plain text in one or more character sets. The
text data must consist of 1-byte or 2-byte character codes,
depending on the character set (Roman, Arabic, Kanji, and so on).

kMai | Pi ct Segnent Type
The segment contains picture data in PICT format. For more
information about PICT format, see Inside Macintosh: Imaging With
QuickDraw.

kMai | SoundSegnent Type
The segment contains data in Audio Interchange File Format
(AIFF). For more information about AIFF format, see Inside
Macintosh: More Macintosh Toolbox.

kMai | St yl edText Segnent Type
The segment contains text and a St Scr pRec structure containing
the style information corresponding to that text. The text data
consists of 1-byte or 2-byte character codes, depending on the
character set (Roman, Arabic, Kanji, and so on). For more
information on the St Scr pRec structure, the style record, and the
style table, see Inside Macintosh: Text.

kMai | Movi eSegnent Type
The segment contains QuickTime movie data in QuickTime movie
file format (‘"MooV'). For more information about the 'MooV' file
format, see Inside Macintosh: QuickTime.

MailSegmentMask

You use the Mai | Segrrent Mask data type to indicate the kinds of data segments that
you want to read when you call the MSAMGet Cont ent function.

typedef unsi gned short Mail Segnment Mask;

2-110 Messaging Service Access Module Reference

CHAPTER 2

Messaging Service Access Modules

The bits in the segment mask are defined as follows:

enum{
kMai | Text SegnentBit,
kMai | Pi ct SegnentBit,
kMai | SoundSegment Bi t ,
kMai | Styl edText SegnentBi t,
kMai | Movi eSegnent Bi t

b
You can use a combination of the following values to set bits in the segment mask:
enum { /* val ues of Mail Segnent Mask */

kMai | Text Segnent Mask = 1lL<<kMni |l Text SegnmentBi t,

kMai | Pi ct Segment Mask = 1L<<kMni | Pi ct SegnentBi t,

kMai | SoundSegment Mask = 1L<<kMni | SoundSegnentBi t,

kMai | St yl edText Segnment Mask
kMai | Movi eSegnment Mask

1L<<kMni | Styl edText SegnentBi t,
1L<<kMai | Movi eSegrent Bi t

b

The Enclosure Information Structure

You add an enclosure to a letter by calling the MSAMPut Encl osur e function. The
function takes a Mai | Encl osur el nf o structure as input. This structure describes the
enclosure being added to the letter.

MailEnclosurelnfo

You pass a Mai | Encl osur el nf o structure to the MSAMPut Encl osur e function when
you enclose a file that resides in memory.

struct Mail Encl osurelnfo {
StringPtr encl osur eNane;
/* name of the enclosure */

ClnfoPBPtr catl nfo; /* HFS catal og i nfo about encl osure*/
StringPtr comment ; /[* coment for Get Info w ndow */
Ptr i con /* icon for enclosure file */

H

typedef struct Mail Encl osurel nfo Mail Encl osurel nfo;

Messaging Service Access Module Reference 2-111

CHAPTER 2

Messaging Service Access Modules

Field descriptions
encl osur eNane

catlnfo

coment

i con

A pointer to the name of the file that you want to enclose. Format
the filename as a Pascal-style string—that is, add a leading length
byte. The name must be 1 to 31 bytes long, excluding the length
byte, and must not contain colons (3).

A pointer to a fully specified Cl nf oPBRec structure (defined in
Inside Macintosh: Files), which is returned by the PBGet Cat | nf o
function. Set the fields for which you cannot obtain appropriate
values to 0, with the exception of the i oNanmePt r and

i oFlI Fndr I nf o fields. Ignore the i oNanmePt r field because you
pass the filename in the encl osur eName field. The first 8 bytes of
the i oFl Fndr I nf o field contain values for the file’s type and
creator. Because the type and creator determine the application
associated with the file and the icon that the Finder displays for that
file, omitting a value for the i oFl Fndr | nf o field renders the file
unusable. Therefore, you should make every attempt to provide
meaningful values for the file’s creator and type. If you do not
know the application associated with the file, set the cr eat or field
to four question marks (‘*????"). If you do not know the file’s type,
set the t ype field to ("???7?") as well.

A pointer to a Pascal-style string containing the file’s comment; it is
the information that the Get Info command in the Finder displays
for the file. The string cannot be longer than 199 characters,
excluding the length byte. The Finder truncates a longer string
when it places the file on an HFS volume. If the file has no
comment, set the conment field to ni | .

A pointer to the file’s icon: the standard black-and-white icon (32 by
32 bits) consisting of 128 bytes of bitmap followed by 128 bytes of
mask. Enclosures in a letter are stored in AppleSingle format.
AppleSingle format typically provides a single black-and-white
icon so that non-Macintosh file systems can easily read an icon
without needing to know how to get at the icon resources stored

in AppleSingle format. This field preserves compatibility with
AppleSingle format. It is not used by AOCE software. You can set
this field to ni | .

The Image Block Information Structure

2-112

You use the TPf PgDi r structure when reading or writing an image block.

Messaging Service Access Module Reference

TPfPgDir

CHAPTER 2

Messaging Service Access Modules

An image block starts with an image block information structure (the TPf PgDi r data
type defined by the Printing Manager), followed by a series of PICT elements.

struct TPfPgDir{

short i Pages; /* nunber of pages in image block */
| ong i PgPos[129]; [* array [O..iPfMaxPgs] of offsets */
b
Field descriptions
i Pages The number of pages in the image. The image block contains one
PICT for each page.
i PgPos An array of offsets from the start of the block to the picture elements

that follow the TPf PgDi r structure.

The i PgPos array contains offsets to the picture elements that follow the TPf PgDi r
structure. The offset from the start of the image block to the image of pagen + 1 is

i PgPos[n] (because page numbers start at 1 and the array elements start at 0). The array
containsi PgPos[n + 1] elements for adocument of n pages. The last element is the offset
of the end of the last page from the beginning of the block. You can determine the size of
a page by subtracting the offset of the current page from the offset of the next page, that
is, the size of page nisi PgPos[n]-i PgPos[n -1].

The High-Level Event Structures

The Mai | EPPCMs g, SMCA, OCESet upLocat i on, Mai | Locat i onFl ags, and
Mai | Locat i onl nf o structures are used in conjunction with high-level events.

MailEPPCMsg

When you call the Accept Hi ghLevel Event function after receiving an AOCE
high-level event, the function returns a buffer that contains a Mai | EPPCMs g structure.

struct Mail EPPCMsg {

short versi on; /* message version */
uni on {
SMCA * t heSMCA; /* pointer to SMCA */
| ong sequencelNumnber ; /* letter sequence nunber */

Mai | Locationlnfo |ocationlnfo;/* location information */
JEVE
b

typedef struct Ml EPPCMsg Mai | EPPCMsQ;

Messaging Service Access Module Reference 2-113

CHAPTER 2

Messaging Service Access Modules

Field descriptions
ver sion

u. t heSMCA

The version number of the AOCE high-level event. You should
verify that this version number matches the value of the

kMai | EPPCMsgVer si on constant in the PowerTalk interface files
you used when you built your MSAM.

A pointer to an SMCA structure that contains additional information
relevant to the event. The IPM Manager uses this field when it
sends any of the following events: kMai | EPPCCr eat eSl ot ,

kMai | EPPCMVbdi fySl ot , kMai | EPPCDel et eSl ot

kMai | EPPCMsgOpened, kai | EPPCSendl rmedi at e,

kMai | EPPCAdm n.

u. sequenceNunber

u.l ocationlnfo

The sequence number of the letter to which the event applies.
The IPM Manager uses this field when it sends either the
kMai | EPPClI nQUpdat e or kMai | EPPCDel et eQut Qvsg event.

AMi | Locat i onl nf o structure. The IPM Manager uses this field
when it sends the kMai | EPPCLocat i onChanged event.

SMCA
The shared memory communication area, defined by the SMCAstructure, is used to pass
information between the IPM Manager and an MSAM, in addition to the data passed in
the Event Recor d structure.
struct SMCA {
unsi gned short sntalLength; /* length of entire SMCA
(including the length field) */
CSErr result; /* result code */
| ong userBytes; [/* event-specific data */
uni on{
Creationl D slotC D /* creation I D of record
containing slot information */
| ong msgHi nt; /* message reference value */
Py
b
typedef struct SMCA SMCA;
Field descriptions
sntalLengt h The total length of the SMCAstructure, including the 2 bytes for the
sntalLengt h field itself. The IPM Manager sets this field.
resul t You set this field to acknowledge receipt of the event to the IPM
Manager or to indicate that you have handled the event. Set it to the
noEr r result code to acknowledge receipt of the event or to report
success. Otherwise, set it to an MSAM-defined error code. See the
individual event descriptions for details.
2-114 Messaging Service Access Module Reference

CHAPTER 2

Messaging Service Access Modules

user Byt es The interpretation of this field is dependent on the particular event
that is being processed. See the individual event descriptions for
information on how this field is used for that event.

u.slotClD If the event applies to a particular slot, this field contains the
creation ID of the slot’s record in the Setup catalog. If the event
applies to the MSAM as a whole, this field contains 0. The IPM
Manager sets this field. It is irrelevant to server MSAMs.

u. nsgHi nt A reference value associated with a specific letter. The IPM Manager
sets this field.

OCESetupLocation

The OCESet upLocat i on data type defines the current system location.

typedef char OCESet upLocati on;

The values 0-8 are valid values for a variable of type OCESet upLocat i on. Values 1-8
refer to an actual location. The value 0 is a special case that indicates the offline or
disconnected state. When the current system location is 0, a personal MSAM should not
be executing.

The following enumeration defines constants for two of the valid values of type
OCESet upLocati on:

enum {
kOCESet upLocat i onNone
k OCESet upLocat i onMax

0, [/* disconnect state */
8 /* maxi mum | ocati on val ue */

b

MailLocationFlags

The Mai | Locat i onFl ags data type defines a bit array. Each bit corresponds to a
system location. If the bit is set, the slot to which the location flags apply is active at that
location. The Mai | Locat i onFl ags data type is used in the Mai | Locat i onl nf o and
Mai | St andar dSl ot | nf oAt t ri but e structures.

typedef unsi gned char Muil Locati onFl ags;

A system location is identified by a value ranging from 1 to 8. To test a bit in a variable of
type Mai | Locat i onFl ags, the following mask is defined:

#defi ne Mail Locati onMask(| ocati onNunber) (1<<((locationNunber)-1))

Messaging Service Access Module Reference 2-115

CHAPTER 2

Messaging Service Access Modules

Note that for the special location value 0, which corresponds to the disconnected or
offline state, the mask value is 0. The slot is inactive at all locations when the current
system location is 0.

MailLocationInfo

The Mai | Locat i onl nf o structure contains the current system location and a bit

array defining the locations at which a given slot is active. The Mai | Locat i onl nf o
structure is part of the Mai | EPPCMs g structure. A personal MSAM receives a

Mai | Locat i onl nf o structure when it receives a kMai | EPPCLocat i onChanged event.

struct Mil Locationlnfo {
OCESet upLocati on | ocati on; /* the current |ocation */
Mai | Locat i onFl ags active; /* slot's location flags */

b
typedef struct Mail Locationlnfo Mil Locationl nfo;

Field descriptions

| ocation A value that identifies the current system location. It may contain
any integer value between 0-8.
active A bit array that defines whether or not a given slot is active at each

system location.

The Server MSAM Administrative Event Structures

The IPM Manager provides a server MSAM with administrative information by means
of the kMai | EPPCAdmi n high-level event (page 2-235).

SMSAMAdmMIinCode

2-116

The SMSAMAd nCode data type defines a set of codes for server MSAM administrative
actions.

typedef unsi gned short SMSAMAdm nCode;

A variable of type SM5AMAdni nCode can have any of the following values:

enum {
k SMSAMNot i f yFwdr Set upChange=
k SMSAMNot i f yFwdr NaneChange =
k SMSAMNot i f yFwdr PndChange
k SMSAMZet Dynami cFwdr Par ans

I
el B

b

Messaging Service Access Module Reference

CHAPTER 2

Messaging Service Access Modules

SMSAMAdmMInEPPCRequest

The user Byt es field of the SMCA structure associated with a kMai | EPPCAdmM n
high-level event provides a pointer to an SMSAMAdni nEPPCRequest structure. The
SVBAMADM nEPPCRequest structure contains an administrative code followed by
data whose type is determined by the code.

struct SMSAMADM nEPPCRequest {

SMSAMAdDN nCode adm nCode; /* adm n code */
uni on {
SMBAMBet upChange set upChange; /* setup change */
SMSAMNaneChange naneChange; [* reserved */
SMBAMPasswor dChange passwor dChange; /* reserved */
SMBAMDy nami cPar ans dynani cPar ans; /* reserved */
Pou

b
typedef struct SMSAMAdn nEPPCRequest SMSAMAdm nEPPCRequest ;

Field descriptions

adm nCode A value that indicates the type of administrative action requested
by the kMai | EPPCAdmi n high-level event. The value in this field
determines the type of structure contained in the u field. In release 1
of PowerTalk system software, this should always be the
kSMBAMNot i f yFwdr Set upChange code.

u Contains a structure that varies depending on the value of the
adm nCode field. In release 1 of PowerTalk system software, this
should always be an SM5AMSet upChange structure.

SMSAMSetupChange

The SM5AMSet upChange structure contains connectivity information about a
server MSAM.

struct SMSAMSet upChange {
SMBAMSI ot Changes what Changed,; /* what paraneters changed */
Addr Bl ock serverHi nt; /* ACCE server address */

}

typedef struct SMSAMSet upChange SMSAMSet upChange;

Field descriptions

what Changed A value that indicates the connectivity information that
has changed.

Messaging Service Access Module Reference 2-117

CHAPTER 2

Messaging Service Access Modules

server Hi nt The AppleTalk address of the PowerShare catalog server that the
MSAM should use to read its Forwarder record containing the
changed connectivity information. Because an AOCE system is a
distributed system, the changed data may not have propagated to
other servers yet.

SMSAMSIlotChanges

The SMSAMSI ot Changes data type defines a bit array that indicates the kind of
connectivity information that has changed.

typedef unsi gned | ong SMSAMSI ot Changes;
The bits in the SMSAMSI ot Changes data type are defined as follows:

enum {
k SMSAM~wdr Honel nt er net ChangedBi t,
k SMsSAM-wdr Connect edToChangedBi t ,
k SMSAM~wdr For ei gnRLI sChangedBi t
k SMSAMFwdr MhMSer ver ChangedBi t

b

You can use the following values to test the bits in a variable of type
SMBAMSI ot Changes:

enum { /* val ues of SMSAMSI ot Changes */
kSVMBAMFwdr Ever yt hi ngChangedMask = -1,
k SMSAMFwdr Honel nt er net ChangedMask= 1L<<k SMSAM~wdr Horel nt er net ChangedBi t,
k SMSAMFwdr Connect edToChangedMask 1L<<k SMSAMwdr Connect edToChangedBi t ,
k SMSAM~wdr For ei gnRLI sChangedMask 1L<<k SMSAMFwdr For ei gnRLI sChangedBi t
k SMSAMFwdr MhMSer ver ChangedMask 1L <<k SMSAMFwWdr MhMSer ver ChangedBi t

Constant descriptions

k SMSAMFwdr Ever yt hi ngChangedMask
In release 1 of the AOCE software, this constant has the same
definition as that of the kSMSAM~wdr For ei gnRLI sChangedMask
constant.

k SMSAM~wdr Horel nt er net ChangedMask
Reserved.

k SMSAMFwdr Connect edToChangedMask
Reserved.

2-118 Messaging Service Access Module Reference

CHAPTER 2

Messaging Service Access Modules

k SMSAMFwdr For ei gnRLI sChangedMask
The record location information that points to a catalog associated
with the MSAM’s external messaging system has changed. The
information changes when the PowerShare system administrator
adds or deletes a catalog for a messaging system served by the
MSAM.

k SMSAMFwdr vhMBer ver ChangedMask
Reserved.

The Personal MSAM Setup Structures

The Mai | Ti mer and Mai | Ti mer Ki nd data types and the Mai | Ti ner s and
Mai | St andar dSl ot | nf oAt t ri but e structures contain the user’s send and receive
requirements for a given slot and location information for that slot.

MailTimer

A variable of type Mai | Ti mer specifies a number of seconds. The value is interpreted as
a frequency interval or a specific time, depending on which union field is used.

uni on Mail Ti mer {
I ong frequency; /* how often to connect */
| ong connect Ti ne; [* time since mdnight */

b
typedef union Mail Ti mer Mail Ti nmer;

Field descriptions

frequency A value that tells a personal MSAM how often it should connect to
its messaging system to send or retrieve mail. The frequency
interval is specified in seconds.

connect Ti ne A value that tells a personal MSAM at what time it should connect
to its messaging system to send or retrieve mail. The time is
specified as the number of seconds since midnight. The midnight
used is that of the internal time on the Macintosh as set by the user.

MailTimerKind

A variable of type Mai | Ti mer Ki nd specifies the type of timer that a user wants to use
with a given mail slot.

typedef Byte Mail Ti nerKi nd;

Messaging Service Access Module Reference 2-119

MailTimers

CHAPTER 2

Messaging Service Access Modules

A variable of type Mai | Ti ner Ki nd can have any of the following values:

enum {
kMai | Ti mer OF f 0, /* no timer specified */
kMai | Ti mer Ti ne =1, /* tinmer relative to mdnight */
kMai | Ti mer Fr equency 2 /* frequency timer*/

b

Constant descriptions
kMai | Timer OF f Specifies that the user has not requested a timer.

kMai | Ti mer Ti me Specifies that a personal MSAM should send or retrieve messages at
a particular time.

kMai | Ti mer Fr equency

Specifies that a personal MSAM should send or retrieve messages at
regular intervals.

2-120

The Mai | Ti mer s structure indicates how frequently a personal MSAM connects to its
external messaging system. A personal MSAM’s setup template sets the fields of the

Mai | Ti mer s structure in response to user actions. The user can express the frequency as
a particular clock time at which the personal MSAM automatically connects every day
(for example, connect at 3:00 A.M. to send and receive letters) or as a periodic occurrence
(for example, connect every two hours). The IPM Manager uses the information in this
structure to determine when it should send a kMai | EPPCSchedul e event to the
personal MSAM.

struct Mail Tinmers {

Mai | Ti mer Ki nd sendTi neKi nd; /[* timer kind for sending */

Mai | TimerKind receiveTinmeKind; /* tinmer kind for receiving */

Mai | Ti mer send; /* connect time or frequency
for sending letters */

Mai | Ti mer receive; /* connect tinme or frequency

for receiving letters */

b
typedef struct Ml Tiners Mil Ti ners;

Field descriptions

sendTi neKi nd A constant that indicates what type of timer the user wants the
personal MSAM to use for sending messages for a particular slot.
The setup template sets this field to one of the following values:
kMai | Ti mer Ti me, kMai | Ti mer Fr equency, orkMai | Ti mer O f .

Messaging Service Access Module Reference

CHAPTER 2

Messaging Service Access Modules

recei veTi meKi nd
A constant that indicates what type of timer the user wants the
personal MSAM to use for retrieving messages for a particular slot.
The setup template sets this field to one of the following values:
kMai | Ti mer Ti me, kMai | Ti mer Fr equency, orkMai | Ti mer OF f .

send A value that specifies either the time interval that elapses before the
personal MSAM sends messages to its external messaging system
or a specific time at which the MSAM sends these messages.
The MSAM interprets this field according to the value in the
sendTi meKi nd field. If that value is kMai | Ti mer O f , the MSAM
ignores this field.

receive A value that specifies either the time interval that elapses before the
personal MSAM retrieves messages from its external messaging
system or a specific time at which the MSAM retrieves these
messages. The MSAM interprets this field according to the value in
the r ecei veTi neKi nd field. If that value is kMai | Ti mer OF f, the
MSAM ignores this field.

MailStandardSlotInfoAttribute

The personal MSAM'’s setup template obtains location and timing information from the
user to set the act i ve andsendRecei veTi ner fields of this structure appropriately.
Then it adds the structure to the slot’s Combined or Mail Service record in the Setup
catalog, where the information is available to the IPM Manager.

struct Mail StandardSl ot nfoAttribute {

short versi on; [* version of this slot structure */
Mai | Locat i onFl ags acti ve; /* active at location i if
Mai | Locati onMask(i) is set */
Byt e padByt e;
Mai | Ti mers sendRecei veTi ner;

s
typedef struct Mil StandardSl ot nfoAttribute Mail StandardSl ot I nfoAttri bute;

Field descriptions

Ver si on The version of the Mai | St andar dS| ot | nf oAt t ri but e structure.
You should set this field to 1. There is no constant defined for it.
active A bit array that defines whether or not the slot is active at a given

location. If the bit is set, the slot is active at the corresponding loca-
tion. A slot is active if a personal MSAM is able to send and receive
messages for the slot.

sendRecei veTi mer
The frequency at which the IPM Manager should schedule the
personal MSAM to send and receive messages for the user account
represented by this slot. (The IPM Manager does this by sending the
MSAM a kMai | EPPCSchedul e event.)

Messaging Service Access Module Reference 2-121

CHAPTER 2

Messaging Service Access Modules

The Personal MSAM Letter Flag Structures

The letter flags provide information about a letter in an incoming queue. Only personal
MSAMSs use the structures in this section.

MailLetterSystemFlags

The IPM Manager sets the letter system flags.
typedef unsigned short Mail LetterSystenfl ags;

The bit in the system flags bytes that you can test is defined as follows:

enum {
kMai | | sLocal Bit = 2

H

You can use the following value to test the bit flag in the Mai | Let t er Syst enFl ags
data type.

enum {
kMai | | sLocal Mask = 1lL<<kMil | sLocal Bi t
b

Constant descriptions

kMai | | sLocal Mask
The letter exists in an incoming queue on the local computer. If the
kMai | | sLocal Bi t bitis not set, the letter is stored on an external
messaging system, and only its message summary is currently
available locally.

MailLetterUserFlags

2-122

The IPM Manager and a personal MSAM can set letter user flags in response to a
user action.

typedef unsigned short Muil LetterUserFl ags;
The bits in the user flags bytes are defined as follows:

enum{
kMai | ReadBi t,
kMai | Dont Archi veBi t,
kMai | I nTrashBi t

H

Messaging Service Access Module Reference

CHAPTER 2

Messaging Service Access Modules

You can use the following values to test the flags in the Mai | Let t er User FI ags
data type.

enum{
kMai | ReadMask
kMai | Dont Ar chi veMask
kMai | | nTrashMask

1L<<kMni | ReadBit,
1L<<kMi | Dont Ar chi veBi t,
1L<<kMai | I nTrashBi t

b

Constant descriptions

kMai | ReadMask The user has opened this letter. A personal MSAM sets the letter
user flags to 0 when it creates the letter’s message summary. The
IPM Manager sets the kMai | ReadBi t bit to 1 when the user opens
the letter. A personal MSAM can also modify this bit by calling the
PMSAMPUt MsgSuntrar y function.

kMai | Dont Ar chi veMask
Reserved.

kMai | I nTrashMask
Reserved.

MailLetterFlags

The Mai | Let t er FI ags structure contains both system and user letter flags to indicate
the status of a letter.

struct Mail LetterFlags {
Mai | Lett er Syst enFl ags sysFl ags; /[* systemflags */
Mai | Lett er User Fl ags userFlags; [/* user flags */

b
typedef struct MailLetterFl ags Ml LetterFl ags;

Field descriptions

sysFl ags A set of bit flags managed by the IPM Manager. You can test the
kMai | | sLocal Bi t bit to determine if a given letter is actually
stored on the local computer.

user Fl ags A set of bit flags that indicate state changes that are controlled by
the user. The only bit flag that is relevant to an MSAM is the
kMai | ReadBi t bit, which indicates whether the user has opened
the letter. You can test this bit with the kMai | ReadMask constant.

Messaging Service Access Module Reference 2-123

CHAPTER 2

Messaging Service Access Modules

MailMaskedLetterFlags

Use the Mai | MaskedLet t er Fl ags structure to set the letter flags attribute in a letter.
This structure is used by the MSAMPut MsgSummar y function.

struct Mail MaskedLetterFl ags {
Mai | Letter Fl ags fl agMask; /[* flags that are to be set */
Mai | Let t er Fl ags flagval ues; /* their values */

b
typedef struct Mail MaskedLetterFl ags Mai | MaskedLet t er Fl ags;

Field descriptions
fl agMask The flags that are to be set.
fl agVval ues The values of the flags that you want to set.

The Personal MSAM Message Summary Structures

A personal MSAM creates a message summary to store summary information about a
letter. The Finder uses message summary information to display incoming letters to the
user. The MSAMVBgSumar y structure defines a message summary. A message summary
consists of a few individual fields and two groups of letter attributes. The two groups of
letter attributes are defined by the Mai | Mast er Dat a and Mai | Cor eDat a structures,
described in this section.

MailMasterData

The attributes specified in the Mai | Mast er Dat a structure are not critical to the Finder
when it displays information about the letter to which the message summary belongs.

struct Mail MasterData {

Mai | AttributeBitmap attrMsk; /* indicates attributes present in
letter */

Mai | Letterl D nmessagel D /* IDof this letter *

Mai |l Letterl D replyl D; [* IDof letter thisis areply to */

Mai |l Letterl D conversationlD;/* I D of letter that started this

H

conversation */

typedef struct Mail Mast erData Mil Mast er Dat a;

2-124

Messaging Service Access Module Reference

CHAPTER 2

Messaging Service Access Modules

Field descriptions
attr Mask

messagel D
replyl D

conversationl D

MailCoreData

A bit array that indicates letter attributes. You must set the bits that
correspond to the attributes that are present in the letter. See the
description of the Mai | Att ri but eBi t map structure on page 2-100
for a description of the bits in the attribute bitmap.

The letter ID of this letter. The letter ID is a value that uniquely
identifies the letter. The letter ID is provided by the IPM Manager.

The letter ID of the letter to which this letter is a reply. You provide
this value if it exists in the letter.

The letter ID of the original letter that began a sequence of replies or
forwards that resulted in this letter. You provide this value if it
exists in the letter.

The Finder uses the attributes specified in the Mai | Cor eDat a structure when it displays
information about the letter to which the message summary belongs. You provide values
for the fields of the structure, except where otherwise noted in the field descriptions.

/* defines for the addressedToMe field */
#defi ne kAddressedAs_TO 0x1

#def i ne kAddressedAs CC 0x2

#defi ne kAddressedAs BCC 0x4

struct Muil CoreData {

H

Mai | Lett er Fl ags | etterFl ags; /* letter status flags */
unsi gned | ong nmessagesSi ze /* size of letter */
Mai | I ndi cati ons | etterlndications;
/* indications for this letter */

OCECr eat or Type nmessageType; /* nmessage creator and type of this

letter */
Mai | Ti me sendTi ne; /* tinme this letter was sent */
OSType messageFamily; /* message famly */
unsi gned char reserved,
unsi gned char addressedToMe; /* user is To, cc, or bcc recipient */
char agentInfo[6]; /* reserved (set to 0) */
/* these are variable I ength and even padded */
RSt ring32 sender; /* sender of this letter */
RString32 subj ect ; /* subject of this letter */

typedef struct Mail CoreData Mail CoreDat a;

Messaging Service Access Module Reference 2-125

2-126

CHAPTER 2

Messaging Service Access Modules

Field descriptions
| etterFl ags

messagesSi ze

A set of bit flags that indicate the status of the letter, such as
whether it has been opened by the user. Set this field to 0. See the
description of the Mai | Let t er Fl ags structure on page 2-123 for
more information on these bit flags. You can modify the user
portion of the letter flags when you call the PMSAMPUt MsgSuntrar y
function.

The size of the letter in bytes. You provide this value.

| etterlndications

nmessageType

sendTi ne
messageFam |y

reserved
addr essedTolve

agentInfo
sender

subj ect

Indications of additional properties of the letter, such as whether
the letter contains a digital signature, whether or not the originator
requested non-delivery indications, and so on. See the description
of the Mai | | ndi cat i ons structure on page 2-102. You provide
this value.

The creator and type of the letter. Every letter has a creator and
type. You must provide this value.

The time the letter was sent. You provide this value.

A value that indicates the message family to which the message
belongs. Set this field to kVai | Fam | y.

Reserved.

Indicates how the letter was sent to the addressee: as a To address, a
cc address, or a bcec address; possible values are kAddr essedAs_TO,
kAddr essedAs_CC, and kAddr essedAs_BCC. You must set this
field appropriately. You can set more than one bit.

Reserved. Set this field to 0.

The sender of the letter. You must provide a value for this field.

If your sender information consists of an odd number of bytes,

add a pad byte so that it ends on an even byte boundary. The IPM
Manager treats this field and the subj ect field that follows as a
single common buffer that contains variable-length sender and
subject information. See the section “Creating a Letter’s Message
Summary” beginning on page 2-64 for information on how to
correctly assign a value to this field.

The subject of the letter. You must provide this value. If your subject
information consists of an odd number of bytes, add a pad byte so
that it ends on an even byte boundary. The IPM Manager treats this
field and the sender field before it as a single common buffer that
contains variable-length sender and subject information. You add
the subject on the first even-byte boundary following the sender
information, which is not necessarily the same as the beginning of
this field. See the section “Creating a Letter’s Message Summary”
beginning on page 2-64 for information on how to correctly assign a
value to this field.

Messaging Service Access Module Reference

CHAPTER 2

Messaging Service Access Modules

MSAMMsgSummary

An MBAMMsgSummar y structure provides summary information about an incoming
letter. You must create one of these structures for each incoming letter. (In addition

to the fields defined in the message summary structure, the IPM Manager stores up
to kMai | MaxPMBAMVEgSunmar y Dat a bytes of MSAM-specific private data with a

message summary.)

struct MSAMMVBgSUmMMary {
short

Bool ean

Bool ean

Bool ean

Byte

Mai | Mast er Dat a

Mai | Cor eDat a
b

versi on; [* version of the MSAMMVsgSunmary
structure */
nsgDel et ed; /* should letter be del eted? */
msgUpdat ed; /* was nmessage summary updated? */
nmsgCached; /* is letter in the incom ng queue? */
padByt e;
mast er Dat a; [* attributes not essential to
di splay */
cor eDat a; [* attributes critical to display *

typedef struct MSAMVEgSunmary MSAMMVBgSUMMary;

Field descriptions
version

nmsgDel et ed

msgUpdat ed

msgCached

The version of the message summary structure. You must set this
field to the constant kMai | MsgSummar yVer si on.

A Boolean value indicating whether you should delete this letter.
You do not provide a value for this field. The IPM Manager initially
sets this field to f al se. It sets this field to t r ue when the user
deletes a letter. If this field is t r ue, you should delete the letter on
your external messaging system and delete the letter’s message
summary.

A Boolean value indicating whether the IPM Manager updated
information in the message summary. You do not provide an
initial value for this field. The IPM Manager initially sets this
field to f al se. It sets this field to t r ue when it updates any

of the following fields in the message summary: nsgDel et ed,
nsgSt or eFl ags, fi nder | nf 0. You read this field to determine
if the message summary has changed. If it has, you should
reexamine the message summary and take appropriate action,

if any, based on the changed information. After taking the action,
you should reset this field to f al se.

A Boolean value indicating whether the letter associated with the
message summary exists in an incoming queue. You do not provide
a value for this field. The IPM Manager initially sets this field

tof al se. It sets this field to t r ue when you write the letter
corresponding to this message summary into the incoming queue.

Messaging Service Access Module Reference 2-127

CHAPTER 2

Messaging Service Access Modules

mast er Dat a AMi | Mast er Dat a structure that contains letter attributes not
essential to the ability of the Finder to display the letter. See the
structure description on page 2-124 for an explanation of the
information that you must provide.

corebDat a AMai | Cor eDat a structure that contains the attributes crucial to
the Finder’s ability to display the letter. See the structure
description on page 2-125 for an explanation of the information that
you must provide.

The Personal MSAM Error Log Entry Structure

The error log is where a personal MSAM can report errors that require a user’s
intervention to correct. The personal MSAM reports errors using the PMSAMLogEr r or
function. The function takes a pointer to a Mai | Err or LogEnt r yl nf o structure

as input.

MailErrorLogEntrylnfo

You provide a Mai | Err or LogEnt r yI nf o structure to the PMSAMLogEr r or function
when you want to report an operational error to the IPM Manager and ultimately to
the user.

typedef unsi gned short Mail LogError Type;

[* val ues of Mail LogErrorType */
enum {
kMai | ELECorrect abl e
kMai | ELEEr r or =
kMai | ELEVr ni ng
kMai | ELEI nf or mat i onal

/* error correctable by user */

/* error not correctable by user */

/* warning requiring no user intervention */
[* informational message */

1
w N PO

H
typedef short Muil LogError Code;

[* predefined val ues of Mil LogError Code */
enum {

kMai | MSAMET r or Code = 0, /* NMBAM defined error */
kMai | M scErr or = -1, /* m scell aneous error */
kMai | Novbdem =-2 /* nmodemrequired, but mssing */
b
struct Mail ErrorLogEntrylnfo {
short versi on; /* log entry version */
UTCTi nme ti meCeccurred, [* time of error */
Str31 reporti ngPMSAM /* MSAM reporting the error */
Str31l r eporti ngMSANMSI ot ; /* slot having the error */

2-128 Messaging Service Access Module Reference

CHAPTER 2

Messaging Service Access Modules

Mai | LogError Type errorType; /* level of error */

Mai | LogError Code error Code; /* error code */

short error Resour ce; /* error string resource index */
short acti onResource; /* action string resource index */
unsi gned | ong filler; /* reserved */

unsi gned short filler2; /* reserved */

s
typedef struct Mail ErrorLogEntrylnfo Mil ErrorLogEntryl nfo;

Field descriptions

version The version of the error log entry. Set this field to
kMai | Error LogEnt r yVer si on.

ti meCccurred The time that the error occurred. This is filled in by the
IPM Manager.

reporti ngPNSAM
A string identifying the personal MSAM that is logging the error.
This is filled in by the IPM Manager.

r eporti ngMSAMSI ot
A string identifying the slot that is experiencing the error, if the
error is associated with a specific slot. This is filled in by the IPM
Manager.

error Type A value that indicates the type of error that you are logging. Set this
field to one of the following constants: kivai | ELECor r ect abl e,
kMai | ELEEr r or, kMai | ELEWAr ni ng,
kMai | ELEI nf or mat i onal .

error Code A value that indicates the error you are logging. There are three
predefined errors; you can define others. If you want to log an error
that you define, set this field to kMai | MSANVEr r or Code and set the
error Resour ce field to the index into your string list (' STR#')
resource for the string that describes the error. The constants for the
predefined errors are kMai | MSAMEr r or Code, kMai | M scErr or,
and kMai | NoMbdem

error Resource Anindex into your list of error messages. An error message
describes the problem that has occurred. The resource ID of the
' STR#' resource containing the list of error messages must be
kMai | MSAMEY r or Stri ngLi st 1 D. If you are logging an
AOCE-defined error, the IPM Manager ignores this field.

actionResource The index into your list of action messages. An action message is
always associated with an error of type kMai | ELECor r ect abl e.
The action message recommends the action that the user should
take to correct the error. The resource ID of the ' STR#' resource
containing the list of action messages must be
kMai | MBAMActi onStri ngLi st D. If you are logging an
AOCE-defined error, the IPM Manager ignores this field.

See the section “Logging Personal MSAM Operational Errors” on page 2-91 for more
information about operational errors.

Messaging Service Access Module Reference 2-129

CHAPTER 2

Messaging Service Access Modules

MSAM Functions

This section describes the functions that you use to retrieve messages from and submit
messages to the IPM Manager. Most functions handle messages of all types, but certain
functions in the API are specific to letters or reports. Unless the function description
refers to a specific message type, you should assume that the function handles all types
of messages.

Functions whose names begin with MSAMPut apply to incoming messages; functions
whose names begin with MSAMGet apply to outgoing messages. Functions whose
names begin with PMSAM apply only to personal MSAMs; those whose names begin
with SMSAM apply only to server MSAMs.

You must completely specify any structure that you provide to a function unless the
description states otherwise.

All of the functions take a pointer to an MSAMPar amparameter block as input.
Each function description includes a list of the fields in the parameter block that
are used by the function.

Most functions in the MSAM API have the following form:
pascal OSErr function (MSAMParam *par anBl ock, Bool ean asyncFl ag);

You should call those functions asynchronously so that you can receive and process an
AOCE high-level event at any time.

Some functions can be called only synchronously or asynchronously; therefore, they do
not have the asyncFl ag parameter. The form of those functions is:

pascal OSErr function (MSAMParam *par anBl ock) ;

You can call a function from assembly language. Listing 2-16 illustrates one way to do
this for a function that takes both the parameter block pointer and the Boolean value
asyncFl ag as parameters. (If a function can be called only synchronously or
asynchronously, the assembly code would not manipulate the asyncFl ag value.)

Listing 2-16 Calling an MSAM function from assembly language

2-130

_oceTBDi spat ch OPWORD $aabe
subq #2, a7 ; make room for function result
movea par anBl ock, - (sp) ; push the param bl ock pointer

onto stack

nmove. q asyncFl ag, doO ; nove async flag into DO
move. b dO, - (sp) ; push the flag (byte) onto stack
noveq #opCode, dO ; move op code into DO
nmove. w doO, - (sp) ; place the op code on the stack
_oceTBDi spat ch ; trap cal
nmove.w (sp)+, dO ; get result code

Messaging Service Access Module Reference

CHAPTER 2

Messaging Service Access Modules

The function returns its result code in the i oResul t field of the parameter block.

When you call a function synchronously, the function returns its result both as the
function result and in the i oResul t field of the Mai | Par anBl ockHeader structure.
Note that the function also clears the i oConpl et i on field.

When you call a function asynchronously and the function has successfully queued the
request, it returns noEr r and sets the i oResul t field to 1. After the call completes, the
function sets the i oResul t field to the actual result and calls the completion routine,
if one is specified. There is one exception to this behavior: if the IPM Manager is not
currently ready to accept a request, it may return cor Er r as the function result. In

this case, the i oResul t field has an indeterminate value and the completion routine
is not called.

IMPORTANT

If you choose to poll thei oResul t field to determine if the request has
completed, it is safest to check that it has changed from 1 to some other
value. While the IPM Manager does not return positive error codes,
system utilities may return positive error codes, and these may be
passed through without being caught. Nominally, this would be due to
an IPM Manager bug; however, you can and should attempt to protect
against this. s

Initializing an MSAM

You use the routines in this section to initialize an MSAM. A personal MSAM begins by
calling the PMSAMGet MSAVRecor d function to obtain the creation ID of its record in the
Setup catalog. Then it calls the PMSAMOpenQueues function for each of its slots to obtain
the queue references for each slot. A server MSAM calls the SMSAMSet up function to
obtain identifying information about itself and then calls the SMSAMSt ar t up function
to obtain its outgoing queue reference.

PMSAMGetMSAMRecord

The PMSAMGet MSAMRecor d function provides you with the record creation ID of the
record that represents your personal MSAM in the Setup catalog.

pascal OSErr PMSAMGet MSAMRecor d (MSAMPar am * par anBl ock) ;
par anBl ock Pointer to a parameter block.

Parameter block

= i oResul t CSEr r Result code
= nsanCl D CreationlD Creation ID of personal MSAM record

See “The MSAM Parameter Block” on page 2-94 for a description of the i oResul t field.

Messaging Service Access Module Reference 2-131

CHAPTER 2

Messaging Service Access Modules

Field descriptions

nmsantCl D The creation ID of the record in the Setup catalog that represents
your personal MSAM.

DESCRIPTION
You call the PMSAMGet MSAMRecor d function to obtain the record creation ID of your
personal MSAM’s MSAM record in the Setup catalog.

The MSAM record contains a list of all the slots associated with the MSAM. In addition,
your MSAM and its associated setup template may store private data that is global to the
MSAM in the MSAM record.

The IPM Manager knows that a personal MSAM exists by its MSAM record in the
Setup catalog.

IMPORTANT

The PMSAMGet MSAMRecor d function is intended to be called
only by a personal MSAM. Calling it from anywhere else yields
indeterminate results. s

SPECIAL CONSIDERATIONS
This function is always executed synchronously.

ASSEMBLY-LANGUAGE INFORMATION

Trap macro Selector
_oceTBDi spat ch $0506

RESULT CODES
noErr 0 No error
kOCETool boxNot Open -1500 Collaboration toolbox is shutting down
kCOCEl nval i dRef -1502 Invalid message reference number
kOCERef | sd osi ng -1516 IPM Manager is shutting down the

personal MSAM

kMai | NoMSAMET r -15056 No such MSAM

SEE ALSO

The Cr eat i onl Dstructure is described in the chapter “AOCE Utilities” in Inside
Macintosh: AOCE Application Interfaces.

See the chapter “Service Access Module Setup” in this book for more information on the
MSAM record in the Setup catalog.

2-132 Messaging Service Access Module Reference

CHAPTER 2

Messaging Service Access Modules

PMSAMOpenQueues

DESCRIPTION

The PMSAMOpenQueues function obtains the queue references for a slot that you specify.
pascal OSErr PMBAMOpenQueues (MSAMParam *par anBl ock) ;
par anBl ock Pointer to a parameter block.

Parameter block

- i oResul t OSEr r Result code

- i nQueueRef MBAMQueue Ref Incoming queue reference

- out QueueRef MBAMQueue Ref Outgoing queue reference

® msanftl ot | D MSAMSI ot | D Address slot identification number

See “The MSAM Parameter Block” on page 2-94 for a description of the i oResul t field.

Field descriptions

i nQueueRef If the slot you specify in the nsant| ot | Dfield is a mail slot, this
value is the queue reference for the slot’s incoming queue. If the slot
you specify in the msant| ot | D field is a messaging slot, this value
identifies the slot itself. (The MSAMQueueRef data type is| ong.)

out QueueRef The queue reference for the outgoing queue of the slot you specify
in the nsansl ot | D field. (The MBAMQueueRef data type is | ong.)
msanStl ot | D The identification number of the slot for which you are requesting

gueue references. This number is the slot ID that you generated and
stored in the slot’s record in the Setup catalog after receiving a
kMai | EPPCCr eat eS| ot high-level event.

A personal MSAM calls the PMBAMOpenQueues function to get the queue references
associated with a slot. You need to provide the appropriate queue reference in
subsequent operations.

Only mail slots have an incoming queue into which an MSAM places letters coming
from an external messaging system that are addressed to the user. In the case of a
messaging slot, the value in the i nQueueRef field is a reference to the slot itself.

Typically, you call the function when starting up or after you respond to an
kMai | EPPCCr eat eSl ot high-level event. On startup, you should call this function
for every slot that you manage.

If you specify a suspended slot, the function returns a kMai | Sl ot Suspended result
code, but the queue references are still valid. (A slot is suspended when a personal
MSAM calls the PMSAM_ogEr r or function to indicate a serious operational error
associated with the slot.) In general, you should not attempt operations on a
suspended slot.

Messaging Service Access Module Reference 2-133

CHAPTER 2

Messaging Service Access Modules

If you specify an inactive slot (if the act i ve field in the
Mai | St andar dSl ot | nf oAt t ri but e structure is set to f al se), the queue references
are valid. However, in general, you should not attempt operations on an inactive slot.

After you respond with a noEr r result to the kMai | EPPCCr eat eSl ot high-level event,
it is possible that the IPM Manager will encounter an error instantiating the new slot. If
this happens, when you call the PMSAMOpenQueues function to obtain the new slot’s
queue references, the function returns a kMai | NoSuchSl ot result code.

Queue references remain valid as long as the slot is not deleted and the Macintosh
remains running. The conservative approach is to call the function each time your
personal MSAM starts up.

IMPORTANT
The PMSAMOpenQueues function is intended to be called
only by a personal MSAM. Calling it from anywhere else
yields indeterminate results. s

SPECIAL CONSIDERATIONS

There is a very small period immediately after you respond to a kMai | EPPCCr eat eSl ot
high-level event during which the PMSAMOpenQueues function returns a

kMai | NoSuchSI ot result code even if no error occurred. You should call the

function periodically until it completes successfully.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

2-134

Trap macro Selector
_oceTBDi spat ch $0500

nokErr 0 No error

kOCETool boxNot Open -1500 Collaboration toolbox is shutting
down

kCOCEl nval i dRef -1502 Invalid message reference number

kCOCEl nt er nal Err -1506 Serious internal error

kOCERef | sd o0si ng -1516 IPM Manager is shutting down the
personal MSAM

kMai | NoMSANET r -15056 No such personal MSAM

kMai | NoSuchSlI ot -15062 No such slot

kMai | BadMSAM -15066 MSAM unusable for unspecified
reason

See the description of the kMai | EPPCCr eat €Sl ot high-level event on page 2-221 for
more information about slot IDs.

Messaging Service Access Module Reference

CHAPTER 2

Messaging Service Access Modules

SMSAMSetup

DESCRIPTION

The SM5AMSet up function creates the MSAM'’s Forwarder record.
pascal OSErr SMSAMSet up (MSAMPar am * par anBl ock) ;

par anBl ock Pointer to a parameter block.

Parameter block

= i oResul t OSEr r Result code
« ser ver MN6AM Recor dl DPt r Server MSAM’s record ID pointer
® passwor d RStringPtr Pointer to server MSAM’s password
® gat ewayType OSType Server MSAM'’s extension type
® gat ewayTypeDescri pti on

RStringPtr Description of extension type
= cat al ogSer ver H nt

Addr Bl ock Catalog server address

See “The MSAM Parameter Block” on page 2-94 for a description of the i oResul t field.

Field descriptions

server NBAM A pointer to the record ID of the server MSAM’s Forwarder record.
Set the r ecor dNane field to the name of the server MSAM and the
recor dType field to the constant kMnM~or war der Rec TypeNum
The function returns the Forwarder record’s creation ID in the ci d
field and the record location information.

password A pointer to the server MSAM’s password string.

gat ewayType The MSAM'’s 4-character extension type.

gat ewayTypeDescri pti on
A pointer to an RSt r i ng containing a user-readable description of
the MSAM type. For example, an AppleLink MSAM whose type is
" ALNK' might provide the string “AppleLink”.

cat al ogSer ver Hi nt
The AppleTalk address of the PowerShare catalog server that
created the MSAM'’s Forwarder record. The MSAM can later pass
this value to a Catalog Manager function (in the ser ver H nt field
of the function’s parameter block) if it wants to direct the request to
that particular catalog server.

You call the SM5AMBet up function as part of a server MSAM'’s initialization process.
The function creates the MSAM'’s Forwarder record. Before calling the function, you need
to obtain from the system administrator the server MSAM'’s name and password, its
extension type, and a string describing the extension type. (A server MSAM may also
have built-in knowledge of its extension type.) When the function completes successfully,
you should save knowledge of the fact that the function completed successfully in your
preferences file in the Preferences folder so that you do not call the function again after a
subsequent launch.

Messaging Service Access Module Reference 2-135

CHAPTER 2

Messaging Service Access Modules

SPECIAL CONSIDERATIONS

After calling the SMSAMSet up function, call the SMSAMSt ar t up function to get the
server MSAM'’s queue reference.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

Trap macro Selector
_oceTBDi spat ch $0523

nokErr 0 No error

dskFul Err -34 All allocation blocks on the volume are full
k OCEPar ankr r -50 Invalid parameter

kOCEW i t eAccessDeni ed -1541 Identity lacks write access privileges

kCOCETar get Di r ect oryl naccessi bl e
-1613 Target catalog is not currently available

k OCENoSuchDNode -1615 Can’t find specified dNode
k OCENoDupAl | owed -1641 Duplicate name and type
SEE ALSO
For a description of the server MSAM initialization process, see “Initializing a Server
MSAM” beginning on page 2-40.
The SMSAMSt ar t up function is described next.
SMSAMStartup
The SMSAMSt ar t up function informs a PowerShare mail server that the server MSAM
that you specify has started up.
pascal OSErr SMSAMSt artup (MSAMPar am * par anBl ock) ;
par anBl ock Pointer to a parameter block.
Parameter block
- i oResul t OSEr r Result code
® nmsam dentity Aut hl dentity Server MSAM identifier
= gueueRef MSAMQueueRef Queue reference
See “The MSAM Parameter Block” on page 2-94 for a description of the i oResul t field.
Field descriptions
msam dentity The server MSAM'’s authentication identity. You obtain this identity
from the Aut hBi ndSpeci fi cl denti ty function.
queueRef A value that identifies the outgoing queue for the server MSAM
that you specify.
2-136 Messaging Service Access Module Reference

DESCRIPTION

CHAPTER 2

Messaging Service Access Modules

You call the SMSAMSt ar t up function to inform the PowerShare mail server that a server
MSAM is active and that the PowerShare mail server can send the MSAM high-level
events and request status information. You must call this function every time your server
MSAM starts up.

The function returns a queue reference for the server MSAM’s outgoing queue. You
provide the queue reference to the MSAMOpen function when you want to open an
outgoing message. In addition, you provide the queue reference to the MSAMCr eat e
function when you want to create an incoming message. In that situation, the queue
reference identifies the MSAM itself.

You must have successfully called the SM5AMSet up function to create the MSAM'’s
Forwarder record before you call the SMSAMSt ar t up function. Otherwise,
SMBAMSt ar t up returns the kMai | NoSuchSl| ot result code.

The queue reference is valid until the server MSAM’s PowerShare mail server quits. You
know that the PowerShare mail server is not running when any of the MSAM API
functions return the cor Er r result code. When the PowerShare mail server starts up
again, you need to call the SMSAMSt ar t up function again to get a new queue reference.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Trap macro Selector
_oceTBDi spat ch $0501

noErr 0 No error

corErr -3 PowerShare mail server not running
menful | Err -108 Not enough memory

kOCETool boxNot Open -1500 Collaboration toolbox is shutting down
kMai | NoSuchSl| ot -15062 Unknown server MSAM

The Aut hBi ndSpeci fi cl denti ty function and authentication identities are
discussed in the chapter “Authentication Manager” in Inside Macintosh: AOCE
Application Interfaces.

The SMSAMSet up function is described on page 2-135.

The AppleTalk Transition Queue is described in the chapter “Link-Access Protocol (LAP)
Manager” in Inside Macintosh: Networking.

A server MSAM’s initialization process is described in the section “Initializing a Server
MSAM” beginning on page 2-40.

Messaging Service Access Module Reference 2-137

CHAPTER 2

Messaging Service Access Modules

Enumerating Messages in a Queue

Both personal and server MSAMs can use the MSAMENhuUmer at e function to list messages
in an outgoing queue. Personal MSAMs can also use the function to list letters in an
incoming queue.

MSAMEnumerate

2-138

The MSAMEnumer at e function returns information about the messages in a queue that
you specify.

pascal OSErr MSAMEnuner ate (MSAMParam *par anBl ock,
Bool ean asyncFl ag) ;

par anBl ock Pointer to a parameter block.

asyncFl ag A Boolean value that specifies whether the function is to be
executed asynchronously. Set this to t r ue if you want the function
to be executed asynchronously.

Parameter block

® i oConpl etion ProcPtr Your completion routine

- i oResul t OSEr r Result code

® gueueRef MSAMQUeueRef Queue reference number

® start SegNum | ong Starting message

- next SeqNum | ong Message to continue next enumeration
« buf f er Mai | Buf f er Your buffer structure

See “The MSAM Parameter Block™ on page 2-94 for descriptions of the i oConpl et i on
andi oResul t fields.

Field descriptions

queueRef The value that identifies the queue about which you want
information. A personal MSAM specifies either the outgoing queue
reference or the incoming queue reference that it obtained from
the PMSAMOpenQueues function, depending on which queue it
wants to enumerate. A server MSAM specifies the outgoing queue
reference that it obtained from the SMSAMSt ar t up function.

start SegNum The sequence number of the message in the queue at which you
want the MSAMEnuner at e function to start the enumeration. Set
this field to 1 to begin the enumeration with the first message in the
gueue. When you call the function and there is insufficient space in
your buffer to hold information about all of the remaining messages
in the queue, the function returns in the next SeqNumfield the
sequence number of the next message. Use that number in the
st art SegNumfield the next time you call the function.

Messaging Service Access Module Reference

CHAPTER 2

Messaging Service Access Modules

next SeqNum The sequence number of the first message in the queue whose
information did not fit into your buffer. The function sets this field
when your buffer is too small to hold all the information you
requested. To continue the enumeration, call the MSAMEnuner at e
function again and set the st ar t SeqNumfield to the current value
of the next SeqNumfield. The MSAMEnuner at e function sets the
next SegNumfield to 0 when it has returned information about all
of the messages in the queue.

buffer AMai | Buf f er structure. You set the value of the buf f er Si ze
field in the Mai | Buf f er structure to the number of bytes in
your buffer. Because the number of messages in the queue
varies, use your best estimate to choose the size of the buffer.
The MSAMEnumer at e function retrieves information about the
messages in the queue that you specify and writes it into your
buffer, the buf f er field. It sets the value of the dat aSi ze field to
the number of bytes of data it placed in the buffer.

DESCRIPTION

You call the MSAMEnuner at e function to obtain information about messages in a queue
that you specify. The function stores this information in a buffer that you provide. If your
buffer is not large enough to hold all of the information, you can call this function
repeatedly. When the function sets the next SeqNumfield to 0, you have retrieved
information on all of the messages in the queue.

Both personal and server MSAMSs can enumerate an outgoing queue. When an MSAM
enumerates an outgoing queue, the function returns information about all of the
messages in the queue, including letters and non-letter messages.

Only a personal MSAM can enumerate an incoming queue to get information about the
letters in the queue because incoming queues are specific to personal MSAMs.

No matter which type of queue you enumerate, the function places the data in your
buffer in the form of a Mai | Repl y structure. The first 2 bytes contain a count of the
total number of structures that follow it in the buffer. The structures that follow

are either MSAMEnuner at eQut QRepl vy (if you enumerate an outgoing queue) or
MBAMENnumer at el nQRepl y structures (if you enumerate an incoming queue). See

the descriptions of the MSAMEnuner at el nQRepl y and MSAMEnunrer at eQut Qrepl y
structures, respectively, for information on what specific data you retrieve when you
enumerate an incoming or an outgoing queue.

ASSEMBLY-LANGUAGE INFORMATION

Trap macro Selector
_oceTBDi spat ch $0503

Messaging Service Access Module Reference 2-139

CHAPTER 2

Messaging Service Access Modules

RESULT CODES
nokErr 0 No error
kOCETool boxNot Open -1500 Collaboration toolbox is shutting down
kOCEl nval i dRef -1502 Invalid queue reference
k OCEBuf f er TooSmal | -1503 Buffer is too small
kOCERef | sd osi ng -1516 IPM Manager is shutting down the personal
MSAM, or server MSAM'’s mail server is
shutting down
SEE ALSO

The MSAMEnuner at eQut QRepl vy structure is described on page 2-97.
The MSAMEnuner at el nQRepl y structure is described on page 2-98.
The Mai | Repl y structure is described on page 2-97.

The Mai | Buf f er structure is described on page 2-96.

Opening an Outgoing Message

Call the MSAMXpen function to open a message in an outgoing queue. Once a message is
open, you can read its contents.

MSAMOpen

The MSAMXpen function opens a message in an outgoing queue.

pascal OSErr MSAMOpen (MSAMPar am *par anBl ock
Bool ean asyncFl ag) ;

par anBl ock Pointer to a parameter block.

asyncFl ag A Boolean value that specifies whether the function is to be
executed asynchronously. Set this to t r ue if you want the function
to be executed asynchronously.

Parameter block

® i oConpl eti on ProcPtr Your completion routine

- i oResul t OSEr r Result code

® gueueRef MSAMQueueRef Queue reference number

® seqNum | ong Sequence number of message in queue
- mai | MsgRef Mai | MsgRef Message reference number

See “The MSAM Parameter Block™ on page 2-94 for descriptions of the i oResul t and
i oConpl eti on fields.

2-140 Messaging Service Access Module Reference

DESCRIPTION

CHAPTER 2

Messaging Service Access Modules

Field descriptions

queueRef The queue reference of the queue that contains the message you
want to open. For a personal MSAM, specify the outgoing queue
reference you obtained from the PMSAMOpenQueues function. For a
server MSAM, specify the queue reference you obtained from the
SMBSAMSE ar t up function.

segNum The sequence number that identifies the message you want
to open. You get this number from the seqNumfield in the
MSAMENnuner at eQut QRepl y structure returned by the
MSAMEnurmer at e function.

mai | MsgRef A message reference number that identifies the opened message.
The MSAMOpen function returns a reference number for the message
that you use in subsequent function calls to read the message.

You call the MSAMOpen function to open a message in the outgoing queue you specify in
the queueRef field.

The MSAMOXpen function provides a unique message reference number to each MSAM

that opens a given message. Once you close the message by calling the MSBAMCl ose
function, the message reference number becomes invalid and you cannot use it in
subsequent function calls. (In contrast, the value of the segNumfield is a reference to the
message that remains valid until you delete the message by calling the MSAMDel et e
function.)

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Trap macro Selector
_oceTBDi spat ch $0508

noErr 0 No error

kOCETool boxNot Open -1500 Collaboration toolbox is shutting down

kOCEl nval i dRef -1502 Invalid queue reference

kOCCEDoesnt Exi st -1511 No such letter

kOCERef | sd osi ng -1516 IPM Manager is shutting down the personal
MSAM, or server MSAM’s mail server is
shutting down

The MSAMEnumer at eQut QRepl y structure is described on page 2-97.
The PMSAMOpenQueues function is described on page 2-133.

The SMSAMSt ar t up function is described on page 2-136.

The MSAMCI ose function is described on page 2-167.

The MSAMDel et e function is described on page 2-202.

Messaging Service Access Module Reference 2-141

CHAPTER 2

Messaging Service Access Modules

Reading Header Information

To read letter attributes from an open letter, use the MSAMGet At t ri but es function. You
can read the recipients of a message with the MSAMGet Reci pi ent s function. To read
the header of a non-letter message, use the MSAMGet MsgHeader function.

MSAMGetAttributes

2-142

The MSAMCGet At t ri but es function reads attributes from the header of an open letter
that you specify.

pascal OSErr MSAMGet Attri butes (MSAMParam *par anBl ock,
Bool ean asyncFl ag) ;

par anBl ock Pointer to a parameter block.

asyncFl ag A Boolean value that specifies whether the function is to be
executed asynchronously. Set this to t r ue if you want the function
to be executed asynchronously.

Parameter block

® i oConpl eti on ProcPtr Your completion routine

- i oResul t OSEr r Result code

® mai | MsgRef Mai | MsgRef Letter reference number

® request Mask Mai | Attri buteBitmp Attribute types requested

« buf f er Mai | Buf f er Your buffer structure

- responseMask Mai | Attri buteBitmp Attribute types returned
nor e Bool ean Is there more data?

See “The MSAM Parameter Block™ on page 2-94 for descriptions of the i oConpl et i on
andi oResul t fields.

Field descriptions

mai | MsgRef A reference number that identifies the letter whose attributes you
want to read. You obtain the reference number when you call the
MSAMOpen function.

r equest Mask A bit field structure that specifies which attributes in the letter’s
header you want to read. The attributes whose values you may
retrieve with this function are listed below. Set the bit for each
attribute that you want to read. Clear the remaining bits.

buf f er AMai | Buf f er structure. You set the value of the buf f er Si ze
field in the Mai | Buf f er structure to the number of bytes in
your buffer. The MSAMGet At t ri but es function writes attribute
values into your buffer (the buf f er field) and sets the value
of the dat aSi ze field to the number of bytes of data it placed in
the buffer.

Messaging Service Access Module Reference

DESCRIPTION

CHAPTER 2

Messaging Service Access Modules

responseMask A bit field structure that specifies the attributes for which the
MBAMGet At t ri but es function returned values in the buffer. If the
function did not return an attribute because either a requested
attribute does not exist in the letter or you did not request the
attribute, the function sets the corresponding bit in the structure to 0.

nor e A Boolean value that indicates whether there are more attribute
values than can fit in your buffer. If your buffer is too small
to hold all of the attribute values that you requested, the
MBAMCet At t ri but es function sets this field to t r ue; otherwise,
it sets this field to f al se. If the value of the nor e field ist r ue,
you can call the MSAMGet At t ri but es function again, setting the
bits in the request mask for the attributes you did not yet receive.

You call the MSAMGet At t ri but es function to read letter attributes by setting the
appropriate bits in the r equest Mask field. You can request any combination of the
following attributes:

Letter attribute Bit constant Mask constant

Indications kMai | I ndi cati onsBit kMai | I ndi cati onsMask
Letter creator & type kMai | MsgTypeBi t kMai | MsgTypeMask

Letter ID kMai | Letter| DBit kMai | Lett er| DVask

Send timestamp kMai | SendTi meSt anpBi t kMai | SendTi meSt anpMask
Nesting level kMai | Nesti ngLevel Bit kMai | Nesti ngLevel BVMask
Message family kMai | MsgFami | yBi t kMai | MsgFani | yMask
Reply ID kMai | Repl yI DBi t kMai | Repl yI Dvask
Conversation ID kMai | Conversationl DBit kMil Conversati onl DMask
Subject kMai | Subj ect Bi t kMai | Subj ect Mask

The MSAMZet At t ri but es function reads the attribute values you requested from the
letter header and writes them into your buffer, starting with the attribute specified by the
least significant bit in the r equest Mask field and continuing in ascending order. If the
length of an attribute value is odd, it adds a pad byte so that each attribute value starts
on an even boundary.

You can request attributes for any letter you have previously opened.

You cannot read a letter’'st o, f r om cc, orbcc attributes by calling the

MBAMCet At t ri but es function. Call the MSAMzet Reci pi ent s function for this
purpose. The MSAMGet At t ri but es function ignores the bits in the request mask
that correspond to recipient attributes and sets the equivalent bits in the response
mask to 0 to indicate that it is not returning the values for these attributes. The
MBAMGet At t ri but es function does not return an error in this case.

Messaging Service Access Module Reference 2-143

CHAPTER 2

Messaging Service Access Modules

SPECIAL CONSIDERATIONS

Because the Mai | Attri but eBi t map data type is defined as a bit field structure, you
cannot use the predefined masks such as kMai | Subj ect Mask, kMai | MsgTypeMask,
and so forth to set or test the value of a bit field in the r equest Mask orr esponseMask
field. The masks operate on variables of type | ong.

You cannot read a letter’s | et t er FI ags attribute by calling the MSAMGet Att ri but es
function. Only incoming letters have that attribute.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Trap macro Selector
_oceTBDi spat ch $050B

noErr 0 No error
kOCETool boxNot Open -1500 Collaboration toolbox is shutting down
kCOCEl nval i dRef -1502 Invalid queue reference

The Mai | Attri but eBi t map structure, including the complete list of letter attributes, is
described on page 2-100.

The Mai | Buf f er structure is described on page 2-96.
The MSAMGet Reci pi ent s function is described next.

See the section “Reading Letter Attributes” beginning on page 2-47 for an example of
reading attributes from a letter header.

MSAMGetRecipients

2-144

The MSAMCet Reci pi ent s function returns recipient information from the header of an
open message that you specify.

pascal OSErr MSAMGet Reci pi ents (MSAMPar am * par anBl ock,
Bool ean asyncFl ag) ;

par anBl ock Pointer to a parameter block.

asyncFl ag A Boolean value that specifies whether the function is to be
executed asynchronously. Set this to t r ue if you want the function
to be executed asynchronously.

Messaging Service Access Module Reference

CHAPTER 2

Messaging Service Access Modules

Parameter block

i 0Compl et
i oResul t
mai | MsgRe
attri D
start | nde
« buf f er
next | ndex

@6 !0

d

- nore

i on ProcPtr Your completion routine
OSEr r Result code
f Mai | MsgRef Message reference number
Mai | AttributelD Recipient type requested
X unsi gned short Recipient to start from
Mai | Buf f er Your buffer structure
unsi gned short Recipient to continue from
next time
Bool ean Is there more data?

See “The MSAM Parameter Block™ on page 2-94 for descriptions of the i oConpl et i on
andi oResul t fields.

Field descriptions
mai | MsgRef

attriD

startl| ndex

buf f er

next | ndex

A reference number that identifies the message about which you
want recipient information. You obtain the reference number when
you call the MSAMOpen function.

A constant that identifies the type of recipient about which you
want information. Specify kMai | Resol vedLi st if you want
information about resolved recipients. If you want information
about an original recipient type, specify kMai | FronBi t,

kMai | ToBi t,kMi | CcBit,orkMi | BccBit.You can specify one
type of recipient each time you call the MSAMzet Reci pi ent s
function.

The position in the recipient list at which you want the
MBAMCGet Reci pi ent s function to begin extracting information
to store in your buffer. Set this field to 1 to start with the first
recipient of the type specified by the at t r | D field.

AMai | Buf f er structure. You set the value of the buf f er Si ze
field in the Mai | Buf f er structure to the number of bytes in your
buffer. The MSAMGet Reci pi ent s function writes recipient
information into your buffer (the buf f er field) and sets the value
of the dat aSi ze field to the number of bytes of data it placed in the
buffer. The function places the data in your buffer in the form of a
Mai | Repl y structure. The first 2 bytes contain a count of the
number of recipient structures that follow in your buffer. If you
request information about an original recipient type (t o, cc, bcc,
from), the MSAMGet Reci pi ent s function returns the recipient
information as one or more Mai | Ori gi nal Reci pi ent structures.
If you request information about resolved recipients, the function
returns the information as one or more Mai | Resol vedReci pi ent
structures. If a recipient structure has an odd length, the function
adds a pad byte so that the next structure can start on a word
boundary.

If the value of the nor e field is t r ue, the next | ndex field
indicates the position in the recipient list of the first attribute that
did not fit into your buffer. If the value of the nor e field is f al se,
the next | ndex field is undefined.

Messaging Service Access Module Reference 2-145

DESCRIPTION

2-146

CHAPTER 2

Messaging Service Access Modules

nor e A Boolean value that indicates whether there is more recipient
information than can fit in your buffer. If your buffer is too small
to hold all of the recipient information that you requested, the
MBAMCet Reci pi ent s function sets this field to t r ue; otherwise,
it sets this field to f al se. If the function sets this field to t r ue,
you can call it again to retrieve additional information by setting
the st art | ndex field for the next call to the value of the
next | ndex field.

You call the MSAMGet Reci pi ent s function to get a list of original or resolved recipients
for the message that you specify in the nai | MsgRef field. You need to get original
recipients so that you can properly display them as From, To, cc, or bcc recipients in the
message you send to an external messaging system. You need to get a list of resolved
recipients so that you know to which recipients you must send the message.

By setting the at t r | Dfield appropriately, you can specify either a resolved recipient or
one type of original recipient each time you call the MSAMGet Reci pi ent s function.

If you specify an original recipient type in the at t r | Dfield, the function returns data in
the form of one or more Mai | Ori gi nal Reci pi ent structures. Each of these structures
contains the absolute index of the recipient followed immediately by information about
one recipient. The absolute index is useful if you need to match an original recipient with
the corresponding resolved recipient.

If you specify a resolved recipient in the at t r | Dfield, the function returns data in the
form of one or more Mai | Resol vedReci pi ent structures. Each of these structures
contains the absolute index of the recipient, the Boolean variable r esponsi bl e, and
recipient flags, followed immediately by information about one recipient. If the value of
the r esponsi bl e field is t r ue, you are responsible for delivering the message to that
recipient and submitting delivery and non-delivery reports to the sender if those are
requested. Naturally, you should not attempt to deliver a message to a recipient for
which the r esponsi bl e field is set to f al se. If the kI PMBCCRecBi t bit in the

reci pi ent Fl ags field is set, the recipient is a bcc recipient.

Note

A From recipient may appear in the resolved list, but in
that case the r esponsi bl e field is always set to f al se. u

As you read Mai | Resol vedReci pi ent structures from your buffer, you must save the
ordinal-position value for each resolved recipient. The first recipient’s ordinal-position
value is 1; the second recipient’s ordinal-position value is 2; the nth recipient’s ordinal-
position value is n, and so forth. The MSAMhMar kReci pi ent s function requires you to
provide the ordinal-position value to identify a recipient you want to mark. If you need
to call MBAMGet Reci pi ent s more than once to get all of the resolved recipients, do not
set the ordinal-position value back to 0 on successive calls to the function. Rather,
increment the ordinal-position value continuously across multiple calls to the

MBAMZet Reci pi ent s function for a given letter so that each resolved recipient is
associated with a unique ordinal-position value.

Messaging Service Access Module Reference

CHAPTER 2

Messaging Service Access Modules

Personal MSAMs will find a one-to-one correspondence between their resolved
recipients and their displayable (original) recipients because all group addresses are
expanded into individual recipients before the MSAMGet Reci pi ent s function returns
recipient information to the personal MSAM.

Server MSAMs may find they have more resolved recipients than original recipients.
This is because the PowerShare mail server expands PowerShare group addresses into
individual addresses when you ask for resolved recipients. However, it does not
necessarily expand PowerShare group addresses when you ask for original recipients.
The MSAMZet Reci pi ent s function does not expand any external group addresses.

Server MSAMSs may also find that there are resolved recipients that are not exactly the
same as the corresponding original recipients. These have been resolved by the AOCE
software to a more specific form.

The PowerShare mail server does not suppress duplicate external addresses. Sometimes
it suppresses duplicate addresses resulting from the expansion of a PowerShare group
address. However, you are not guaranteed that the MSAMGet Reci pi ent s function will
not return duplicate addresses.

SPECIAL CONSIDERATIONS

For non-letter messages, the From recipient is a reply queue address, a return address
that is not necessarily the same as the sender’s address.

This function does not apply to delivery and non-delivery reports. You cannot read the
recipient attribute of a report.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Trap macro Selector
_oceTBDi spat ch $050C

nokErr 0 No error

kOCETool boxNot Open -1500 Collaboration toolbox is shutting
down

kOCEl nval i dRef -1502 Invalid message reference number

k OCEBuf f er TooSnal | -1503 Buffer is too small

The Mai | Ori gi nal Reci pi ent structure is described on page 2-108.
The Mai | Resol vedReci pi ent structure is described on page 2-108.

Original and resolved recipients are discussed in the section “Reading Addresses”
beginning on page 2-51.

The Mai | Buf f er structure is described on page 2-96.

Messaging Service Access Module Reference 2-147

CHAPTER 2

Messaging Service Access Modules

The Mai | Repl y structure is described on page 2-97.
Reply queues are discussed with the MSAMPut MsgHeader function on page 2-183.
The MSAMnhMar kReci pi ent s function is described on page 2-163.

MSAMGetMsgHeader

2-148

The MSAMCet MsgHeader function reads data from the header of a non-letter message
that you specify.

pascal OSErr MSAMGet MsgHeader (MSAMParam * par anBl ock,
Bool ean asyncFl ag) ;

par anBl ock Pointer to a parameter block.

asyncFl ag A Boolean value that specifies whether the function is to be
executed asynchronously. Set this to t r ue if you want the function
to be executed asynchronously.

Parameter block

® i oConpl eti on ProcPtr Your completion routine

- i oResul t OSEr r Result code

® mai | MsgRef Mai | MsgRef Message reference number

® sel ect or | PMHeader Sel ect or Type of header data requested
® of f set unsi gned | ong Begin reading from here

« buf f er Mai | Buf f er Your buffer

- remai ni ng unsi gned | ong Number of bytes still to read

See “The MSAM Parameter Block™ on page 2-94 for descriptions of the i oConpl et i on
andi oResul t fields.

Field descriptions

mai | MsgRef A reference number that identifies the message for which you want
header information. You obtain the reference number when you call
the MBAMOXpen function.

sel ect or A constant that indicates the type of header information that you
are requesting. The possible values are defined below. You cannot
add or combine constant values in the sel ect or field.

of f set The byte position, relative to the beginning of the header
information specified in the sel ect or field, from which you want
the MBAMGet MsgHeader function to begin reading. To read from
the beginning of the header information field, set this field to 0. If
your buffer is too small to hold all of the data you requested, you
can call the MSAMGet MsgHeader function again and compute a
new value for the of f set field using the dat aSi ze value that the
function returns in the Mai | Buf f er structure.

Messaging Service Access Module Reference

CHAPTER 2

Messaging Service Access Modules

buf fer AMai | Buf f er structure. You set the value of the buf f er Si ze
field in the Mai | Buf f er structure to the number of bytes in
your buffer. The MSAMGet MsgHeader function writes header
information into your buffer and sets the value of the dat aSi ze
field to the number of bytes of data it placed in the buffer.

remai ni ng The number of bytes of data remaining to be read. The
MBAMZet MsgHeader function sets this field to 0 when it has
returned all of the information that you requested.

DESCRIPTION

You call the MSAMGet MsgHeader function to obtain information from the header of a
non-letter message. Do not call this function to read headers of letters or reports.

If the buffer you provide is not large enough to hold the information requested, you
must make additional calls to the MSAMzet MsgHeader function to obtain it.

The format of the information that the MSAMGet MsgHeader function places in your
buffer varies according to the value of the sel ect or field. You may use any of the
following constants in the sel ect or field:

Selector value
kl PMIrocC

kl PMsender

kl PMPr ocessHi nt

kl PMVvessageTitl e
kl PMvessageType

kl PMFi xedl nf o

ASSEMBLY-LANGUAGE INFORMATION

Trap macro
_oceTBDi spat ch

Description

The function returns an array of TOC structures, one for each
block in the message. Each entry in the array contains the
block’s size, creator, type, offset, and up to 4 bytes of private
data that the application that created the block may have
added for its own purposes when it created the block. The
array of TOC structures is ordered; the sequential position of a
block entry in the table of contents is a message block’s index.
The index of the first block is 1. You can identify a message
block by its index number.

The function returns the identity of the sender of the message
inan | PMSender structure.

The function returns a Pascal string of up to 32 characters. The
application that created the message may add a string for its
own purposes when it creates the message.

The function returns the title of the message in an
RSt r i ng structure.

The function returns the creator and type of the message
inan | PMVsgType structure.

The function returns selected header information in an
| PMFi xedHdr | nf o structure.

Selector
$0511

Messaging Service Access Module Reference 2-149

RESULT CODES

SEE ALSO

CHAPTER 2

Messaging Service Access Modules

noErr 0 No error

kOCETool boxNot Open -1500 Collaboration toolbox is shutting down
kCOCEl nval i dRef -1502 Invalid message reference number

k CCEBuf f er TooSnal | -1503 Buffer is too small

The TCC, | PMSender, | PMFi xedHdr | nf o, and | PMVBgTy pe structures are described
in the chapter “Interprogram Messaging Manager” in Inside Macintosh: AOCE
Application Interfaces.

The MBAMGet MsgHeader function is virtually identical to the | PMReadMsgHeader
function. An application creating a message adds the process hint Pascal string when
it calls the | PMNewiVs g function and the private data in a message block when it
calls the | PMNewBl ock function. All of these functions are described in the chapter
“Interprogram Messaging Manager” in Inside Macintosh: AOCE Application Interfaces.

The RSt ri ng structure is described in the chapter “AOCE Utilities” in Inside Macintosh:
AOCE Application Interfaces.

The Mai | Buf f er structure is described on page 2-96.

Reading a Message

The MSAM API provides a number of functions to read outgoing messages that have
been opened. The functions MSAMzet Cont ent and MSAMGet Encl osur e apply only to
letters. The MSAMEnuner at eBl ocks, MSAMZet Bl ock, and MSAMOpenNest ed
functions apply to any type of message.

MSAMGetContent

2-150

The MSAMZet Cont ent function returns information about (and if requested, data from)
a single segment in a letter’s content block.

pascal OSErr MSAMZet Cont ent (MSAMPar am * par anBl ock,
Bool ean asyncFl ag) ;

par anBl ock Pointer to a parameter block.

asyncFl ag A Boolean value that specifies whether the function is to be
executed asynchronously. Set this to t r ue if you want the function
to be executed asynchronously.

Messaging Service Access Module Reference

CHAPTER 2

Messaging Service Access Modules

Parameter block

® i 0Conpl etion ProcPtr Your completion routine

- i oResul t OSEr r Result code

® mai | MsgRef Mai | MsgRef Letter reference number

® segnment Mask Mai | Segnent Mask Segment type you want to read
« buf f er Mai | Buf f er Your buffer structure

« t ext Scrap St Scr pRec* Pointer to style scrap structure
= script Scri pt Code Character set

= segnent Type Mai | Segnent Type Segment type returned

= endCf Scri pt Bool ean End of data of one character set?
= endCOf Segnent Bool ean End of segment data?

- endOF Cont ent Bool ean End of letter content?

= segnment Lengt h | ong Length of segment

« segnent | D | ong Segment identifier

See “The MSAM Parameter Block™ on page 2-94 for descriptions of the i oConpl et i on
andi oResul t fields.

Field descriptions
mai | MsgRef

segrment Mask

buf f er

text Scr ap

Messaging Service Access Module Reference

A reference number that identifies the letter whose content you
want to read. You obtain the reference number when you call the
MSAMOpen function.

The types of segments that you want to read. The content of a letter
consists of text, pictures, sound, QuickTime movies, and styled text
segments. The constants that you use to specify the segment types
you want are described on page 2-110.

You can request any combination of segment types in the same
request except text and styled text segments. If you request styled
text segments, the function returns both plain text and styled text
segments. If you request plain text segments, it returns any plain
text segments that are in the letter and also converts styled text
segments to plain text segments and returns them to you.

AMai | Buf f er structure. You set the value of the buf f er Si ze
field in the Mai | Buf f er structure to the number of bytes in your
buffer. If the current segment is one of the types that you specified
in the segment mask, the MSAMGet Cont ent function writes the
segment into your buffer and sets the value of the dat aSi ze field
to the number of bytes of data it placed in the buffer.

A pointer to a style scrap structure (St Scr pRec). If you request
styled text segments, you can choose to allocate the structure,
depending on which of two methods you want to use to read styled
text. Both methods are described in the discussion below.

If you choose to allocate the style scrap structure, set its

scr pNSt yl es field to the number of styles your buffer can hold.
When the function writes styled text to your buffer, it returns style
information in the style scrap structure and sets the scr pNSt yl es
field to the actual number of styles returned.

If you are not requesting styled text segments, the function ignores
this field.

2-151

DESCRIPTION

2-152

CHAPTER 2

Messaging Service Access Modules

scri pt

segnment Type

endOf Scri pt

endCf Segnent

endOf Cont ent

segrent Lengt h

segment | D

A value that indicates the character set (Roman, Arabic, Kaniji, etc.) of
the text that the function placed in your buffer. The function sets this
field only when it returns text data (it sets the segnent Type field to
kMai | Text Segnment Type orkMai | St yl edText Segrent Type).

A constant that indicates the type of the current data segment. A
segment can contain text, pictures, sound, QuickTime movies, or
styled text. The constants that the function may return in this field
are described on page 2-109. (If you are reading data from the
segment and you need to call the MSAMzet Cont ent function more
than once to retrieve all of the data from the segment, the function
returns a value in this field only the first time you call it for that
segment.)

A Boolean value that indicates whether the text in your buffer is the
end of a script run. The function sets this flag only when it returns
data from a plain text or styled text segment. If there is more text in
the current script run, it sets this field to f al se.

A Boolean value that indicates whether the MSAMCet Cont ent
function has reached the end of a segment. If you did not request
the current segment type in your segment mask, the function
always sets this field to t r ue. If you requested the current segment
type in your segment mask, the function sets this field to t r ue if it
has returned all of the data in the current segment and to f al se if
there is more data in the current segment.

A Boolean value that indicates whether the MSAMGet Cont ent
function has reached the end of the letter’s content block. The
MSAMGet Cont ent function sets the endOf Cont ent field tot rue
when it reaches the end of the last segment in the content block;
otherwise it sets this field to f al se.

The number of bytes in the current segment. The MSAMZet Cont ent
function returns a value in this field the first time you call it for a
given segment.

A segment identifier. This is both an input and an output. Set this
field to 0 the first time you call it for a given letter. The function
returns a value in this field the first time it reads each segment in a
letter. On subsequent calls to the function, you setitto 0 or to a
known segment ID. If you set it to 0, the function continues reading
sequentially the current segment (or if endOf Segnent is set to

t r ue, the next segment). If you set it to a segment ID, the function
reads the segment specified by the segment ID.

The MSAMZet Cont ent function returns information about a single segment in a letter’s
content block each time you call it. If the current segment type is one that you specified
in your segment mask, the function also returns actual segment data from the segment.
You must previously have opened the letter by calling either the MSAMOpen or
MSAMOpenNest ed function.

Messaging Service Access Module Reference

CHAPTER 2

Messaging Service Access Modules

A content block contains a series of segments in standard interchange format; that is,
each segment consists of either text, pictures, sound, styled text, or QuickTime movies.
You tell the MSAMZet Cont ent function what types of segments you want to read by
setting the segnent Mask field appropriately. The function examines the value of the
segnent Mask field the first time you call it for a given letter and at the beginning of
each segment in the letter to determine whether it should write the segment data into the
buffer that you provide.

At the beginning of each segment, the MSAMGet Cont ent function sets the

segment Type, segnent Lengt h, segnent | D, endOf Segnent , and endOf Cont ent
fields. You can detect a new segment by examining the endOf Segnent flag: if its
value is t r ue you know that you will get information on a new segment the

next time you call the MSAMGet Cont ent function.

You can read the segments in a letter’s content block in sequential order or in any order
you wish, depending on the value you specify for the segment ID. To read segments in
the order they are stored in the content block, specify 0 in the segment | D field. The first
time it reads a given segment, the function returns the segment ID. Because it is both an
input and output value, be sure to clear the segnent | D field after the start of a new
segment to continue reading segments sequentially. If you do not set the segnment | D
field to 0, you will read the same segment over and over again.

To read segments in random order, you must know the segment’s segment ID. Provide
the ID in the segnent | Dfield to access the segment randomly. When you specify a
segment ID other than 0, the function repositions the offset at which it begins reading to
the start of the segment you identify.

Note

To build a table of contents of segments, their segment types, their
lengths, and their segment IDs, set the segnent Mask field to 0 and call
the MSAMzet Cont ent function repeatedly until the endOf Cont ent
field returnstrue. u

There are two types of text data: plain text and styled text. If you request styled text
segments, the function returns both plain text and styled text segments. If you request
plain text segments, it returns any plain text segments that are in the letter and also
converts styled text segments to plain text segments and returns them to you.

A text segment contains one or more script runs. A script run is a string of text

in the same character set. When the function returns text data (that is, when

the function sets the segnent Type field to kMai | Text Segnent Type or

kMai | St yl edText Segnent Type), the scri pt field indicates the character set. The
function identifies the end of a script run by setting the endCf Scri pt field to t r ue.

When you request plain text (that is, when you specify kMai | Text Segnent Mask in
your segment mask), the MSAMGet Cont ent function retrieves styled text as plain text.
You lose all style information when you do this (except for the character set specified in
the scri pt field).

A styled text segment consists not of a stream of bytes but rather of a series of “style
runs” akin to style runs in TextEdit.

Messaging Service Access Module Reference 2-153

CHAPTER 2

Messaging Service Access Modules

To read a styled text segment, you allocate a style scrap structure and set the t ext Scr ap
field to point to it. You should allocate a St Scr pRec structure of a size appropriate to
your MSAM. The function places the text into your buffer and the style information into
the style scrap structure. It sets the scr pSt art Char field in each Scr pSTElI enent
structure in the style scrap structure to the offset of the text to which it applies, relative to
the start of your buffer. The function completes when it has returned all the styled text or
when it runs out of room for either the style information or text. If additional styled text
exists, it sets endOf Segnent tof al se.

If the function completes because it runs out of room for either the style information or
the text, then the next time you call the function, it continues writing text from the same
segment into your buffer and putting text styles in your style scrap structure. In this
case, the offsets in the scr pSt art Char field of the Scr pSTEl enent structure in your
style scrap structure apply only to the data currently in your buffer, not to the offsets in
the original segment in the letter.

For example, suppose that the next segment in the letter to be read is a styled text
segment 120 bytes in length containing 12 different styles. The eleventh style starts at an
offset of 90 (that is, at the 91st byte of the segment). Suppose further that your text buffer
is 200 bytes but your style scrap structure can hold only 10 styles. In this case, the
MBAMZet Cont ent function stops writing data to your buffer after it has placed 10 styles
in your style scrap structure. Because these 10 styles applied to the first 90 bytes of text,
the dat aSi ze field of your Mai | Buf f er structure indicates that 90 bytes of data were
written to your buffer, and the value of the endOf Segnent field is f al se.

The next time you call the function, it writes the last 30 bytes of text into your buffer
and puts the last two styles into your style scrap structure. It returns a value of 2 in

the scr pNSt yl es field of your style scrap structure and sets the endOf Segnent field
tot rue. In this case, the first offset in the scr pSt art Char field of the script table in
the style scrap structure is 0, indicating that the first style in the text scrap starts with
the first byte of text currently in your buffer. (The offset is not 90, as it would have been
for this portion of text had your style scrap structure been able to hold all of the styles
at once.)

You cannot specify kMai | Text Segrment Mask andkMai | St yl edText Segnent Mask
at the same time.

SPECIAL CONSIDERATIONS

2-154

Different Macintosh computers may use the same font number for different fonts. That
is, font numbers may vary from computer to computer, but font names are supposed to
be unique. The SMPAddCont ent function in the Standard Mail Package creates a block
containing a table that maps font numbers to font names. To ensure that you apply the
right fonts to styled text, you need to read this font block. Its block creatoris' fi sh’
and its block typeis' font ' .

You can use the following format information to read the font block. The first word in
the block contains the number of font information elements in the block, followed by a
packed array of font information elements. Each element consists of a word containing a
font number followed by a Pascal string containing the font name and, if necessary, a
pad byte for word alignment.

Constants are not defined for the ' fi sh' and’' f ont' block creator and type.

Messaging Service Access Module Reference

CHAPTER 2

Messaging Service Access Modules

ASSEMBLY-LANGUAGE INFORMATION

Trap macro Selector
_oceTBDi spat ch $050D

RESULT CODES
noErr 0 No error
k OCEPar antkr r -50 Requested both plain and styled text
segments
kOCETool boxNot Open -1500 Collaboration toolbox is shutting down
kCOCEl nval i dRef -1502 Invalid message reference number
kMai | I nval i dRequest —-15045 Message reference number does not
refer to a letter
kMai | Mal f or medCont ent -15061 Content data malformed
SEE ALSO

The Mai | Buf f er structure is described on page 2-96.

The values that you can use in the segnent Type and segnent Mask fields are
described in the section “The Segment Types” beginning on page 2-109.

A script run is a sequence of text in a single character set. For more information about
script runs, see Inside Macintosh: Text.

The Scr pSTEl enent and the St Scr pRec structures are described in Inside
Macintosh: Text.

MSAMGetEnclosure

The MSAMCGet Encl osur e function reads file enclosures from a letter that you specify.

pascal OSErr MSAMZet Encl osure (MSAMPar am * par anBl ock,
Bool ean asyncFl ag) ;

par anBl ock Pointer to a parameter block.

asyncFl ag A Boolean value that specifies whether the function is to be
executed asynchronously. Set this to t r ue if you want the function
to be executed asynchronously.

Parameter block

® i oConpl eti on ProcPtr Your completion routine

- i oResul t CSEr r Result code

® mai | MsgRef Mai | MsgRef Letter reference number

- cont ent Encl osur e Bool ean Is enclosure main letter content?

« buf f er Mai | Buf f er Your buffer structure
endOFile Bool ean End of file?

- endO Encl osur es Bool ean All enclosures read?

Messaging Service Access Module Reference 2-155

DESCRIPTION

2-156

CHAPTER 2

Messaging Service Access Modules

See “The MSAM Parameter Block™ on page 2-94 for descriptions of the i oConpl et i on
andi oResul t fields.

Field descriptions
mai | MsgRef

A reference number that identifies the letter whose enclosures you
want to read. You obtain the reference number when you call the
MSAMOpen function.

cont ent Encl osur e

buf f er

endOF File

A Boolean value that indicates whether the enclosure is the content
enclosure for the letter. A content enclosure contains the content of a
letter. It is typically a file in an application’s native format. When
you call the MSAMGet Encl osur e function the first time, it sets this
field to t r ue if the enclosure is a content enclosure orto f al se if it
is not. The function also sets the value of this field the first time you
call it after the function sets the endOf Fi | e flag tot r ue. At other
times, consider the value of this field invalid.

AMai | Buf f er structure. You set the value of the buf f er Si ze
field in the Mai | Buf f er structure to the number of bytes in
your buffer. The MSAMGet Encl osur e function writes the
information that you request into your buffer and sets the value
of the dat aSi ze field to the number of bytes of data it placed
in the buffer.

A Boolean value that indicates whether an entire enclosure file has
been read. If your buffer is not large enough to hold the entire
enclosure file, the MSAMGet Encl osur e function sets the

endO Fi | e field to f al se. You can call the function repeatedly
until it sets the endOf Fi | e field to t r ue, at which point an entire
enclosure file has been read. The MSAMGet Encl osur e function
does not put data belonging to more than one enclosure file into
your buffer at the same time, even when the end of file is reached
on one enclosure file, there are additional enclosure files to read,
and your buffer is not full.

When a letter has no enclosures, the function sets this field to
f al se. To detect the no-enclosure condition, test only the
endCOf Encl osur es field.

endd Encl osur es A Boolean value that indicates whether the MSAMGet Encl osur e

function has reached the end of all of the enclosures for the letter
that you specify. When the MSAMGet Encl osur e function has
retrieved all enclosures for the current nesting level, it sets the
endOf Encl osur es fieldtot rue.

You call the MBAMzet Encl osur e function to retrieve all file enclosures for a letter that
you specify. To get all of the enclosures in a letter, you should call the function repeatedly
until the value of the endCf Encl osur es field ist r ue.

A letter’s enclosures can be folders or Macintosh files in AppleSingle stream format. The

MBAMZet Encl osur e function returns all of the files to you; it does not return any folder

Messaging Service Access Module Reference

CHAPTER 2

Messaging Service Access Modules

information.That is, you do not know how the files might have been organized and
stored in the letter.

Because the PowerTalk system software works with the hierarchical file system, it is
possible for an outgoing letter to contain more than one enclosed file with the same
name, so long as the files are in different enclosed folders. You may need to adjust the
filenames of identically named enclosed files so that each one is unique. Otherwise, it is
possible that only one of such files will be retained by the external messaging system.

Note

An enclosure is not a nested letter. A nested letter is a letter that a
recipient has forwarded or replied to. Enclosures are files or folders
that the sender has enclosed with a letter. u

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Trap macro Selector
_oceTBDi spat ch $050E

noErr 0 No error

kOCETool boxNot Open -1500 Collaboration toolbox is shutting down
kOCEl nval i dRef -1502 Invalid message reference number

kMai | I nval i dRequest -15045 Nested letter already created for this letter

The Mai | Buf f er structure is described on page 2-96.

For more information on AppleSingle stream format, see the APDA document
AppleSingle/AppleDouble Formats for Foreign Files Developer Note.

MSAMEnumerateBlocks

The MSAMEnuner at eBl ocks function returns an array of message block descriptors for
the blocks in a message.

pascal OSErr MSAMEnuner at eBl ocks (MSAMPar am * par anBl ock,
Bool ean asyncFl ag) ;

par anBl ock Pointer to a parameter block.

asyncFl ag A Boolean value that specifies whether the function is to be
executed asynchronously. Set this to t r ue if you want the function
to be executed asynchronously.

Messaging Service Access Module Reference 2-157

2-158

CHAPTER 2

Messaging Service Access Modules

Parameter block

® i oConpl eti on ProcPtr Your completion routine

- i oResul t OSEr r Result code

® mai | MsgRef Mai | MsgRef Message reference number

® start| ndex unsi gned short Message block to start from

« buf f er Mai | Buf f er Your buffer structure

= next | ndex unsi gned short Message block to continue
from next time

= nor e Bool ean Is there more data?

See “The MSAM Parameter Block™ on page 2-94 for descriptions of the i oConpl et i on
andi oResul t fields.

Field descriptions
mai | MsgRef

start | ndex

buf f er

next | ndex

A reference number that identifies the message whose message
blocks you want to enumerate. You obtain the reference number
when you call the MSAMOpen function.

The sequence number of the block about which you want informa-
tion. Set this field to 1 to start with the first message block. When
you call the function and there is insufficient space in your buffer to
hold information about all of the remaining blocks, the function
returns in the next | ndex field the sequence number of the next
block. Use that number in the st art | ndex field the next time you
call the function.

AMai | Buf f er structure. You set the value of the buf f er Si ze
field in the Mai | Buf f er structure to the number of bytes in your
buffer. The MSAMEnuner at eBl ocks function places data in your
buffer in the form of a Mai | Repl y structure. The first 2 bytes in
the Mai | Repl y structure are a count of the number of

Mai | Bl ockl nf o structures, followed immediately by the
structures. The function sets the value of the dat aSi ze field to
the number of bytes of data it placed in the buffer.

The sequence number of the first block whose information did not
fit into your buffer. The function sets this field when your buffer is
too small to hold all the information you requested. If there is no
more information to return, the value of the next | ndex field is
undefined. You must check the value of the nor e field before
interpreting the value in the next | ndex field. The next | ndex
field contains meaningful data only when the value of the nor e
field istrue.

A Boolean value that indicates whether there is more message

block information than can fit in your buffer. If your buffer is too
small to hold all of the block information that you requested,

the MSAMEnuner at eBl ocks function sets this field to t r ue;
otherwise, it sets this field to f al se. If the function sets this field
totrue, you can call it again to retrieve additional information
by setting the st ar t | ndex field for the next call to the value of the
next | ndex field.

Messaging Service Access Module Reference

CHAPTER 2

Messaging Service Access Modules

DESCRIPTION
You call the MSAMEnuner at eBl ocks function to get information about all of the blocks
in a message. For each block, the function returns a Mai | Bl ockl nf o structure that
specifies the block’s creator and type, its offset in bytes from the beginning of the
message (the offset is zero-based), and its length in bytes. You can use this information to
read specific blocks in the message.

struct Mail Bl ocklnfo {
OCECr eat or Type bl ockType; [/* block creator and type */
unsi gned | ong of fset; [* offset fromstart of nsg */
unsi gned | ong bl ockLengt h; /* nunber of bytes in block */

b

ASSEMBLY-LANGUAGE INFORMATION

Trap macro Selector
_oceTBDispatch $050F
RESULT CODES
noErr 0 No error
kOCETool boxNot Open -1500 Collaboration toolbox is shutting down
kCOCEl nval i dRef -1502 Invalid message reference number
k OCEBuf f er TooSmal | -1503 Buffer is too small
SEE ALSO

The Mai | Buf f er structure is described on page 2-96.
The Mai | Repl y structure is described on page 2-97.

MSAMGetBlock

The MSAMGet Bl ock function reads a block from a message that you specify.

pascal OSErr MSAMZet Bl ock (MSAMPar am * par anBl ock,
Bool ean asyncFl ag) ;

par anBl ock Pointer to a parameter block.

asyncFl ag A Boolean value that specifies whether the function is to be
executed asynchronously. Set this to t r ue if you want the function
to be executed asynchronously.

Messaging Service Access Module Reference 2-159

2-160

CHAPTER 2

Messaging Service Access Modules

Parameter block

® i oConpl eti on ProcPtr Your completion routine

- i oResul t OSEr r Result code

® mai | MsgRef Mai | MsgRef Message reference number

® bl ockType OCECr eat or Type Block creator and type

® bl ockl ndex unsi gned short Sequential position of block

« buf f er Mai | Buf f er Your buffer structure

® dat aOr f set unsi gned | ong Byte offset within block

- endO Bl ock Bool ean End of block?

= remai ni ng unsi gned | ong Number of bytes not read in block

See “The MSAM Parameter Block™ on page 2-94 for descriptions of the i oConpl et i on
andi oResul t fields.

Field descriptions

mai | MsgRef

bl ockType

bl ockl ndex

buf f er

dat aOf f set

enddf Bl ock

remai ni ng

A reference number that identifies the message whose blocks you
want to read. You obtain the reference number when you call the
MSAMOpen function.

A structure that specifies the creator and the type of the block that
you want to read. You cannot specify a wildcard value for either the
creator or block type.

A value that indicates the relative position of the block of type

bl ockType that you want to read. To read all blocks of a specific
block type, set this field to 1 the first time you call the

MSAMCet Bl ock function and increment it by 1 in subsequent calls
to the function until you have read all blocks of that type in the
message. (Note that the value you supply here is distinct from

the index used in the MSAMEnurmer at eBl ocks function.)

AMai | Buf f er structure. You set the value of the buf f er Si ze
field in the Mai | Buf f er structure to the number of bytes in your
buffer. The MSAMGet Bl ock function writes the information that
you request into your buffer and sets the value of the dat aSi ze
field to the number of bytes of data it placed in the buffer.

The byte position relative to the beginning of the block at which you
want the MSAMGet Bl ock function to begin reading. Set this field to
0 to read from the beginning of the block.

A Boolean value that indicates whether the MSAMGet Bl ock
function has returned the entire block. If the buffer that you provide
is not large enough to contain an entire block, the MSAMzet Bl ock
function sets this field to f al se. You can call the function again
with an updated value in the dat aOf f set field to retrieve
additional data. When the MSAMGet Bl ock function has returned
the entire block, it sets the value of the endOf Bl ock field to t r ue.

The number of bytes of data remaining in the block that the
MSAMCet Bl ock function has not returned to you. If the
endO Bl ock field isset tot r ue, the value of this field is 0.

Messaging Service Access Module Reference

DESCRIPTION

CHAPTER 2

Messaging Service Access Modules

You call the MSAMZet Bl ock function to read data from a block in a message. You
identify the block that you want to read by the values of the bl ockType and

bl ockl ndex fields. Use the dat aCr f set field to identify the point at which you
want to begin reading within your chosen block.

Typically, you call the MSAMGet Bl ock function to read report blocks, image blocks, and
private blocks because the MSAM API provides no other way to read these types of
blocks. Although it is possible to call the MSAMCGet Bl ock function to read blocks that
contain letter content, attributes, enclosures, and so forth, the internal format of these
blocks is private. You should use the specific functions provided in the MSAM API for
reading these types of blocks.

There are no restrictions on the number of times that you may read a given block. You
may read the blocks in a message in any order.

To read a report block, in the bl ockType field, set the block creator to

kMai | Appl eMni | Cr eat or and set the block type to kMai | Report Type. Set the

bl ockl ndex field to 1. The MSAMGet Bl ock function places a report block in your buffer.
The data in a report block consists of a header, | PMRepor t Bl ockHeader, followed by
an array of elements, each of type OCEReci pi ent Report . (You can detect a report in
your outgoing queue when you call the MSAMEnuner at e function. The message creator

is always k1 PVMSi gnat ur e and the message type is kI PMReport Not i fy.)

To read an image block, in the bl ockType field, set the block creator to

kMai | Appl eMni | Cr eat or and set the block type to kMai | | mageBodyType. The
data that the M5SAMGet Bl ock function places in your buffer is a structure of type
TPf PgDi r, followed by the actual picture elements (PICTS).

Blocks of type kMai | MSAMTY pe contain data whose format and content are private to an
MSAM. To read a private block, in the bl ockType field, set the block creator to a value
that you define, and set the block type to kMai | MSAMTy pe.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Trap macro Selector
_oceTBDi spat ch $0510

nokErr 0 No error

kOCETool boxNot Open -1500 Collaboration toolbox is shutting down
kCOCEl nval i dRef -1502 Invalid message reference number

k1 PMBI kNot Found -15107 No such block

The | PMReport Bl ockHeader, OCECr eat or Type, and OCEReci pi ent Report
structures are described in the chapter “Interprogram Messaging Manager” in Inside
Macintosh: AOCE Application Interfaces.

Messaging Service Access Module Reference 2-161

CHAPTER 2

Messaging Service Access Modules

The Mai | Buf f er structure is described on page 2-96.
The TPf PgDi r structure is described on page 2-113.
For more information about PICT format, see Inside Macintosh: Imaging With QuickDraw.

The Mai | | ndi cat i ons structure is described beginning on page 2-102.

MSAMOpenNested

DESCRIPTION

2-162

The MSAMOpenNest ed function opens a message that is nested within a message that
you specify.

pascal OSErr MSAMOpenNest ed (MSAMPar am * par anBl ock,
Bool ean asyncFl ag) ;

par anBl ock Pointer to a parameter block.

asyncFl ag A Boolean value that specifies whether the function is to be
executed asynchronously. Set this to t r ue if you want the function
to be executed asynchronously.

Parameter block

® i oConpl eti on ProcPtr Your completion routine

- i oResul t OSEr r Result code

® mai | MsgRef Mai | MsgRef Message reference number

- nest edRef Mai | MsgRef Reference number of the nested message

See “The MSAM Parameter Block™ on page 2-94 for descriptions of the i oConpl et i on
andi oResul t fields.

Field descriptions

mai | MsgRef A reference number that identifies the message that contains a
nested message that you want to open. You obtain the reference
number when you call the MSAMOpen function.

nest edRef A reference number that identifies the nested message opened by
the MSAMOpenNest ed function.

Call MSAMOXpenNest ed to open a message that is nested within a message. You can open
only one message nested within a message at a given nesting level. A nested message
itself may contain a nested message.

The MSBAMOpenNest ed function returns a reference number to the opened nested
message. The nested message reference number is analogous to the message reference
number of the parent message. Use the nested message reference number when calling
functions to read or close the nested message.

Messaging Service Access Module Reference

CHAPTER 2

Messaging Service Access Modules

You can call the MSAMCI ose function to close the nested message explicitly. Alternately,
you can close a nested message by closing its parent message. The MSAMCl ose function
always closes the message you specify and all messages nested within it.

SPECIAL CONSIDERATIONS

Although a letter, by definition, can have only one nested letter per nesting level, a
non-letter message may actually have more than one nested message per nesting level.
The IPM Manager API allows applications to create such messages. However, you can
open only the first message nested within a message at a given nesting level.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Trap macro Selector
_oceTBDi spat ch $0509

nokErr 0 No error

kOCETool boxNot Open -1500 Collaboration toolbox is shutting down
kCOCEl nval i dRef -1502 Invalid message reference number
kOCEVer si onErr -1504 Wrong version of nested message

Nested messages are described in the section “Letters” beginning on page 2-17.

The MSAMCI ose function is described on page 2-167.

Marking a Recipient

When you have completed your attempts to deliver a message to a recipient, you should
mark the recipient, indicating that you have completed your delivery attempts. The
MBAWnMar kReci pi ent s function allows you to do that. If you need to mark a recipient
of a message you have closed, you can use the MSAMVar kReci pi ent s function.

MSAMnNnMarkRecipients

The MSAWMnMar kReci pi ent s function allows you to indicate that you have completed
your attempts to deliver a given open message to the recipients that you specify.

pascal OSErr MSAMhMar kReci pi ents (MSAMPar am * par anBl ock,
Bool ean asyncFl ag) ;

par anBl ock Pointer to a parameter block.

Messaging Service Access Module Reference 2-163

DESCRIPTION

2-164

CHAPTER 2

Messaging Service Access Modules

asyncFl ag A Boolean value that specifies whether the function is to be
executed asynchronously. Set this to t r ue if you want the function
to be executed asynchronously.

Parameter block

® i oConpl etion ProcPtr Your completion routine
= i oResul t CSEr r Result code

® mai | MsgRef Mai | MsgRef Message identifier

« buf f er Mai | Buf f er Your buffer structure

See “The MSAM Parameter Block™ on page 2-94 for descriptions of the i oConpl et i on
andi oResul t fields.

Field descriptions

mai | MsgRef A message reference number that identifies an open message whose
recipients you want to mark. You obtain this reference number from
the MSAMOpen function. It is valid if you have not yet closed the
message by calling the MSAMCl ose function.

buf f er AMai | Buf f er structure. You set the value of the buf f er Si ze
field in the Mai | Buf f er structure to the number of bytes in your
buffer. You place data in your buffer in the form of a Mai | Repl y
structure. The first 2 bytes in the buffer contain the number of
identifying values that follow. Then you store a value that identifies
each recipient that you want to mark. Each identifying value is
2 bytes long. The dat aSi ze field in the Mai | Buf f er structure
is unused.

Calling the MSAVhMar kReci pi ent s function for one or more recipients indicates that
you have delivered the specified message or have finished attempting to deliver the
message to those recipients. You may have delivered the message directly to a recipient
or to an agent within the non-AOCE system that has responsibility for delivery to the
final destination.

The value that identifies a recipient that you want to mark is its ordinal position

in the buffer returned by the MSAMzet Reci pi ent s function. When you call the
MBAMZet Reci pi ent s function to get resolved recipients, MSAMGet Reci pi ent s places
some number of Mai | Resol vedReci pi ent structures in your buffer. You must save

the ordinal-position value of each resolved recipient as you retrieve these structures. The
first recipient’s ordinal-position value is 1; the second recipient’s ordinal-position value
is 2 (the nth recipient’s ordinal-position value is n). Do not use the absolute index of the
recipient contained in a Mai | Resol vedReci pi ent structure to identify a recipient. The
MBAWnMar kReci pi ent s function will not work correctly if you do so.

The MSAMnhMar kReci pi ent s function clears the r esponsi bl e flag for the
recipients you specify. If you call the MSAMGet Reci pi ent s function after calling
MBAWnMar kReci pi ent s, the marked recipients have the r esponsi bl e field of their

Messaging Service Access Module Reference

CHAPTER 2

Messaging Service Access Modules

corresponding Mai | Resol vedReci pi ent structures setto f al se. After you mark
all of the recipients for a message, the done field in the MSAMEnuner at eCQut QRepl y
structure is set to t r ue for that message when you enumerate the outgoing queue.

You can call the MSAMhMar kReci pi ent s function more than once for a given message,
specifying one or more recipients each time you call it.

Note

Calling the MSAVhIMVar kReci pi ent s function for a given recipient does
not necessarily mean that you have successfully delivered the message.
You should use a report to indicate whether or not you have successfully
delivered a message. u

SPECIAL CONSIDERATIONS

If you must mark a recipient of a message you have closed, you can call the earlier
version of this function, the MSAMVar kReci pi ent s function. Instead of a message
reference number, you provide the reference number of the outgoing queue that contains
the message and the message sequence number. The MSAMVar kReci pi ent s function
produces the same result, but it executes much more slowly.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Trap macro Selector
_oceTBDi spat ch $0512

nokErr 0 No error

k OCEPar antkr r -50 Incoming queue reference not allowed

kOCETool boxNot Open -1500 Collaboration toolbox is shutting down

kOCEl nval i dRef -1502 Invalid queue reference

kCCEDoesnt Exi st -1511 No such letter

kOCERef | sd osi ng -1516 IPM Manager is shutting down the
personal MSAM, or server MSAM'’s
mail server is shutting down

The Mai | Resol vedReci pi ent structure is described on page 2-108.
The Mai | Buf f er structure is described on page 2-96.

The Mai | Repl y structure is described on page 2-97.

The MSAMZet Reci pi ent s function is described beginning on page 2-144.
The MSAMVar kReci pi ent s function is described next.

Messaging Service Access Module Reference 2-165

CHAPTER 2

Messaging Service Access Modules

MSAMMarkRecipients

The MSAMVar kReci pi ent s function, like the MSAMhMar kReci pi ent s function,
allows you to indicate that you have completed your attempts to deliver a particular
message to the recipients that you specify, but it executes much more slowly.

pascal OSErr MSAMVar kReci pi ents (MSAMPar am * par anBl ock,
Bool ean asyncFl ag) ;

par anBl ock Pointer to a parameter block.

asyncFl ag A Boolean value that specifies whether the function is to be
executed asynchronously. Set this to t r ue if you want the function
to be executed asynchronously.

Parameter block

® i oConpl eti on ProcPtr Your completion routine

- i oResul t OSEr r Result code

® gueueRef MSAMQuUeueRef Queue reference number
® segNum | ong Message sequence number
« buffer Mai | Buf f er Your buffer structure

See “The MSAM Parameter Block™ on page 2-94 for descriptions of the i oConpl et i on
andi oResul t fields.

Field descriptions

queueRef The value that identifies the outgoing queue that contains the
message whose recipients you want to mark.

segNum A value that identifies the message whose recipients you want to
mark. You obtain this value from the MSAMEnuner at e function.

buf f er AMai | Buf f er structure. You set the value of the buf f er Si ze

field in the Mai | Buf f er structure to the number of bytes in your
buffer. You place data in your buffer in the form of a Mai | Repl y
structure. The first 2 bytes in the buffer contain the number of
identifying values that follow. Then you store a value that identifies
each recipient that you want to mark. Each identifying value is 2
bytes long. The identifying value is described on page 2-164. The
dat aSi ze field in the Mai | Buf f er structure is unused.

DESCRIPTION

The MSAMVar kReci pi ent s function produces the same result as the
MSAMhMar kReci pi ent s function, described in the previous section.

SPECIAL CONSIDERATIONS

It is strongly recommended that you do not call this function unless you must mark a
recipient for a message that you have already closed. Instead, you should call the
MSAMhMar kReci pi ent s function, which executes much more quickly.

2-166 Messaging Service Access Module Reference

CHAPTER 2

Messaging Service Access Modules

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Trap macro Selector
_oceTBDi spat ch $0505

noErr 0 No error

k OCEPar antkr r -50 Incoming queue reference not allowed

kOCETool boxNot Open -1500 Collaboration toolbox is shutting down

kCOCEl nval i dRef -1502 Invalid queue reference

k CCEDoesnt Exi st -1511 No such letter

kOCERef | sd osi ng -1516 IPM Manager is shutting down the
personal MSAM, or server MSAM'’s
mail server is shutting down

The Mai | Resol vedReci pi ent structure is described on page 2-108.
The Mai | Buf f er structure is described on page 2-96.

The MSAMGet Reci pi ent s function is described on page 2-144.

The MSAMnMar kReci pi ent s function is described on page 2-163.

Closing a Message

When you have finished reading a message, whether it is nested or not, use the function
MBAMC ose to close the message.

MSAMClose

The MSAMCI ose function closes an open message that you specify.
pascal OSErr MSAMC ose (MSAMPar am *par anBl ock, Bool ean asyncFl ag);

par anBl ock Pointer to a parameter block.

asyncFl ag A Boolean value that specifies whether the function is to be
executed asynchronously. Set this to t r ue if you want the function
to be executed asynchronously.

Parameter block

® i oConpl eti on ProcPtr Your completion routine
- i oResul t CSEr r Result code
® mai | MsgRef Mai | MsgRef Message reference number

See “The MSAM Parameter Block™ on page 2-94 for descriptions of the i oConpl et i on
andi oResul t fields.

Messaging Service Access Module Reference 2-167

CHAPTER 2

Messaging Service Access Modules

Field descriptions
mai | MsgRef

A reference number that identifies the message that you want to

close. You obtain the reference number when you call the
MSAMOpen function. When the MSAMCI ose function completes
successfully, this reference number is no longer valid.

DESCRIPTION

The MSAMCI ose function closes any message or nested message that you have
previously opened. Closing a letter automatically closes any open nested messages

within it.

You should close a message once you have read it and have marked the recipients for the
message. Closing a message releases system resources. You can reopen a message you
previously closed by calling the MSAMOpen function.

ASSEMBLY-LANGUAGE INFORMATION

Trap macro Selector
_oceTBDi spat ch $050A
RESULT CODES
nokErr 0 No error
kOCETool boxNot Open -1500 Collaboration toolbox is shutting down
kOCEl nval i dRef -1502 Invalid message reference number

SEE ALSO

The MSAMXpen function is described on page 2-140.

Creating, Reading, and Writing Message Summaries

2-168

A personal MSAM must create a message summary for each letter it transfers from an
external messaging system to an AOCE system. Message summaries are stored in the
incoming queue for a slot and are used by the Finder to display information about the
letters to the user. You use the PMSAMCr eat eMsgSuntrar y function to create a new
message summary. Once you have created a message summary, you can modify portions
of it. To do so, first call the PMSAMGet MsgSummar y function to read the message
summary; then modify it; and, finally, call the PMSAMPut MsgSummrar y function to write
it again.

Note that a personal MSAM creates message summaries only for letters, not for other
types of messages.

Messaging Service Access Module Reference

CHAPTER 2

Messaging Service Access Modules

PMSAMCreateMsgSummary

The PMSAMCr eat eMsgSunmrar y function creates a message summary in an incoming
queue that you specify.

pascal OSErr PMSAMCreat eMsgSunmmary (MSAMPar am * par anBl ock,
Bool ean asyncFl ag) ;

par anBl ock Pointer to a parameter block.

asyncFl ag A Boolean value that specifies whether the function is to be
executed asynchronously. Set this to t r ue if you want the function
to be executed asynchronously.

Parameter block

® i oConpl eti on ProcPtr Your completion routine

- i oResul t OSEr r Result code

® i nQueueRef MBAMQueue Ref Incoming queue reference

- seqNum | ong Message summary sequence
number

® msgSunmary MBAMME g Sunmmar y* Summary information for a letter

« buf f er Mai | Buf f er * Your private data

See “The MSAM Parameter Block™ on page 2-94 for descriptions of the i oConpl et i on
andi oResul t fields.

Field descriptions

i nQueueRef The reference number that identifies the queue into which you want
to place the message summary. You obtain the queue reference from
the PMSAMOpenQueues function.

segNum The sequence number of the new message summary. You use
the sequence number with the PMSAMGet MsgSunmar y and
PMSAMPuUt MsgSunmrar y functions to identify the message summary.

nmsgSunmary A pointer to an MSAMVsgSunTrar y structure that you allocate. You
must provide values for some of the fields of the structure.
buf f er A pointer to a Mai | Buf f er structure. You set the value of the

buf f er Si ze field in the Mai | Buf f er structure to the number of
bytes in your buffer. Your buffer size may not exceed the number

of bytes specified by the kVai | Max PMSAMVE gSunmmar yDat a
constant. You provide a pointer to your buffer in the buf f er field
of the structure and store in the buffer private data that you want to
add to the message summary. The function reads your data from
the buffer and sets the value of the dat aSi ze field to the number
of bytes of data it wrote to the message summary. Set this field

toni | if you do not want to add any private data to the message
summary.

Messaging Service Access Module Reference 2-169

DESCRIPTION

CHAPTER 2

Messaging Service Access Modules

You call the PMSAMCr eat eMsgSunmar y function to create a message summary for an
incoming letter. You must create a message summary for each incoming letter. The
Finder uses the message summary to display information about the letter to the user.
(Because only letters are displayed to the user, you do not create a message summary for
a message that is not a letter.)

Prior to assigning a particular value to any field of a new MSAMVEgSuntrar y structure,
you should initialize all of its fields to 0. The section “The Personal MSAM Message
Summary Structures” beginning on page 2-124 describes all of the fields of the message
summary and indicates whether you or the IPM Manager is responsible for providing a
value for a given field. Note that when the IPM Manager adds a value in the message
summary, it updates the MSAMVEgSuntrar y.Mai | Mast er Dat a.at t r Mask field if
appropriate.

With one exception, the values of the letter attributes that you provide when you create a
message summary must be exactly the same values as those you provide to the

MSAMPut At t ri but e function when you write the associated letter to the incoming
queue. If the attribute values do not match, the consequences are unpredictable. The
exception is the subj ect attribute. It may be truncated in the message summary due to
size limitations in the MSAMVEgSunmmar y structure.

You can provide private data that the IPM Manager stores with the message summary. If
your private data exceeds kMai | Max PMSAMME gSunmmar y Dat a bytes, the function
returns the KOCEPar antr r result code.

You can modify your private data. To do so, call the PMSAMZet MsgSumar y function to
read your private data associated with the message summary; then modify your data;
and, finally, call the PMSAMPuUt MsgSunmar y function to write your modified private data.

The PMSAMCr eat eMsgSunmmar y function returns a sequence number. You must provide
the sequence number to the MSAMCr eat e function when you create the letter for this
message summary. The sequence number correctly associates the letter and the message
summary.

SPECIAL CONSIDERATIONS

2-170

The private data area associated with a message summary is a sort of scratch pad,
intended for brief notations for MSAM-specific uses. Storing large amounts of data
degrades system performance and is strongly discouraged. For best results, you should
use no more than 8-16 bytes of private data.

The sender andsubj ect fields of the Mai | Cor eDat a structure in the message
summary require special handling. Be sure to read the information in the section
“Creating a Letter’'s Message Summary” beginning on page 2-64 for an understanding
of how to manipulate these fields.

Messaging Service Access Module Reference

CHAPTER 2

Messaging Service Access Modules

ASSEMBLY-LANGUAGE INFORMATION

Trap macro Selector
_oceTBDi spat ch $0522

RESULT CODES
noErr 0 No error
dskFul Err -34 All allocation blocks on the
volume are full
k OCEPar ankr r -50 Private data too large
kOCETool boxNot Open -1500 Collaboration toolbox is shutting down
kCOCEl nval i dRef -1502 Invalid queue reference
kMai | I nval i dPost It Ver si on -15046 Message summary is wrong version
kMai | Not ASI ot | nQ -15047 Queue reference does not refer to an
incoming queue
SEE ALSO

The MSAMVBgSunmmar y structure is described on page 2-127.

The Mai | Cor eDat a structure is described on page 2-125.

The PMSAMGet MsgSuntrar y function is described next.

The PMSAMPut MsgSunmmar y function is described on page 2-173.
The MSAMPut At t ri but e function is described on page 2-179.

For more information on the use of message summaries and for sample code that shows
how to create a message summary, see the section “Creating a Letter’s Message
Summary” beginning on page 2-64.

PMSAMGetMsgSummary

The PMSAMGet MsgSunmrar y function reads a message summary, an MSAM'’s private
data associated with a message summary, or both.

pascal OSErr PMSAMGet MsgSummary (MSAMPar am * par anBl ock,
Bool ean asyncFl ag) ;

par anBl ock Pointer to a parameter block.

asyncFl ag A Boolean value that specifies whether the function is to be
executed asynchronously. Set this to t r ue if you want the function
to be executed asynchronously.

Messaging Service Access Module Reference 2-171

DESCRIPTION

2-172

CHAPTER 2

Messaging Service Access Modules

Parameter block

® i 0Conpl etion ProcPtr Your completion routine
- i oResul t COSEr r Result code
® i nQueueRef MBAMQueue Ref Incoming queue reference
® segNum | ong Message summary
sequence number

« nsgSunmmary MBAMME g Sunmar y* Message summary
« buf f er Mai | Buf f er * Buffer for private data
® nsgSunmar yOf f set

unsi gned short Point at which to begin reading

See “The MSAM Parameter Block™ on page 2-94 for descriptions of the i oConpl et i on
andi oResul t fields.

Field descriptions
i nQueueRef

seqNum

nmsgSunmmary

buf f er

The value identifying the incoming queue that holds the message
summary you want to read. You obtain the queue reference from
the PMSAMOpenQueues function.

The sequence number that identifies the message summary in the
incoming queue. You obtain this value from the
PMSAMCr eat eMsgSummar y function.

A pointer to a buffer in which the function stores the
MSAMVB gSummar y structure. You provide this buffer. Set this field
toni | if you do not want to read the message summary.

A pointer to a Mai | Buf f er structure. You set the value of the

buf f er Si ze field in the Mai | Buf f er structure to the number of
bytes in your buffer. The PMSAMGet MsgSunmrar y function stores
your private data associated with the message summary into the
buffer and sets the value of the dat aSi ze field to the number of
bytes of data it actually placed in your buffer. Set this field to ni | if
you do not want to read your private data.

nmsgSunmmar yOf f set

The offset from the beginning of your private data area identifying
the point at which you want to begin reading. If the buf f er field is
setto ni | , the function ignores this field.

You call the PMSAMGet MsgSunmrar y function to read an existing message summary, the
private data associated with the message summary, or both.

You can modify the | et t er Fl ags field of the MSAMVsgSunmar y structure or your
private data, or both.

If the nsgUpdat ed flag in the message summary was set to t r ue, the IPM Manager
resets it to f al se after the PMSAMGet MsgSunmmar y function returns with no error.

Messaging Service Access Module Reference

CHAPTER 2

Messaging Service Access Modules

SPECIAL CONSIDERATIONS

Reading your private data area is slower than reading the MSAMVsgSunmmar y structure.
Each read request may result in two additional disk accesses. You should avoid reading
your private data whenever it is reasonable to do so.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Trap macro Selector
_oceTBDi spat ch $0526

noErr 0 No error

k OCEPar antkr r -50 Invalid parameter

kOCETool boxNot Open -1500 Collaboration toolbox is
shutting down

kCOCEl nval i dRef -1502 Invalid queue reference

k CCEDoesnt Exi st -1511 No such message summary

kMai | Not ASI ot | nQ -15047 Queue reference does not refer
to an incoming queue

You use the PMSAMPut MsgSunmar y function to write the modified message summary,
private data, or both. The PMSAMPut MsgSurmar y function is described next.

The MSAMVBgSumar y structure is described on page 2-127.
The Mai | Buf f er structure is described on page 2-96.

PMSAMPutMsgSummary

The PMSAMPUt MsgSunmrar y function writes a modified message summary, private data
associated with the message summary, or both.

pascal OSErr PMSAMPut MsgSummary (MSAMPar am * par anBl ock,
Bool ean asyncFl ag) ;

par anBl ock Pointer to a parameter block.

asyncFl ag A Boolean value that specifies whether the function is to be
executed asynchronously. Set this to t r ue if you want the function
to be executed asynchronously.

Messaging Service Access Module Reference 2-173

DESCRIPTION

2-174

CHAPTER 2

Messaging Service Access Modules

Parameter block

® i oConpl eti on ProcPtr Your completion routine
- i oResul t OSEr r Result code
® i nQueueRef MBAMQUeue Ref Slot’s incoming queue reference
® segNum | ong Message summary’s
sequence number
® | etterFl ags Mai | MaskedLett er Fl ags*
System and user flags
« buf f er Mai | Buf fer* Private data buffer

See “The MSAM Parameter Block™ on page 2-94 for descriptions of the i oConpl et i on
andi oResul t fields.

Field descriptions

i nQueueRef The value that identifies the queue in which the message summary
resides. You obtain this value from the PMSAMOpenQueues function.
segNum The sequence humber that identifies the message summary that
you want to modify or whose associated private data you want
to modify.
| etterFl ags A pointer to a Mai | MaskedLet t er Fl ags structure, which

consists of a set of user and system flags and their values. The
flags indicate certain aspects of the status of your letter. You can
modify the kMai | ReadBi t bit in the user flags portion of the
letter flags. Set this field to ni | if you do not want to modify the
kMai | ReadBi t bit.

buf f er A pointer to a Mai | Buf f er structure that contains your private
data associated with the message summary. You set the value of the
buf f er Si ze field in the Mai | Buf f er structure to the number of
bytes in your buffer. Your buffer size may not exceed the number
of bytes specified by kMai | Max PMSAMVsgSunmrar yDat a. The
PMSAMPUt MsgSunmrar y function stores your private data with the
message summary and sets the value of the dat aSi ze field to the
number of bytes of data it actually wrote. Set this field to ni | if you
do not want to modify your private data.

You use the PMSAMPut MsgSunmar y function to overwrite your private data associated
with a message summary, to modify the user flags portion of the letter flags, or both.

You can modify the kMai | ReadBi t bit in the user portion of letter flags in a letter’s
message summary. Typically, you do this to reflect, in the incoming queue, changes in a
letter’s status on the external messaging system. For example, when you write a letter to
an incoming queue, you initially set the kMai | ReadBi t bit to 0 to indicate that the user
has not read the letter. Assume that the user logs onto the external account directly,
perhaps while travelling, and reads the letter. The next time you connect to the external
system, you note that the letter has been read. At this point, you can call the

PMSAMPuUt MsgSunmrar y function to set the kMai | ReadBi t bit to 1, indicating that the
user read the letter. Note that the kVai | ReadBi t bit applies to the letter in general, not
simply a local copy of the letter.

Messaging Service Access Module Reference

CHAPTER 2

Messaging Service Access Modules

You manage your private data for your own purposes. If you provide more than the
maximum number of bytes (kMai | Max PMSAMVB gSumar yDat a) of private data in your
buffer, the function returns the KOCEPar antr r result code.

SPECIAL CONSIDERATIONS

Writing your private data area is slower than writing the letter flags in a message
summary. Each write request may result in two additional disk accesses. You should
avoid writing your private data whenever it is reasonable to do so.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Trap macro Selector
_oceTBDi spat ch $0527

noErr 0
dskFul Err -34
k OCEPar antr r -50
kOCETool boxNot Open -1500
kOCEl nval i dRef -1502
kOCEDoesnt Exi st -1511
kMai | | nval i dPost |t Ver si on -15046
kMai | Not ASI ot | nQ -15047

No error

All allocation blocks on the

volume are full

Invalid parameter

Collaboration toolbox is shutting down
Invalid queue reference

No such message summary

Message summary is wrong version
Queue reference does not refer

to an incoming queue

The Mai | MaskedLet t er Fl ags structure is described on page 2-124. The user portion
of the letter flags is defined by the Mai | Let t er User Fl ags data type, described on

page 2-122.

The MSAMVBgSumar y structure is described on page 2-127.
The PMSAMGet MsgSunmrar y function is described on page 2-171.

The Mai | Buf f er structure is described on page 2-96.

Messaging Service Access Module Reference

2-175

CHAPTER 2

Messaging Service Access Modules

Creating a Message

To create a new message going to an AOCE address, use the function MSAMCr eat e.

MSAMCreate

2-176

The MSAMCr eat e function begins the process of creating a message and returns a
reference number for the message.

pascal OSErr MSAMCreat e (MSAMPar am *par anBl ock,
Bool ean asyncFl ag) ;

par anBl ock Pointer to a parameter block.

asyncFl ag A Boolean value that specifies whether the function is to be
executed asynchronously. Set this to t r ue if you want the function
to be executed asynchronously.

Parameter block

® i oConpl eti on ProcPtr Your completion routine

- i oResul t CSEr r Result code

® gueueRef MSAMQueueRef Queue reference number

® asLetter Bool ean Create a letter?

® nmsgType | PMMEgType Message creator and type

® r ef Con | ong Reserved for your use

® segNum | ong Sequence number of new message
® t unnel Form Bool ean Always f al se

® bccReci pi ents Bool ean Are there blind copy recipients?

= newRef Mai | MsgRef Message reference number

See “The MSAM Parameter Block™ on page 2-94 for descriptions of the i oResul t and
i oConpl eti on fields.

Field descriptions

queueRef For a personal MSAM, specify the incoming queue reference that
you obtained from the PMSAMOpenQueues function. The queue
reference must belong to the slot to which the message is addressed.
For a mail slot, the queue reference identifies the slot’s actual
incoming queue in which you want to deposit a letter. For a
messaging slot, the queue reference identifies the slot itself. For a
server MSAM, specify the server MSAM’s queue reference that you
obtained from the SMS5AMSt ar t up function.

aslLetter A Boolean value that indicates whether the message you are
creating is a letter.
msgType An| PMVEgType structure. If you are creating a letter, you

must set the f or mat field of the | PMVsgType structure to
k1l PMOSFor mat Type to indicate that the remainder of the
| PMVBgType structure consists of an OCECr eat or Type structure.

Messaging Service Access Module Reference

DESCRIPTION

CHAPTER 2

Messaging Service Access Modules

Then set the message creator and type appropriately. If you are
creating a non-letter message, you can set the | PMVsgType field
to either format type, kI PMOSFor mat Type or

kl PMSt ri ngFor mat Type.

r ef Con A value reserved for your private use when you create a non-letter
message. You may provide a value to be interpreted by the
recipient. This field is ignored when you create a letter. If you
provide a value in the r ef Con field, it is stored in the message
header. The recipient can retrieve the value by calling the
MBAMZet MsgHeader function and specifying kI PMFi xedl nf o in
the sel ect or field of its parameter block.

segNum This field applies only to personal MSAMSs. If you are creating
a message that is not a letter, you do not provide a value for
this field. Otherwise, you provide the sequence number that
identifies the message summary associated with the letter that
you want to create. You obtain the sequence number from the
PMSAMCr eat eMsgSummrar y function.

tunnel Form You must always set this field to f al se.

bccReci pi ents This field applies only when you want to create a letter. You set this
field to t r ue if you intend to specify blind copy recipients for the
letter when you call the MSAMPuUt Reci pi ent function.

newRef A value that uniquely identifies the message that has just been
created. The MSAMCr eat e function returns a reference number
for the message that you use in subsequent function calls to write
the message.

You call the MSAMCr eat e function to begin the process of writing a message from an
external messaging system to an AOCE system. The function returns a reference number
that you need to provide to the MSAMPut functions that write the various parts of

the message.

If you are creating a letter that contains data in standard interchange format, image
format, or a regular enclosure, you should set the message creator to' | ap2' and the
message type to kMai | Lt r MsgType. In this case, the AppleMail application opens the
letter. If the letter contains only a content enclosure, you can set the message creator to
the signature of the application that created the content enclosure. If the letter contains a
content enclosure or private block and if you set the message creator to the signature of
the application that created the enclosure or private block, then you can use a message
type that you define consistent with the message creator.

You set the message creator and message type in the nsgCr eat or andnsgType fields
of the OCECr eat or Type structure, part of thel PMVEgTy pe structure.

If you are creating a non-letter message, use an application-defined creator and type. You
can set the f or mat field of the | PMVEgType structure to either kI PMOSFor nat Type
(which specifies that the message creator and message type information is formatted as
type OCECr eat or Type)orkl PMSt ri ngFor mat Type (which specifies that the message

Messaging Service Access Module Reference 2-177

CHAPTER 2

Messaging Service Access Modules

creator and message type information is formatted as type St r 32). Typically, you use

type OCECr eat or Type; type St r 32 is included for compatibility with the Program-to-
Program Communications (PPC) Toolbox.

ASSEMBLY-LANGUAGE INFORMATION

Trap macro Selector
_oceTBDi spat ch $0514

RESULT CODES
noErr 0
dskFul Err -34
menful | Err -108
kOCEl nval i dRef -1502
kOCERef | sd osi ng -1516
kMai | Not AS| ot | nQ -15047
kl PM nval i dMsgType -15091

SEE ALSO

No error

All allocation blocks on the volume are full
Not enough memory

Invalid queue reference number

IPM Manager is shutting down the
personal MSAM, or server MSAM'’s

mail server is shutting down

Queue reference refers to a personal
MSAM’s outgoing queue

Only kI PMOSFor mat Type allowed when
creating a letter

The types of data that constitute standard letter content are described on page 2-109.

The | PMMsgType and the format types, kI PMOSFor nat Type and
kl PMBt ri ngFor mat Type, are described in the chapter “Interprogram Messaging
Manager” in Inside Macintosh: AOCE Application Interfaces.

The OCECr eat or Type structure is described in the chapter “Interprogram Messaging
Manager” in Inside Macintosh: AOCE Application Interfaces.

The PMSAMOpenQueues function is described on page 2-133.
The PMSAMGet MsgSunmrar y function is described on page 2-171.
The MSAMPut Reci pi ent function is described on page 2-180.

See the section “Choosing Creator and Type for Messages and Blocks” beginning on
page 2-64 for a discussion of message creators and types.

Writing Header Information

To write letter attributes into a newly created letter, use the MSAMPut At tri but e
function. You can add recipients to a message with the MSAMPut Reci pi ent function.
To write the header of a non-letter message, use the MSAMPut MsgHeader function.

2-178 Messaging Service Access Module Reference

CHAPTER 2

Messaging Service Access Modules

MSAMPutAttribute

DESCRIPTION

The MSAMPut At t ri but e function adds a letter attribute to a letter you are writing.

pascal OSErr MSAMPut Attri bute (MSAMParam *par anBl ock,
Bool ean asyncFl ag) ;

par anBl ock Pointer to a parameter block.

asyncFl ag A Boolean value that specifies whether the function is to be
executed asynchronously. Set this to t r ue if you want the function
to be executed asynchronously.

Parameter block

® i oConpl eti on ProcPtr Your completion routine
- i oResul t OSEr r Result code

® mai | MsgRef Mai | MsgRef Letter reference number
® attrlD Mai | Attributel D Type of letter attribute
« buf f er Mai | Buf f er Your buffer structure

See “The MSAM Parameter Block™ on page 2-94 for descriptions of the i oConpl et i on
andi oResul t fields.

Field descriptions

mai | MsgRef A reference number that identifies the letter to which you want to
add an attribute. You obtain the reference number when you call the
MSAMCr eat e function.

attrl D A value that identifies the type of attribute that you want to add to
the letter.
buf fer AMi | Buf f er structure. You set the value of the buf f er Si ze

field in the Mai | Buf f er structure to the number of bytes in your
buffer. You store the value of the attribute that you want to add to
the letter in your buffer. The MSAMPut At t ri but e function writes
the information from the buffer to the letter and sets the value of the
dat aSi ze field to the number of bytes of data it actually wrote.

You call the MSBAMPut At t ri but e function to add a letter attribute to a letter header. The
at t r | Dfield can have any of the following values:

Constant Value Description

kMai | I ndi cati onsBit 3 Indications and priority
kMai | SendTi neSt anpBi t 6 Send timestamp

kMai | MsgFami | yMask 8 Message family

kMai | Repl yI DBi t 9 Reply ID

kMai | Conver sati onl DBi t 10 Conversation ID

kMai | Subj ect Bi t 11 Subject

Messaging Service Access Module Reference 2-179

CHAPTER 2

Messaging Service Access Modules

You cannot use the MSAMPut At t ri but e function to add recipients to a letter. Use the
MSAMPUt Reci pi ent function to add the From, To, cc, and bcc attributes to a letter.

There are three attributes—the letter’s creator and type, its letter ID, and its nesting
level—that you can read from a letter header with the MSAMGet At t ri but es function
but cannot write to the letter header with MSAMPut At t ri but e. You set the letter’s
creator and type when you call the MSAMCr eat e function to create the letter, and the
IPM Manager sets the letter ID and nesting level of any letters that you create.

The | ett er Fl ags attribute is stored in a letter’s message summary rather than in
the letter header. Therefore, you add the | et t er Fl ags attribute when you call the
PMSAMCr eat eMsgSummrar y function.

ASSEMBLY-LANGUAGE INFORMATION

Trap macro Selector
_oceTBDi spat ch $0518

RESULT CODES
nokErr 0 No error
dskFul Err =34 All allocation blocks on the volume are full
k OCEPar antkr r -50 Invalid parameter
kCOCEl nval i dRef -1502 Invalid message reference number
kOCEAl r eadyExi st s -1510 Attribute already exists in the letter header
kOCERef | sd osi ng -1516 IPM Manager is shutting down the

personal MSAM, or server MSAM'’s
mail server is shutting down

kMai | | nval i dRequest —-15045 Cannot call function with this message
reference number

SEE ALSO
The Mai | Buf f er structure is described on page 2-96.

Letter attributes and their formats are defined in the section “The Letter Attribute
Structures” beginning on page 2-99.

The MSAMGet At t ri but es function is described on page 2-142.
The PMSAMCr eat eMsgSummar y function is described on page 2-169.
The MSAMPut Reci pi ent function is described next.

MSAMPutRecipient

The MSAMPuUt Reci pi ent function adds a recipient to a message you are writing.

pascal OSErr MSAMPut Reci pi ent (MSAMPar am * par anBl ock,
Bool ean asyncFl ag) ;

2-180 Messaging Service Access Module Reference

DESCRIPTION

CHAPTER 2

Messaging Service Access Modules

par anBl ock Pointer to a parameter block.

asyncFl ag A Boolean value that specifies whether the function is to be
executed asynchronously. Set this to t r ue if you want the function
to be executed asynchronously.

Parameter block

® i oCompl etion ProcPtr Your completion routine

- i oResul t OSEr r Result code

® mai | MsgRef Mai | MsgRef Message reference number

® attrl D Mai | Attributel D Type of recipient

® recipi ent Mai | Reci pi ent * Recipient information

® responsi bl e Bool ean Must server MSAM deliver message?

See “The MSAM Parameter Block™ on page 2-94 for descriptions of the i oConpl et i on
andi oResul t fields.

Field descriptions

mai | MsgRef A reference number that identifies the message to which you want
to add recipient information. You obtain the reference number from
the MSAMCr eat e function.

attrlD A constant that indicates the type of recipient you want to add to
the message. If you are adding a recipient to a letter, you can use
any of the following constants; if you are adding a recipient to a
non-letter message, kMai | ToBi t is the only valid value you can
specify in this field.

Constant Value Recipient type

kMai | FronBi t 12 From

kMai | ToBi t 13 To

kMai | CcBi t 14 cc

kMai | BccBi t 15 bce
reci pi ent A pointer to a Mai | Reci pi ent structure in which you provide

complete addressing information about the recipient.
responsi bl e A Boolean value that indicates whether the IPM Manager is

responsible for delivering this message to the recipient identified
by the r cpt field.

You call the MSAMPut Reci pi ent function to add a recipient to a message that you
specify. You can add one recipient each time you call the function. To add a list of
recipients, you must call the function multiple times.

If you are adding a recipient to a letter, you can specify any type of recipient: From, To,
cc, or bee. If you are adding a recipient to a non-letter message, you can specify only a To
recipient. To add a From recipient to a non-letter message, call the MSAMPut MsgHeader
function and specify the From recipient in the r epl yQueue field.

Messaging Service Access Module Reference 2-181

2-182

CHAPTER 2

Messaging Service Access Modules

When you add the From address to a letter, you should set the r ecor dNarre field in the
Mai | Reci pi ent structure to the value you provided in the sender field when you
created the letter’'s message summary.

You must add all recipients of a given recipient type in consecutive calls to the
MBAMPuUt Reci pi ent function. If you attempt to intermingle calls to add different
recipient types, the function returns a KOCEAI r eadyEXi st s result code. For example,
if you call the function to add a To recipient, call it again to add a cc recipient, and call
it a third time to add a second To recipient, the function returns the error the third

time you call it.

A personal MSAM should check each recipient address to see if it maps to the owner
of the computer. If so, you need to set the r ecor dNane field in the Mai | Reci pi ent
structure to the owner’s name, sometimes referred to as the Key Chain name or local
identity name. You can obtain the owner’s name by looking up the record attribute
indexed by the constant kLocal NaneAt t r TypeNumin the Setup record in the
Setup catalog.

Every time you add a recipient, you must indicate if the IPM Manager is responsible for
delivering the message to that recipient. If you are adding a From recipient, you should
always set the r esponsi bl e field to f al se.

A personal MSAM should set the r esponsi bl e field as follows. If you are adding

a recipient to a letter, always set the r esponsi bl e field to f al se. If you are adding a
recipient to a non-letter message, set the r esponsi bl e field to t r ue for the recipients
that are local to the computer on which the MSAM is running. These are the ones for
which you want the AOCE system to be responsible for delivering the message. Take,

for example, an application that sends the same non-letter message to three other
applications, each of which is running on a separate computer. A personal MSAM
receiving this message would call the MSAMPut Reci pi ent function three times, setting
the r esponsi bl e field to t r ue for the recipient that is local and to f al se for the other
two recipients.

To modify the example a bit, suppose an application sends the same non-letter message
to three other applications, all of which are running on the same computer. In this case,
the personal MSAM receiving the message would call the MSAMPut Reci pi ent function
three times, setting the r esponsi bl e field to t r ue for all three of the recipients.

For incoming non-letter messages, it is the task of the personal MSAM and its external
messaging system to identify addresses that are local to the computer on which the
personal MSAM is running so that the personal MSAM can set the r esponsi bl e field
appropriately. When a personal MSAM sets the r esponsi bl e field tot r ue, the AOCE
software attempts to deliver the message to the named queue on the local computer.

Server MSAMs should set the r esponsi bl e field to t r ue for any To, cc, or bcc recipient
to which they want the AOCE system to deliver a message, regardless of the type
of message.

Note that when you call the MSAMCr eat e function, you create a letter or a non-letter
message by setting the asLet t er fieldto t rue orf al se, respectively.

Messaging Service Access Module Reference

CHAPTER 2

Messaging Service Access Modules

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Trap macro Selector
_oceTBDi spat ch $0519

nokErr 0 No error

dskFul Err -34 All allocation blocks on
the volume are full

k OCEPar antkr r -50 Invalid parameter

kCOCEl nval i dRef -1502 Invalid message reference number

kOCEAl r eadyEXi st s -1510 Duplicate recipient type

kCCEl nval i dReci pi ent -1514 Bad recipient

kOCERef | sd osi ng -1516 IPM Manager is shutting down the
personal MSAM, or server MSAM’s
mail server is shutting down

kMai | Mal f or nedCont ent -15061 Content data malformed

The Mai | Reci pi ent structure is defined to be an OCEReci pi ent structure, which is
described on page 2-106.

Recipient types are included in letter attributes. Letter attributes and their formats are
defined in the section “The Letter Attribute Structures” beginning on page 2-99.

The MSAMPut MsgHeader function is described next.

MSAMPutMsgHeader

The MSAMPut MsgHeader function writes information to the header of a non-letter
message that you specify.

pascal OSErr MSAMPut MsgHeader (MSAMParam * par anBl ock,
Bool ean asyncFl ag) ;

par anBl ock Pointer to a parameter block.

asyncFl ag A Boolean value that specifies whether the function is to be
executed asynchronously. Set this to t r ue if you want the function
to be executed asynchronously.

Parameter block

® i oConpl eti on ProcPtr Your completion routine
- i oResul t OSEr r Result code
® mai | MsgRef Mai | MsgRef Message reference number
® repl yQueue OCEReci pi ent * Return address
® sender | PMSender * Sender’s record 1D
® deliveryNotification
| PMNot i ficationType Delivery notification option
® priority | PMPriority Delivery priority setting

Messaging Service Access Module Reference 2-183

DESCRIPTION

2-184

CHAPTER 2

Messaging Service Access Modules

See “The MSAM Parameter Block™ on page 2-94 for descriptions of the i oConpl et i on
andi oResul t fields.

Field descriptions

mai | MsgRef A reference number that identifies the non-letter message whose
header you want to write. You obtain the reference number when
you call the MSAMCr eat e function.

repl yQueue A pointer to an OCEReci pi ent structure that specifies a reply
gueue—that is, a return address. You allocate the structure and
completely specify it. The receiving application uses this address
when it replies to the message. The IPM Manager sends reports to
the reply queue address. You are free to specify that replies and
reports go to an alternate address, instead of to the sender.

sender A pointer to an | PMSender structure that contains the packed
record ID or string that identifies the sender of the message.

deliveryNotification
A bit array that indicates the type of information you want to
receive about the delivery of the message. Set the bit values
appropriately to request reports with delivery indications
(kI PMDel i veryNot i fi cati onMask), reports with non-delivery
indications (kI PMNonDel i veryNot i fi cat i onMask), or no
reports (k| PMNoNot i fi cati onMask).

priority A value that specifies the priority for delivering the message. Set
this field to kI PMHi ghPri ori ty to specify high priority. Set this
field to kI PMLowPri ori ty to specify low priority. Set this field to
kl PMNor mal Pri ori ty to specify normal priority.

You call the MSAMPut MsgHeader function to write information to the header of the
non-letter message that you are creating. Do not use this function with messages that are
letters or reports. The information that you provide to the MSAMPut MsgHeader function
includes an address for replies, the sender, the type of report information you want, and
the priority for delivering the message.

You should understand the distinction between the use of the sender and the

r epl yQueue fields. The address that you provide in the r epl yQueue field shows up as
the From recipient when the message is delivered. It allows a sender to designate an
address to which replies should be sent. For example, cooperating applications can agree
to define reply queue addresses that are associated with specific message creators,
message types, and message families. In addition, the IPM Manager sends reports

to the reply queue address.

In contrast, the sender field simply identifies the originator of the message. A recipient
can retrieve the value of the sender field by calling the MSAMGet MsgHeader function.
The record ID portion of the return address need not be the same as that which you
provide in the sender field.

Messaging Service Access Module Reference

CHAPTER 2

Messaging Service Access Modules

The IPM Manager defines several masks for delivery notification options. However, the
only valid values that you can use to set bits in the del i veryNot i fi cati on field are
kl PMDel i veryNot i fi cati onMask, kIl PMNonDel i veryNoti fi cati onMask, and
kI PMNoNot i fi cati onMask. The IPM Manager ignores the settings of all other bits
because the IPM Manager never includes a copy of the original message in an MSAM
report and the IPM Manager may include more than one indication (delivery,
non-delivery, or both) in a single report, depending on the number of recipients and
other factors.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Trap macro Selector
_oceTBDi spat ch $051D

nokErr 0 No error

dskFul Err =34 All allocation blocks on the
volume are full

k OCEPar antkr r -50 Invalid parameter

kOCEl nval i dRef -1502 Invalid message reference number

kOCEl nval i dReci pi ent -1514 Invalid recipient

k OCERef | sd osi ng -1516 IPM Manager is shutting down the

personal MSAM, or server MSAM'’s
mail server is shutting down

kMai | I nval i dRequest -15045 Message reference number
refers to a letter

The OCEReci pi ent structure is described on page 2-106.

The | PMsender, | PMNot i fi cationType,and| PMPri ori ty structures are defined in
the chapter “Interprogram Messaging Manager” in Inside Macintosh: AOCE Application
Interfaces. The chapter also has a discussion of IPM queues.

All of the delivery notification constants are described in the chapter “Interprogram
Messaging Manager” in Inside Macintosh: AOCE Application Interfaces.

To add a To recipient attribute to your message header, call the MSAMPut Reci pi ent
function, described on page 2-180.

Writing a Message

To write the various parts of a message, use the functions MSAMPut Bl ock,
MSAMBegi nNest ed, and MSAMEndNest ed. The functions MSAMPut Cont ent and
MBAMPuUt Encl osur e are used for writing the main content and enclosure portions
of letters.

Messaging Service Access Module Reference 2-185

CHAPTER 2

Messaging Service Access Modules

MSAMPutContent

2-186

The MSAMPut Cont e

nt function writes the content block of a letter.

pascal OSErr MSAMPut Cont ent (MSAMParam * par anBl ock,

Bool ean asyncFl ag);

par anBl ock Pointer to a parameter block.

asyncFl ag A Boolean value that specifies whether the function is to be
executed asynchronously. Set this to t r ue if you want the function
to be executed asynchronously.

Parameter block

® i oConpl eti on ProcPtr Your completion routine

- i oResul t OSEr r Result code

® mai | MsgRef Mai | MsgRef Letter reference number

® segnent Type Mai | Segrrent Type Text, picture, sound, movie,
or styled text

® append Bool ean Append data to current
segment?

« buf f er Mai | Buf f er Your buffer structure

® t ext Scr ap St Scr pRec* Style scrap structure

® start NewScri pt Bool ean Start a new character set?

® scri pt Scri pt Code Character set

See “The MSAM Parameter Block™ on page 2-94 for descriptions of the i oConpl et i on
andi oResul t fields.

Field descriptions
mai | MsgRef

segnment Type

append

buf f er

A reference number that identifies the letter to which you want to
add content segments. You obtain the reference number when you
call the MSAMCr eat e function.

A value that indicates the segment type of the data that you want

to write to the letter. Letter segments may be text, picture, sound,
QuickTime movies, or styled text. You can specify only one segment
type in this field each time you call the MSAMPut Cont ent function.
The values that you can specify in this field are described on

page 2-109.

A Boolean value that indicates whether you want the

MSAMPut Cont ent function to write the data in your buffer to a new
segment or append it to an existing segment. Set this field to f al se
when you first call the MSAMPut Cont ent function to begin writing
a new segment. On subsequent calls to the function, set this field to
f al se if you want to start a new segment. Set this field to t r ue if
you want to append the data in your buffer to the segment currently
being written by the MSAMPut Cont ent function.

AMai | Buf f er structure. You set the value of the buf f er Si ze
field in the Mai | Buf f er structure to the number of bytes in your

Messaging Service Access Module Reference

DESCRIPTION

CHAPTER 2

Messaging Service Access Modules

buffer. You place the data that you want to write in your buffer. The
MSAMPut Cont ent function writes the information from the buffer
to the letter and sets the value of the dat aSi ze field to the number
of bytes of data it actually wrote.

t ext Scrap A pointer to a style scrap structure (St Scr pRec) that you may
provide when you are writing a styled text segment. It contains the
style information for the text data in your buffer. Set this field to
ni | if you are not writing a styled text segment.

start NewScri pt A Boolean value that indicates whether the data in your buffer uses
a new character set. You set this field when you are writing either a
plain text segment or a styled text segment. Set this field tot r ue
the first time you call the MSAMPut Cont ent function to write the
text segment. After that, set this field to t r ue only if the text data
in your buffer is in a different character set than that which you
previously provided to the function. The function ignores this field
when you set the segnent Type field to any value other than
kMai | Text Segrrent Type or kMai | St yl edText Segment Type.

scri pt A value that indicates the character set (Roman, Arabic, Kanji, and
so on) of the data in your buffer. If you set st art NewScri pt to
t r ue, set this field to the code for the text segment’s character set.
The MBAMPuUt Cont ent function ignores this field when you set
start NewScri pt tof al se or the segnent Type field to any
value other than kMai | Text Segnent Type or
kMai | St yl edText Segnent Type.

You call the MSAMPut Cont ent function to write data segments in standard interchange
format to a content block of a letter that you specify. You must have previously

created the letter by calling the MBAMCr eat e function. The first time you call the
MBAMPuUt Cont ent function for a given letter, it creates a new block and puts the data
into the block. Each time you call the function to add content to the same letter, it adds
the data to that same block.

A content block consists of data segments, each of a specific type. You add one segment
or a portion of a segment of data each time you call the function. The function writes the
segments to the block in the order that you provide them. A single letter may contain
more than one segment of a given type.

The IPM Manager does not interpret the data that you write to a segment except when
you specify kMai | Text Segnent Type or kMai | St yl edText Segnent Type in the
segnent Type field.

When you write a text segment, you are responsible for establishing the script code of
the text. You do this by setting the st art NewScr i pt fieldtotrue and thescri pt field
to the proper script code. A text segment may contain one or more script runs. Therefore,
you need to call the MSAMPut Cont ent function once for each script run in the segment,
setting the st art NewScr i pt fieldto t rue and the scri pt field to the proper script
code for each script run.

Messaging Service Access Module Reference 2-187

2-188

CHAPTER 2

Messaging Service Access Modules

The value that you provide in the scri pt field must be a valid script in the range 0

to 64. You cannot specify the implicit script codes snSyst enScr i pt (the system script)
and snCur rent Scri pt (the font script). If necessary, you can obtain the system

script by calling the Get Scri pt Manager Var i abl e function with a selector constant
of smBysScri pt . The font script is considered to be the one returned by the

Font Scri pt function.

When you write a plain text segment (segment type is kMai | Text Segnent Type), the
function writes a styled text segment, using the following default values in the
Scr pSTE!l enent structure that it generates.

Field name Default value

scrpSt art Char 0

scr pHei ght 12

scr pAscent 10

scr pFont nonaco if the script code is smRoman.

The default value for non-Roman scripts
is set to the font family ID of the “first”
font within the range for the script.

scr pFace 0
scrpSi ze 9
scr pCol or {0,0, 0}

The first font family ID for a non-Roman script is calculated as follows:
n Scripts with script codes in the range 1-32:

firstID = 16384 + 512 * (scriptCode —1)
n Scripts with script codes in the range 33-64:

firstlID = 32768 + 512 * (scriptCode —33)

To write styled text, you provide a pointer to a style scrap structure in the t ext Scr ap
field. The scr pNSt yl es field in a St Scr pRec structure indicates the number of

Scr pSTE! enent elements that follow. You should allocate a St Scr pRec structure of
a size appropriate to your MSAM. The style information in the style scrap structure
applies to the text in your buffer. The IPM Manager uses the text in your buffer and the
style information in the style scrap structure to create the segment. You can append
additional text to the segment in subsequent calls to the function by providing the text in
your buffer, placing the style information that applies to that text in the style scrap
structure, and setting the append field to t r ue.

Specifying syst enfFont orappl Font inthe scr pFont field of the Scr pSTEI enent
structure is not recommended. If you want to specify the font family ID of the current
system font or the current application font, use the functions Get SysFont and

Get AppFont to obtain the appropriate font family ID.

Once you begin writing a letter’s content block, you must not call other MSAM func-
tions until you finish writing the block. Calling a function other than the

Messaging Service Access Module Reference

CHAPTER 2

Messaging Service Access Modules

MBAMPuUt Cont ent function closes the content portion of the letter. If you then call
the MSAMPut Cont ent function again, it returns the kMai | | nval i dOr der result code.

It is not necessary to call the MSAMPut At t ri but e and MSAMPut Reci pi ent functions
prior to calling the MSAMPut Cont ent function.

SPECIAL CONSIDERATIONS

Different Macintosh computers may use the same font number for different fonts. That
is, font numbers may vary from computer to computer, but font names are supposed to
be unique. To ensure that the right fonts can be applied to the styled text when it is read
by a letter application, you can map font numbers to font names when you add styled
text to a letter.

Put the mapping of font numbers to font names in a block that has a block creator of
"fish' andablock type of' f ont' . Then add the block to the letter. The first word in
the block must contain the number of font information elements in the block, followed
by a packed array of font information elements. Each element consists of a word
containing a font number followed by a Pascal string containing the font name and, if
necessary, a pad byte for word alignment.

Constants are not defined for the ' fi sh' and' f ont' block creator and type.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Trap macro Selector
_oceTBDi spat ch $051A

nokErr 0 No error

dskFul Err -34 All allocation blocks on the
volume are full

k OCEPar ankr r -50 Invalid parameter

kOCEl nval i dRef -1502 Invalid message reference number

kOCERef | sd osi ng -1516 IPM Manager is shutting down the
personal MSAM, or server MSAM'’s
mail server is shutting down

kMai | I nval i dOr der -15040 Content already closed

kMai | I nval i dRequest -15045 Message reference number does
not refer to a letter

The Mai | Buf f er structure is described on page 2-96.

See Inside Macintosh: Text for more information about script runs, script code constants,
style runs, the style scrap structure, and the functions Get Scri pt Manager Vari abl e,
Get SysFont, and Get AppFont .

The segment types that you can specify in the segnent Type field and the data format
for each segment type are described on page 2-109.

Messaging Service Access Module Reference 2-189

CHAPTER 2

Messaging Service Access Modules

MSAMPutEnclosure

2-190

The MSAMPut Encl o

sur e function adds an enclosure to a letter that you specify.

pascal OSErr MSAMPut Encl osure (MSAMPar am * par anBl ock) ;

par anBl ock Pointer to a parameter block.

Parameter block

i 0Comnpl et
i oResul t
mai | MsgRe
cont ent En
hf s
append
buf f er
encl osure
addl I nfo

@1

@O "

i on ProcPtr Your completion routine
OSEr r Result code

f Mai | MsgRef Letter reference number

cl osure Bool ean Is enclosure main letter content?
Bool ean Is enclosure in HFS or memory?
Bool ean Append data to enclosure?
Mai | Buf f er Your buffer structure
FSSpec File specification
Mai | Encl osur el nfo

Additional enclosure info

See “The MSAM Parameter Block™ on page 2-94 for descriptions of the i oResul t field.

Field descriptions
mai | MsgRef

A reference number that identifies the letter to which you want to
add an enclosure. You obtain this reference number from the
MSAMCr eat e function.

cont ent Encl osur e

hf s

append

A Boolean value that indicates whether this enclosure contains the
main content of the letter. A letter with a content enclosure may or
may not contain a content block. A content block contains data in
standard interchange format. A content enclosure typically is a file
in an application’s native format. Given a letter that contains both a
content block and a content enclosure, the block and the enclosure
are alternate representations of the same basic data.

Set this field to t r ue if the enclosure you are adding is a content
enclosure. You can identify only one enclosure as a content
enclosure for each letter.

A Boolean value that indicates the location of the enclosure that you
want to add to the letter. Set this field to t r ue to indicate that your
enclosure is located on disk in the Macintosh file system. Set this
field to f al se to indicate that your enclosure resides in memory.

A Boolean value that indicates whether you want the function to
append the data in your buffer to the current enclosure. The
MSAMPut Encl osur e function ignores this field when you set the
hf s field totrue. When you set the hf s field to f al se, set this
field to f al se for your first call to the function. Setittotrueon
subsequent calls to continue writing the enclosure.

Messaging Service Access Module Reference

DESCRIPTION

CHAPTER 2

Messaging Service Access Modules

buf f er AMai | Buf f er structure. The MSAMPut Encl osur e function
ignores this field when you set the hf s field to t r ue. You set the
value of the buf f er Si ze field in the Mai | Buf f er structure to
the number of bytes in your buffer. You store the enclosure file’s
resource and data forks in your buffer. The MSAMPut Encl osur e
function writes the information from the buffer to the letter and sets
the value of the dat aSi ze field to the number of bytes of data it
actually wrote.

encl osure A file system specification record that identifies the file or folder
that you want to enclose. You specify this field when the file or
folder that you want to enclose is located on disk on either
the local computer or a mounted file server volume. The
MSAMPut Encl osur e function ignores this field when the hf s
field issetto f al se.

addl I nfo A structure that you provide to specify file system information for
the enclosure, such as the filename, icon, HFS catalog information,
and so forth. You provide this information when you add an
enclosure that resides in memory. The MSAMPut Encl osur e
function creates a file according to your specifications and puts your
data in it. The function ignores this field when you add an enclosure
that already exists as a file on disk (when the hf s field is set
totrue).

You call the MSAMPut Encl osur e function to enclose a file, a folder, or both in a letter
that you specify. The enclosure that you specify may exist in memory or in the Macintosh
hierarchical file system. In the memory form, you provide your enclosure data in buffers,
and you specify additional information that defines the filename or file catalog
information, and other characteristics of the enclosure. In the HFS form, you supply

a path specification to an existing file or folder in the Macintosh file system, and the
function encloses that file or folder in the letter.

To enclose a file or folder that resides in the Macintosh Hierarchical File System, set

the encl osur e field to point to the file or folder that you want to enclose. If you set the
encl osur e field to point to a folder, the function encloses the folder and all of the files
and folders within it in the letter. Set the hf s field to t r ue and specify the letter to
which you want to add the enclosure in the mai | MsgRef field. Then call the

MSAMPut Encl osur e function to enclose the file or folder.

To enclose a file that resides in memory, fully specify the addl | nf o field. Set the hf s
field to f al se, the append field to f al se, and specify the letter to which you want to
add the enclosure in the mai | MsgRef field. Store the enclosure file’s resource fork and
data fork into your buffer. Always store the resource fork before the data fork. Padding is
not required. If a particular fork is empty, do not write any bytes for that fork. Call the
MSAMPuUt Encl osur e function to write the enclosure data to the letter. The function
writes the file data in AppleSingle format. (AppleSingle format accommodates the
Macintosh file structure.)

Messaging Service Access Module Reference 2-191

CHAPTER 2

Messaging Service Access Modules

If you have more data to add to the enclosure, set the append field to t r ue and store
additional enclosure data in your buffer. Call the MSAMPut Encl osur e function to write
the enclosure data to the letter. You can repeatedly call the function with new data in
your buffer until you have written the entire enclosure file. When the append field is set
tot r ue, the function ignores the addl | nf o field.

With the memory form, you can enclose a folder instead of a file by specifying file catalog
information in the ClI nf oPBRec structure (a component of the Mai | Encl osur el nf o
structure). Set the cat al og bitin thei oFl Attri b field to identify the enclosure as a
folder. In this case, the function ignores the i con field in the Mai | Encl osur el nfo
structure and the buf f er andappend fields (because folders don’t have data or
resource forks).

To enclose a file or a folder within a parent folder using the memory form of the
function, first enclose the parent folder. Set the volume reference number (the

i oVRef Numfield in the Cl nf oPBRec structure) of the nested file or folder to the value
of the parent folder’s volume reference number (i oVRef Num and set the parent folder
ID (i oFl Par | D) of the nested file or folder to the parent folder’s catalog ID (i oDi r | D).

You can add up to 50 enclosures to a letter, including a content enclosure. Each file and
folder that you add counts as one enclosure. For example, if you add as an enclosure

a folder containing three files, the total number of enclosures in the letter is four:

one folder and three files.

For each letter, you can designate one enclosure as a content enclosure. A content
enclosure typically is a file in an application’s native format. A letter with a content
enclosure may or may not contain a content block. A content block contains data in
standard interchange format. Given a letter that contains both a content block and a
content enclosure, the block and the enclosure are alternate representations of the same
basic data. The standard interchange format content block maximizes the probability
that the recipient will be able to read the letter. The application native format content
enclosure may provide a richer representation of the basic data, but it can be read only
if the recipient has the application. (Image blocks are a third form of letter content.

See the discussion on page 2-18 for more information about different representations of
letter content.)

IMPORTANT
Although it is technically possible to enclose a folder as a content
enclosure, doing so may cause problems with later releases of the AOCE
system software that use the services of the Translation Manager. s

SPECIAL CONSIDERATIONS

The MSAMPut Encl osur e function is always executed synchronously.

ASSEMBLY-LANGUAGE INFORMATION

2-192

Trap macro Selector
_oceTBDi spatch $051B

Messaging Service Access Module Reference

CHAPTER 2

Messaging Service Access Modules

RESULT CODES
nokErr 0 No error
dskFul Err =34 All allocation blocks on the volume are full
k OCEPar antkr r =50 Invalid parameter
kOCEl nval i dRef -1502 Invalid message reference number
kOCERef | sd osi ng -1516 IPM Manager is shutting down the

personal MSAM, or server MSAM'’s
mail server is shutting down
kMai | BadEncl Lengt hErr -15044 Invalid data length
kMai | I nval i dRequest -15045 Nested letter already created for this letter

SEE ALSO
The Mai | Buf f er structure is described on page 2-96.

The Mai | Encl osur el nf o structure is described on page 2-111.

For more information on AppleSingle stream format, see the APDA document
AppleSingle/AppleDouble Formats for Foreign Files Developer Note.

The CI nf oPBRec structure is described in Inside Macintosh: Files.

MSAMPutBlock

The MSAMPut Bl ock function adds data to a block in a message.

pascal OSErr MSAMPut Bl ock (MSAMPar am * par anBl ock,
Bool ean asyncFl ag) ;

par anBl ock Pointer to a parameter block.

asyncFl ag A Boolean value that specifies if the function is to be
executed asynchronously. Set this to t r ue if you want
the function to be executed asynchronously.

Parameter block

® i oConpl eti on ProcPtr Your completion routine

- i oResul t OSEr r Result code

® mai | MsgRef Mai | MsgRef Message reference number

® r ef Con | ong Reserved for your use

® bl ockType OCECr eat or Type Block type

® append Bool ean Append data to current block?
« buf f er Mai | Buf f er Your buffer

® node Mai | Bl ockMode Location of mark in block

® of f set unsi gned | ong Byte offset from mark location

See “The MSAM Parameter Block™ on page 2-94 for descriptions of the i oConpl et i on
andi oResul t fields.

Messaging Service Access Module Reference 2-193

DESCRIPTION

2-194

CHAPTER 2

Messaging Service Access Modules

Field descriptions
mai | MsgRef

r ef Con

bl ockType

append

buf f er

node

of f set

A reference number that identifies the message to which you want
to write a block. You obtain the reference number when you call the
MSAMCr eat e function.

A value reserved for your private use when you add a block to a
non-letter message. You may provide a value to be interpreted by
the recipient. This field is ignored when you add a block to a letter.
If you provide a value in the r ef Con field, it is stored in the
message header. The recipient can retrieve the value by calling the
MBAMCet MsgHeader function and specifying kI PMIOCin the

sel ect or field of its parameter block.

A structure that specifies the creator and type of the block that you
want to write. The cr eat or field indicates the creator of the block,
for example, kMai | Appl eMai | Cr eat or if the block was created
by AOCE software. The t ype field identifies the type of block.

A Boolean value that indicates whether you want the

MSAMPuUt Bl ock function to append the data in your buffer to the
current block. Set this field to f al se when you call the function to
start a new block. If you set this field to t r ue, the function uses
the values in the node and of f set fields to determine where to
begin writing to the current block.

A pointer to a Mai | Buf f er structure in which you store the data
that you want to write to the message that you specify. You set the
value of the buf f er Si ze field in the Mai | Buf f er structure to the
number of bytes in your buffer. The MSAMPut Bl ock function reads
the information that you placed in your buffer and sets the value

of the dat aSi ze field to the number of bytes of data it wrote into
the block.

A value that specifies the mode in which the function interprets the
of f set field. The MSAMPut Bl ock function uses the mode and
offset to determine where in the current block to begin writing the
data from your buffer. The function ignores this field when the
value of the append field is f al se.

A value that specifies an offset that the function uses to determine
the starting point of the write operation. Set this field to 0 when you
start a new block. The function ignores this field when the value of
the append field is f al se.

You call the MSAMPut Bl ock function to write data into a block whose type you specify
in the bl ockType field. The function writes the data into a new block unless you set the
append field to t r ue.

Messaging Service Access Module Reference

CHAPTER 2

Messaging Service Access Modules

You use the node and of f set fields to specify the point in the block at which the
MBAMPuUt Bl ock function starts writing. You can set a variable of type Mai | Bl ockMbde
(the nmode field) to any one of the following values:

enum {
kMai | FronStart = 1,
kMai | FronLEOB = 2,
kMai | Fromvark = 3

H

Constant descriptions

kMai | Frontt art The function interprets the value in the of f set field as an offset
from the beginning of the block. When you use this mode, you
cannot set the of f set field to a negative value.

kMai | FromLEOB The function interprets the value in the of f set field as an offset
from the current end of the block. The offset must always be
negative and cannot extend beyond the beginning of the block.

kMai | Fromvark The function interprets the value in the of f set field as an offset
from the current position of the mark. The mark points to the end of
the last byte written. Use a 0 offset value to indicate a starting point
right at the mark. Use a negative offset value to indicate a starting
point prior to the current position of the mark and a positive offset
value to indicate a starting point following the current position of
the mark. You cannot specify a negative offset that extends beyond
the beginning of the block.

If your buffer is too small to hold all of the data that you want to write to a block,

you can call the function repeatedly until you have written the entire block. The

first time you call the function, set the append field to f al se, the node field to

kMai | FronBt art, and the of f set field to 0. On subsequent calls to write additional
data to the same block, set the append field tot r ue, the node field to kMai | Fr onmivar k,
and the of f set field to 0.

You can overwrite data you have already written to a block, but cannot modify a
completed block once you start a new block.

Once you begin writing a block, you must not call other MSAM functions until you
finish writing the block. Calling a function other than MSAMPut Bl ock closes the
current block.

Typically, you call the MSAMPut Bl ock function to write image blocks (block type is
kMai | | mageBodyType) or private blocks (block type is kMai | MSAMTy pe) because the
MSAM API provides no other way to write these types of blocks. Although it is possible
to call the MSAMPut Bl ock function to write blocks that contain letter content, attributes,
enclosures, and so forth, you should use the specific functions provided for writing that
type of information.

Messaging Service Access Module Reference 2-195

CHAPTER 2

Messaging Service Access Modules

The kMai | MSAMType block type indicates a block whose format and content are private
to the MSAM. If you add a private block to a message, AOCE software includes the
private block when it generates a report on the message.

If you are adding an image block to a message, you provide the block’s data in the
format of a TPf PgDi r structure, followed by the picture elements (PICTs).

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Trap macro Selector
_oceTBDi spat ch $051C

nokErr 0 No error
dskFul Err -34 All allocation blocks on the volume are full
k OCEPar ankr r -50 Invalid parameter
kCOCEl nval i dRef -1502 Invalid message reference number
kl PMVsgTypeReser ved -1511 Message creator and/or type
specified not allowed
kOCERef | sd osi ng -1516 IPM Manager is shutting down the
personal MSAM, or server MSAM’s
mail server is shutting down

The OCECr eat or Type structure is described in the chapter “Interprogram Messaging
Manager” in Inside Macintosh: AOCE Application Interfaces.

The TPf PgDi r structure is described on page 2-113.

MSAMBeginNested

2-196

The MSAMBegi nNest ed function begins the process of creating a nested message.

pascal OSErr MSAMBegi nNest ed (MSAMParam *par anBl ock,
Bool ean asyncFl ag) ;

par anBl ock Pointer to a parameter block.

asyncFl ag A Boolean value that specifies whether the function is to be
executed asynchronously. Set this to t r ue if you want the function
to be executed asynchronously.

Messaging Service Access Module Reference

CHAPTER 2

Messaging Service Access Modules

Parameter block

® i oConpl eti on ProcPtr Your completion routine

- i oResul t CSEr r Result code

® mai | MsgRef Mai | MsgRef Message reference number

® r ef Con | ong Reserved for your use

® nmsgType | PMMEgType Message type of nested message

See “The MSAM Parameter Block™ on page 2-94 for descriptions of the i oResul t and
i oConpl eti on fields.

Field descriptions

mai | MsgRef A reference number that identifies the message to which you want
to add a nested message. You obtain the reference number when
you call the MSAMCr eat e function.

r ef Con A value reserved for your private use when you create a non-letter
nested message. You may provide a value to be interpreted by the
recipient. This field is ignored when you create a nested letter.

msgType The creator and type of the nested message that you are creating.

DESCRIPTION

You call the MSAMBegi nNest ed function to begin the process of creating a message
nested within a message that you have already created but not yet submitted for
delivery. The function increments the nesting level of the existing message. All
subsequent calls that you make to MSAMPut functions refer to this nesting level until
you call either the MSAMENndNest ed function or the MSAMBegi nNest ed function.

You can call the MSAMBegi nNest ed function repeatedly to create a hierarchy of nested
messages, but you cannot create more than one nested message per nesting level.

If you provide a value in the r ef Con field when you create a non-letter nested message,
it is stored in its message header. The recipient can retrieve the value by calling the
MBAMOpenNest ed function to obtain the nested message’s reference number and then
calling the MSAMGet MsgHeader function, specifying that reference number and setting
the sel ect or field of its parameter block to kI PMFi xedl nf o.

S WARNING
You cannot delete the nested portion of a message once you put data
(recipients, blocks, enclosures, and so on) in it. Furthermore, an empty
nested message is not allowed. If you call the MSAMENdNest ed function
immediately after you call the MSAMBegi nNest ed function, the
function returns the kiVai | Hdr At t r M ssi ng result code, indicating
that the nested message is incomplete. In this case, the function deletes
the entire message, not just the nested message. s

SPECIAL CONSIDERATIONS

You do not get a separate reference number for a nested message. You always use the
reference number of the outermost message when adding any kind of data to a nested
message, regardless of how deeply it is nested.

Messaging Service Access Module Reference 2-197

CHAPTER 2

Messaging Service Access Modules

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Trap macro Selector
_oceTBDi spatch $0515

noErr 0 No error

dskFul Err -34 All allocation blocks on the volume are full

mentul | Err -108 Not enough memory

kCOCEl nval i dRef -1502 Invalid message reference number

kOCERef | sC osi ng -1516 IPM Manager is shutting down the personal
MSAM, or server MSAM’s mail server is
shutting down

kMai | Hdr Attr M ssi ng -15043 Required attribute not written into header

kMai | I nval i dRequest -15045 Nested letter already created for this letter

The | PMMsgType structure is described in the chapter “Interprogram Messaging
Manager” in Inside Macintosh: AOCE Application Interfaces.

MSAMENdNested

2-198

The MSAMEndNest ed function ends the nested message currently being written.
pascal OSErr MSAMEndNest ed (MSAMPar am *par anBl ock) ;
par anBl ock Pointer to a parameter block.

Parameter block

= i oResul t OSEr r Result code
® mai | MsgRef Mai | MsgRef Message reference number

See “The MSAM Parameter Block™ on page 2-94 for descriptions of the i oConpl et i on
andi oResul t fields.

Field descriptions

mai | MsgRef A reference number that identifies the message that contains the
message letter that you want to end. You obtain the reference
number when you call the MSAMCr eat e function.

Messaging Service Access Module Reference

DESCRIPTION

CHAPTER 2

Messaging Service Access Modules

You call the MSAMEndNest ed function to indicate that you have finished constructing
your nested message. After the function successfully completes, you cannot make any
additions to the nested message. Subsequent calls that you make to MSAMPut functions
apply to the next higher nesting level.

WARNING

An empty nested message is not allowed. If you call the
MSAMENndNest ed function immediately after you call the
MS5AMBegi nNest ed function, the MSAMEndNest ed function
returns the kMai | Hdr At t r M ssi ng result code, indicating that
the nested message is incomplete. In this case, MSAMENdNest ed
deletes the entire message, not just the nested message. s

SPECIAL CONSIDERATIONS

This function is always executed synchronously.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Trap macro Selector
_oceTBDi spatch $0516

noErr 0 No error

dskFul Err =34 All allocation blocks on the volume are full
k OCEPar ankr r -50 Invalid parameter

mentul | Err -108 Not enough memory

kCOCEl nval i dRef -1502 Invalid message reference number
kOCERef | sd osi ng -1516 IPM Manager is shutting down the personal

MSAM, or server MSAM'’s mail server is
shutting down
kMai | Hdr Attr M ssi ng -15043 Required attribute not added to message
kMai | BadEncl Lengt hErr -15044 Number of bytes written not equal to
number of bytes needed for nenfFor m
enclosure in progress

The MSAMBegi nNest ed function is described on page 2-196.

Messaging Service Access Module Reference 2-199

CHAPTER 2

Messaging Service Access Modules

Submitting a Message

When you have finished composing a letter, report, or non-letter message, use the
function MSAMSubm t to submit it for delivery into the AOCE system.

MSAMSubmit

DESCRIPTION

2-200

The MSAMSubmi t function submits a completed letter, report, or non-letter message for
delivery to the addressee or requests that it be deleted.

pascal OSErr MSAMSubmit (MSAMPar am * par anBl ock) ;
par anBl ock Pointer to a parameter block.

Parameter block

= i oResul t CSEr r Result code
® mai | MsgRef Mai | MsgRef Message reference number
® subm t Fl ag Bool ean Submit or delete message?

See “The MSAM Parameter Block™ on page 2-94 for descriptions of the i oResul t field.

Field descriptions

mai | MsgRef A reference number that identifies the message to which the request
applies. You obtain the reference number when you call the
MBSAMCr eat e function.

submi t Fl ag A Boolean value that indicates whether you want the MSAMSubmi t
function to accept the message that you specify for delivery or to
delete it. Set this field to t r ue to indicate that the message is
complete and ready for delivery. Set this field to f al se if you want
the function to delete the message.

You call the MSAMSubmi t function to request delivery of a incoming message to an
AOCE addressee or to request that the message be deleted.

A message must be complete at the time you call the MSAMSubmi t function to submit
the message for delivery. To be complete, you must have added to the message header
atleastato,afromandasendTi neSt anp attribute. You should also add all nested
messages, enclosures (letters only), blocks, content (letters only), attributes, and
recipients before you submit the message for delivery. After you call the MSAMSubnmi t
function, the message reference number is invalid and you can make no further changes
to the message.

You can call the MSAMSubni t function to delete a message at any time after you create
the message.

Messaging Service Access Module Reference

CHAPTER 2

Messaging Service Access Modules

If you submit a message to which you did not add a msgFamni | y attribute, AOCE
software adds a nsgFani | y attribute and sets it to kI PMFani | yUnspeci fi ed for a
non-letter message and to kMai | Fani | y for a letter. If you submit a letter to which you
did not add ani ndi cat i ons attribute, AOCE software adds it and sets the pri ority
bit field to kI PMNor mal Pri ori ty and all of the other bit fields to 0.

If a personal MSAM sets the submi t Fl ag field tof al se for a letter, the function deletes
the letter, but not the letter’s message summary. To delete a letter’s message summary,
call the MSAMDel et e function.

SPECIAL CONSIDERATIONS

The MSAMSubmi t function is always executed synchronously.

Because it normally has continuous access to the PowerShare mail server, a server
MSAM should translate incoming messages immediately and submit them to the
PowerShare mail server. If the PowerShare mail server quits, the server MSAM should
either stop accepting incoming messages or store the incoming messages until the
PowerShare mail server is available again.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Trap macro Selector
_oceTBDi spat ch $0517

noErr 0 No error

dskFul Err -34 All allocation blocks on the volume are full
k OCEPar ankr r -50 Invalid parameter

menful | Err -108 Not enough memory

kCOCEl nval i dRef -1502 Invalid message reference number
kOCERef | sd osi ng -1516 IPM Manager is shutting down the personal

MSAM, or server MSAM'’s mail server is
shutting down
kMai | Hdr Attr M ssi ng -15043 Required attribute not added to message
kMai | BadEncl Lengt hErr -15044 Number of bytes written not equal
to number of bytes needed for nenfor m
enclosure in progress

Methods of detecting when a PowerShare mail server quits and starts are discussed on
page 2-42.

The MSAMDel et e function is described next.

Letter attributes and the Mai | | ndi cat i ons data type are described on page 2-100 and
page 2-102, respectively.

Messaging Service Access Module Reference 2-201

CHAPTER 2

Messaging Service Access Modules

Deleting a Message

A server MSAM uses the MSAMDel et e function to delete a message from its outgoing
queue. A personal MSAM uses the function to delete letters and message summaries
from its incoming queues.

MSAMDelete

2-202

The MSAMDel et e function deletes a message from a queue that you specify.

pascal OSErr

MBAMDel et e (MSAMPar am * par anBl ock,

Bool ean asyncFl ag) ;

par anBl ock Pointer to a parameter block.

asyncFl ag A Boolean value that specifies whether the function is to be
executed asynchronously. Set this to t r ue if you want the function
to be executed asynchronously.

Parameter block

® i oConpl etion ProcPtr Your completion routine

= i oResul t CSEr r Result code

® gueueRef MBAMQueueRef Queue reference number

® segNum | ong Sequence number of message in the
queue

® nmsgnl y Bool ean Delete letter, not message summary?

® result CSEr r Reserved

See “The MSAM Parameter Block™ on page 2-94 for descriptions of the i oConpl et i on
andi oResul t fields.

Field descriptions
queueRef

segNum

msgOnl y

resul t

The queue that contains the message that you want to delete. A
personal MSAM may specify either an outgoing queue reference or
an incoming queue reference. It obtains queue references from the
PMSAMOpenQueues function. A server MSAM specifies the queue
reference that it obtained from the SMSAMSt ar t up function, which
refers to its outgoing queue.

The sequence number that identifies the message that you want to
delete. You obtain this value from the MSAMEnuner at e function.

A Boolean value that indicates whether a personal MSAM wants to
delete only a letter or both a letter and its message summary from
an incoming queue. You set this field to t r ue if you want to delete
only the letter itself. If you set this field to f al se, you delete both
the letter and its associated message summary. A personal MSAM
that is deleting a letter from an outgoing queue, and all server
MSAMs, should set this field to f al se.

Reserved. Set this field to the noEr r result code.

Messaging Service Access Module Reference

DESCRIPTION

CHAPTER 2

Messaging Service Access Modules

You call the MSAMDel et e function to delete a message that you specify. You identify the
message by its sequence number. Once you have deleted a message, it is no longer
available to you on the local computer.

Generally, a personal MSAM should not call this function to delete a letter from an
outgoing queue. Instead, it should leave letters in an outgoing queue so that the user can
peruse them. An exception to this rule occurs when a user wants to delete a letter rather
than send it. In that case, the IPM Manager sends the personal MSAM a

kMai | EPPCDel et eQut QVsg event, and the personal MSAM should delete the letter.

A server MSAM calls this function to delete messages from its outgoing queue.

The MSAMDel et e function allows a personal MSAM to delete a letter, with or without
the message summary, from an incoming queue. For example, it may want to delete a
letter, but not the message summary, when it decides the letter no longer needs to be
cached locally. If the personal MSAM is trying to mirror the letter’s status on its external
messaging system, it can delete the letter and the message summary when the letter is
removed from the external messaging system. If a personal MSAM sets the nsgOnl y
field to f al se and only the message summary is present in the queue, the function
deletes it and returns the noEr r result code.

The MSAMDel et e function closes a message if it is open.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Trap macro Selector
_oceTBDi spat ch $0504

nokErr 0 No error

dskFul Err -34 All allocation blocks on the volume are full

k OCEPar ankr r -50 Invalid parameter

menful | Err -108 Not enough memory

kOCEl nval i dRef -1502 Invalid message reference number

k OCEDoesnt Exi st -1511 No such letter

kOCERef | sd osi ng -1516 IPM Manager is shutting down the personal
MSAM, or server MSAM'’s mail server is
shutting down

Message summaries are discussed in the section “MSAM Modes of Operation”
beginning on page 2-12.

The IPM Manager may also delete a letter from a personal MSAM'’s incoming queue in
response to a user action. In that case, it sets the nsgDel et ed flag in the letter’'s message
summary and sends the kVai | EPPCI nQUpdat e event. The kiVai | EPPCI nQUpdat e
event is described on page 2-228.

The kMai | EPPCDel et eQut Qvsg event is described on page 2-231.

Messaging Service Access Module Reference 2-203

CHAPTER 2

Messaging Service Access Modules

Generating Log Entries and Reports

A personal MSAM may run into operational problems. Use the function
PMSAMLogETr r or to log such problems.

Use MSAMCr eat eReport and MSAMPut Reci pi ent Report to create delivery and
non-delivery reports when the originator of a message has requested them.

PMSAMLogError

DESCRIPTION

2-204

The PMSAMLogETr r or function reports operational errors in a personal MSAM.
pascal OSErr PMSAMLogError (MSAMParam *par anBl ock) ;

par anBl ock Pointer to a parameter block.

Parameter block

- i oResul t OSEr r Result code
® msant| ot 1 D MBAMSI ot | D Personal MSAM or slot ID
® | ogEntry Mai | Error LogEnt ryl nf o* Error log record

See “The MSAM Parameter Block” on page 2-94 for a description of the i oResul t field.

Field descriptions

nmsans| ot 1 D A value that indicates whether the error you are logging applies to
the personal MSAM as a whole or to one of its slots. Set this field
to 0 to indicate that the error applies to the personal MSAM.
Otherwise, set it to the slot ID of the slot to which the error applies.

| ogEntry A pointer to a Mai | Er r or LogEnt r ylI nf o structure that contains
information about the error that you are logging.

You call the PMSAMLogEr r or function to log information about an operational error in a
personal MSAM or in one of its slots. In some cases, you also log suggested actions a
user can take to correct the problem.

To log an error, you must provide values in the ver si on, err or Type, and er r or Code
fields of the Mai | Er r or LogEnt r yI nf o structure. In addition, you must fill in the
error Resour ce field if the er r or Code field has the value kMai | MSAMET r or Code,
and you must fill in the act i onResour ce field if the er r or Type field has the value
kMai | ELECorrect abl e.

Errors of type kMai | ELEEr r or, kMai | ELEVAr ni ng, and kMai | ELEI nf or mat i onal
either require no user intervention or cannot be corrected by user intervention. Errors of
type kMai | ELECor r ect abl e do require user intervention to correct the problem.

When you log a correctable error (kMai | ELECor r ect abl e), the IPM Manager
considers either the personal MSAM or one of its slots to be suspended. While the
personal MSAM is suspended, the IPM Manager does not send it any high-level events

Messaging Service Access Module Reference

CHAPTER 2

Messaging Service Access Modules

or restart it at scheduled times if it quits. While a slot is suspended, the user cannot
modify or delete it. Moreover, if you specify the suspended slot in a call to the
PMSAMOpenQueues function, it returns the kMai | SI ot Suspended result code. Other
than these exceptions, a personal MSAM can continue whatever activity it deems
appropriate while it or one of its slots is suspended. The IPM Manager reinstates a
suspended personal MSAM or a slot when the user informs the IPM Manager that the
error is corrected or when the computer on which the personal MSAM is running is
restarted. If the personal MSAM is not running when the error is marked as corrected,
the IPM Manager launches it. If the personal MSAM is running, it receives an

kMai | EPPCCont i nue high-level event.

Because logging a correctable error implies that the problem is not transient in nature,
the PMSAMLogEr r or function does not provide you with a mechanism for canceling
correctable errors or accessing logged entries. Also, because correctable errors by
definition require a user’s attention, you should not log them unless absolutely necessary.

You can supply your own error messages. To do so, you must set the er r or Code field
to kMai | MSAMET r or Code. You must also set the er r or Resour ce field in the

Mai | Err or LogEnt r yl nf o structure. This field is an index into a list of error
messages. The list is a 'STR#' (string list) resource in the personal MSAM’s resource
file. The first index into the string list is 1. The resource ID for the string list is

kMai | MSAMET r or St ri ngLi st | D. This method ensures that all error messages
are localizable.

When the value of err or Type is kMai | ELECor r ect abl e, you must specify an action
that a user should take to correct the error. The procedure is the same as the one just
described for MSAM-defined error messages, except that the resource ID of the string list
is kMai | MSAMAct i onStri ngLi st 1 Dand the field that you set is act i onResour ce.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Trap macro Selector
_oceTBDi spat ch $0521

noErr 0 No error
dskFul Err =34 All allocation blocks on the volume are full
k OCEPar ankr r -50 Invalid parameter
mentul | Err -108 Not enough memory
kCOCEl nval i dRef -1502 Invalid queue reference
kOCERef | sd osi ng -1516 IPM Manager is shutting down
the personal MSAM
kMai | NoMSAMET r -15056 No such MSAM
kMai | NoSuchSlI ot -15062 No such slot

The Mai | Er r or LogEnt r yl nf o structure is described on page 2-128.

See the section “Logging Personal MSAM Operational Errors” on page 2-91 for more
information about logging operational errors.

Messaging Service Access Module Reference 2-205

CHAPTER 2

Messaging Service Access Modules

MSAMCreateReport

DESCRIPTION

2-206

The MSAMCr eat eReport function creates a report about a message that you specify and
returns a reference number for the report.

pascal OSErr MSAMCr eat eReport (MSAMParam * par anBl ock,
Bool ean asyncFl ag) ;

par anBl ock Pointer to a parameter block.

asyncFl ag A Boolean value that specifies whether the function is to be
executed asynchronously. Set this to t r ue if you want the function
to be executed asynchronously.

Parameter block

® i oConpl eti on ProcPtr Your completion routine

- i oResul t OSEr r Result code

- gueueRef MSAMQueueRef Queue reference number

- mai | MsgRef Mai | MsgRef Report reference number

® nmsgl D Mai |l Letterl D Message the report applies to
® sender Mai | Reci pi ent * Sender of the message

See “The MSAM Parameter Block™ on page 2-94 for descriptions of the i oConpl et i on
andi oResul t fields.

Field descriptions

queueRef A reference number that identifies the queue from which the MSAM
read the message about which it is reporting. A personal MSAM
specifies an outgoing queue reference that it obtained from the
PMSAMOpenQueues function. A server MSAM specifies the queue
reference that it obtained from the SMSAMSt ar t up function.

mai | MsgRef A reference number that identifies the report that you create. The
MBAMCr eat eRepor t function returns this to you upon successfully
completing execution.

nmsgl D A value that identifies the message about which you want to create
a report. If the message is a letter, you provide the letter’s letter ID
attribute. If it is a non-letter message, you provide the message 1D
from the message header’s fixed information.

sender A pointer to a Mai | Reci pi ent structure that contains the address
of the sender of the message about which you want to report. If the
message is a letter, you provide the value of the letter’s From
recipient. If it is a non-letter message, you provide the value of the
reply queue address in the message header.

You call the MSAMCr eat eReport function to create a report about a message that you
are responsible for delivering. Use the MSAMPut Reci pi ent Report function to fill in
the report information.

Messaging Service Access Module Reference

CHAPTER 2

Messaging Service Access Modules

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Trap macro Selector
_oceTBDi spat ch $051F

noErr 0 No error

dskFul Err =34 All allocation blocks on the volume are full

k OCEPar antr r -50 Invalid parameter

mentul | Err -108 Not enough memory

kCOCEl nval i dRef -1502 Invalid queue reference

kCCEl nval i dReci pi ent -1514 Bad recipient

kOCERef | sd osi ng -1516 IPM Manager is shutting down the
personal MSAM, or server MSAM'’s
mail server is shutting down

The Mai | Reci pi ent structure is defined to be of type OCEReci pi ent . The
OCEReci pi ent structure is described on page 2-106.

You get the value of the reply queue address in the message header by calling
the MSAMzet MsgHeader function with the sel ect or field set to k|l PMsender. The
MBAMCGet MsgHeader function is described on page 2-148.

The section “Generating a Report” beginning on page 2-61 explains how to determine
when you are required to create a report.

MSAMPutRecipientReport

The MSAMPut Reci pi ent Report function adds information about one recipient
to a report.

pascal OSErr MSAMPut Reci pi ent Report (MSAMPar am * par anBl ock,
Bool ean asyncFl ag) ;

par anBl ock Pointer to a parameter block.

asyncFl ag A Boolean value that specifies whether the function is to be
executed asynchronously. Set this to t r ue if you want the function
to be executed asynchronously.

Parameter block

® i oConpl eti on ProcPtr Your completion routine
- i oResul t OSEr r Result code

® mai | MsgRef Mai | MsgRef Report reference number
® reci pi ent | ndex short Message recipient

® result OSEr r Result of delivery attempt

Messaging Service Access Module Reference 2-207

DESCRIPTION

2-208

CHAPTER 2

Messaging Service Access Modules

See “The MSAM Parameter Block™ on page 2-94 for descriptions of the i oConpl et i on
andi oResul t fields.

Field descriptions

mai | MsgRef A reference number that identifies the report to which you want to
add recipient information. You obtain this reference number from
the MBAMCr eat eReport function.

reci pi entl ndex A value that identifies the recipient about which you are
reporting. You obtain this value from the i ndex field of the
Mai | Resol vedReci pi ent structure returned by the
MSAMCet Reci pi ent s function.

resul t A value that indicates the result of your delivery attempts. The
constants that you may use here are described below.

You call the MSAMPut Reci pi ent Report function to report on the result of your
attempt to deliver a message to a recipient that you specify. You can specify only

one recipient to the MSAMPut Reci pi ent Report function. To report on more than one
recipient, make multiple calls to the function. Use the report reference number that you
obtained from the MSAMCr eat eReport function to associate your recipient report
information with a particular report. When you have finished adding recipient infor-
mation to the report, you must call the MSAMSubmi t function to request delivery of
the report.

The resul t field contains either a delivery or a non-delivery indication for a given
recipient. Set the r esul t field tonoEr r to add a delivery indication. The values you can
use for a non-delivery indication are described in the following list:

Constant descriptions

kl PMNoSuchReci pi ent
The recipient does not exist.

kl PMReci pi ent Mal For ned
The address is malformed. An MSAM detects an invalid
extension value.

kl PMReci pi ent Arbi guous
The MSAM is unable to resolve, look up, or find the specified
recipient.

kl PMReci pi ent AccessDeni ed
The recipient probably exists and may be valid, but the MSAM
doesn’t have access to deliver the message.

kl PMG oupExpansi onPr obl em
The MSAM was unable to expand a group address completely. It
may have delivered the message to some of the recipients in the
group address.

kI PMVBgUnr eadabl e
The MSAM cannot read the message; it’s corrupted or missing.

Messaging Service Access Module Reference

CHAPTER 2

Messaging Service Access Modules

kl PMVBgEXxpi red The MSAM'’s time limit ran out before it was able to confirm
delivery of the message to the specified recipient. Note that this
does not mean that the message was not successfully delivered to
the recipient.

kl PMMEgNoTr ansl ati bl eCont ent
The message is missing information that is considered critical to its
delivery—for example, there is no subject, no content, or no image
content (for a fax MSAM).

kl PMReci pi ent ReqSt dCont
The MSAM could not deliver the message to a particular recipient
because the message did not contain a required standard inter-
change format block.

kl PMReci pi ent ReqSnapShot
The MSAM could not deliver the message to a particular recipient
because the message did not contain a required snapshot (image)
format block.

kI PMNoTr ansf er Di skFul |
The destination system refused delivery because of a disk/system
full condition.

kl PMNoTr ansf er MsgRej ect edbyDest
The destination system refused delivery for an unspecified reason.

kl PMNoTr ansf er MsgTooLar ge
The destination system refused delivery because the message
exceeded the maximum size limit for messages in that system.

ASSEMBLY-LANGUAGE INFORMATION

Trap macro Selector
_oceTBDi spat ch $0520

RESULT CODES
noErr 0 No error
dskFul Err =34 All allocation blocks on the volume are full
k OCEPar ankr r -50 Invalid parameter
mentul | Err -108 Not enough memory
kCOCEl nval i dRef -1502 Invalid message reference number
k OCERef | sd osi ng -1516 IPM Manager is shutting down the
personal MSAM, or server MSAM'’s
mail server is shutting down
kMai | I nval i dRequest -15045 Nested letter already created for this letter
SEE ALSO

The MSAMzet Reci pi ent s function is described beginning on page 2-144.
The Mai | Resol vedReci pi ent structure is described on page 2-108.
The MSAMSubmi t function is described on page 2-200.

Messaging Service Access Module Reference 2-209

CHAPTER 2

Messaging Service Access Modules

For more information about adding delivery or non-delivery indications to a report, see
the section “Generating a Report” on page 2-61.

The non-delivery indication constants for use in the r esul t field are also documented
in the chapter “Interprogram Messaging Manager” in Inside Macintosh: AOCE
Application Interfaces.

Shutting Down a Server MSAM

A server MSAM calls the SMSAMShut down function to notify its PowerShare mail server
that it is shutting down.

SMSAMShutdown

DESCRIPTION

The SMSAMShut down function informs a PowerShare mail server that a server MSAM is
shutting down.

pascal OSErr SMSAMShut down (MSAMPar am * par anBl ock,
Bool ean asyncFl ag) ;

par anBl ock Pointer to a parameter block.

asyncFl ag A Boolean value that specifies whether the function is to be
executed asynchronously. Set this to t r ue if you want the function
to be executed asynchronously.

Parameter block

® i oConpl eti on ProcPtr Your completion routine
- i oResul t OSErr Result code
® gueueRef MBAMQueueRef Outgoing queue reference

See “The MSAM Parameter Block™ on page 2-94 for descriptions of the i oConpl et i on
andi oResul t fields.

Field descriptions

queueRef A value that identifies the queue belonging to the server MSAM
that is shutting down. Set this field to the queue reference value you
obtained from the SMSAMSt ar t up function.

You call the SM5AMShut down function as part of the process of shutting down a server
MSAM. The queue reference is not valid after the function successfully completes.

ASSEMBLY-LANGUAGE INFORMATION

2-210

Trap macro Selector
_oceTBDi spat ch $0502

Messaging Service Access Module Reference

CHAPTER 2

Messaging Service Access Modules

RESULT CODES
noErr 0 No error
dskFul Err -34 All allocation blocks on the volume are full
kCOCEl nval i dRef -1502 Invalid queue reference
kOCERef | sd osi ng -1516 Server MSAM’s mail server is shutting down

Setting Message Status

A personal MSAM calls the PMSAMSet St at us function to set the status of a message in
a queue.

PMSAMSetStatus

The PMSAMSet St at us function sets the status of a message in a queue.

pascal OSErr PMSAMBet St atus (MSAMPar am * par anBl ock,
Bool ean asyncFl ag) ;

par anBl ock Pointer to a parameter block.

asyncFl ag A Boolean value that specifies whether the function is to be
executed asynchronously. Set this to t r ue if you want the function
to be executed asynchronously.

Parameter block

® i oConpl eti on ProcPtr Your completion routine

- i oResul t OSEr r Result code

® gueueRef MBAMQueue Ref ID number of queue

® seqNum | ong Message sequence humber
® msgHi nt | ong Letter reference value

® st at us PMSAMSt at us Status to set

See “The MSAM Parameter Block™ on page 2-94 for descriptions of the i oConpl et i on
andi oResul t fields.

Field descriptions

queueRef The value that identifies the queue that holds the message whose
status you want to set.
segNum The sequence number of the message whose status you want

to set. For an outgoing message, you obtain the sequence
number of a message from the MSAMEnuner at eCut QRepl y
structure returned by the MSAMEnuner at e function. For an
incoming letter, you obtain the sequence number either from
the MSAMVEnurer at el nQRepl y structure returned by the
MSAMENnuner at e function or from the SMCA structure associated
with a kMai | EPPCMsgOpened event.

Messaging Service Access Module Reference 2-211

DESCRIPTION

2-212

CHAPTER 2

Messaging Service Access Modules

nmsgHi nt A reference value associated with a letter. You set this field to the
reference value when you are reporting a problem with retrieving a
letter that the user has opened. You obtain this value from the
SMCA structure associated with a kMai | EPPCMsgOpened event.
Set this field to 0 when you are reporting status for a letter in an
outgoing queue.

st at us The status that you want to set.

A personal MSAM calls the PMSAMSet St at us function to set the status of a message.

You call the function to set the status of a letter in an incoming queue after you have
received a kMai | EPPCMsgQpened high-level event for that letter. The Finder uses the
status information that you provide to display the status of the letter to the user. To
provide an acceptable response time for the user, it is very important that you call the
PMSAMSet St at us function in a timely manner. Note that you set the status only for
incoming letters, not non-letter messages.

You set the status of all messages in an outgoing queue. You call the PMSAMSet St at us
function as a result of your personal MSAM'’s handling of the message. The Finder uses
the status information that you provide to display the status of outgoing letters to the
user. It is important to call the PMSAMSet St at us function in a timely manner for
outgoing messages, although it is not as critical as it is with incoming letters. With
incoming letters, you must respond to a user action; with outgoing messages, you do not.

The following table describes the status settings:

Constant Value Description

kPMBAMSt at usPendi ng 1 Applies to all types of messages in the out-
going queue. Set this status when you have
not yet tried to deliver a message, or when you
have tried and failed but will try again.

k PVBSAMSt at usEr r or 2 Applies to letters in an incoming queue. Set this
status when you have failed to retrieve a letter
from the external messaging system and to
write it to the incoming queue.

kPVBAMSt at usSendi ng 3 Applies to all types of messages in the outgoing
gueue. Set this status to indicate that you are in
the process of sending the message.

kPMBSAMSt at usCachi ng 4 Applies to letters in the incoming queue.
Set this status to indicate that you are in
the process of writing the letter into the
incoming queue.

k PMSAMSt at us Sent 5 You do not set this status. When all of the
recipients of a message in the outgoing queue
have been marked as delivered, the IPM
Manager sets this status for the message.

Messaging Service Access Module Reference

CHAPTER 2

Messaging Service Access Modules

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

Trap macro Selector
_oceTBDi spat ch $0527

nokErr 0 No error
dskFul Err =34 All allocation blocks on the volume are full
k OCEPar arntkr r =50 Invalid parameter
mentul | Err -108 Not enough memory
kCOCEl nval i dRef -1502 Invalid queue reference number
kOCERef | sd osi ng -1516 IPM Manager is shutting down
the personal MSAM
kMai | I nval i dSeqNum -15041 Invalid message sequence number
kMai | Not ASI ot | nQ -15047 If you set nsgHi nt , it does not refer
to a slot’s incoming queue
kMai | BadSt at e -15068 Invalid status setting

Personal MSAM Template Functions

The functions described in this section are called not by a personal MSAM itself, but by
its AOCE setup template.

MailCreateMailSlot

The Mai | Cr eat eMai | Sl ot function creates a new mail slot.

pascal OSErr Mil CreateMil Sl ot (MSAMPar am * par anBl ock) ;

par anBl ock Pointer to a parameter block.

Parameter block

® i 0Conpl etion ProcPtr Your completion routine

- i oResul t OSEr r Result code

® mai | boxRef Mai | boxRef Reserved

® ti meout | ong Timeout interval

® prmsanCi d Creationl D Creation ID of personal MSAM record
« snta SMCA Shared communications area

See “The MSAM Parameter Block™ on page 2-94 for descriptions of the i oConpl et i on
andi oResul t fields.

Field descriptions
mai | boxRef Reserved. Set this field to 0.

ti meout The amount of time, expressed in ticks, that you are willing to wait
for a response from the personal MSAM. It is recommended that
you set the timeout period to be a number of seconds. If the timeout
period elapses without a response from the personal MSAM, the
function completes with a noRel Er r result code.

Messaging Service Access Module Reference 2-213

DESCRIPTION

CHAPTER 2

Messaging Service Access Modules

prmsanCi d The creation ID of the MSAM record, which represents the personal
MSAM to which you want to add a mail slot.
snca An SMCAstructure. You set the sl ot Cl Dfield to the creation ID of

the Mail Service or Combined record, which contains information
about the newly created mail slot. The IPM Manager sets the

resul t field to 1 before sending the kMai | EPPCCr eat eSl ot
high-level event to the personal MSAM. When the

Mai | Cr eat eMai | Sl ot function completes, ther esul t field
contains the MSAM'’s result, if the personal MSAM has processed
the kMai | EPPCCr eat eSl ot event. Otherwise, it still contains 1.

Your setup template calls the Mai | Cr eat eMai | Sl ot function to add a new mail slot to
a personal MSAM. This causes the IPM Manager to send a kMai | EPPCCr eat eSl ot
high-level event to the personal MSAM.

Do not poll the snta.resul t field to determine when the function has completed. If
you poll, poll the i oResul t field. Then check the value of the snta.resul t field.

If the MSAM responds to the event, the Mai | Cr eat eMai | Sl ot function completes
with the noEr r result code, regardless of the value of the snta.r esul t field. Therefore,
you should always check the value of the snta.r esul t field to get the result of the
MSAM’s processing of the event. You cannot assume that if the Mai | Cr eat eMai | Sl ot
function returns noEr r, the MSAM also reported no error.

If the personal MSAM is not running at the time the associated template calls this
function, the IPM Manager launches the MSAM before sending it the
kMai | EPPCCr eat eSl ot event.

SPECIAL CONSIDERATIONS

The Mai | Creat eMai | Sl ot function is always executed asynchronously. After calling
Mai | Cr eat eMai | Sl ot , you should call the kDETcndBusy callback routine to provide
time for the personal MSAM to receive and respond to the kMai | EPPCCr eat eSl ot
high-level event.

Your template does not need to delete a mail slot. The AOCE software deletes a mail slot
in response to a user action.

ASSEMBLY-LANGUAGE INFORMATION

2-214

Trap macro Selector
_oceTBDi spat ch $052B

Messaging Service Access Module Reference

CHAPTER 2

Messaging Service Access Modules

RESULT CODES
nokErr 0 No error
dskFul Err -34 All allocation blocks on the volume are full
k OCEPar arntkr r -50 Invalid parameter
mentul | Err -108 Not enough memory
noRel Err -1101 Timer expired before MSAM responded
kOCERef | sd osi ng -1516 IPM Manager is shutting down
the personal MSAM
kMai | | gnor edErr —-15053 MSAM ignored high-level event
kMai | Lengt hErr —-15054 Error occurred in sending the event
kMai | TooManyErr —-15055 IPM Manager too busy to send event
kMai | NoMSAMET r -15056 No such MSAM
kMai | MSAMSuspended -15059 MSAM is suspended
kMai | BadSl ot I nfo -15060 Invalid slot information
SEE ALSO

The Cr eat i onl Dstructure is described in the chapter “AOCE Utilities” in Inside
Macintosh: AOCE Application Interfaces.

See the chapter “Service Access Module Setup” in this book for information about the
personal MSAM'’s record.

The kMai | EPPCCr eat eS| ot high-level event is described on page 2-221.

The kDETcndBusy callback routine is described in the chapter “AOCE Templates” in
Inside Macintosh: AOCE Application Interfaces.

MailModifyMailSlot

The Mai | Modi fyMai | Sl ot function modifies the information in a mail slot.
pascal OSErr Mail Modi fyMail Sl ot (MSAMPar am * par anBl ock) ;
par anBl ock Pointer to a parameter block.

Parameter block

® i oConpl eti on ProcPtr Your completion routine

= i oResul t OSEr r Result code

® mai | boxRef Mai | boxRef Reserved

® ti meout | ong Timeout interval

® prmsantCi d CreationlD Creation ID of personal MSAM record
« snta SMCA Shared communications area

See “The MSAM Parameter Block™ on page 2-94 for descriptions of the i oConpl et i on
andi oResul t fields.

Messaging Service Access Module Reference 2-215

DESCRIPTION

CHAPTER 2

Messaging Service Access Modules

Field descriptions
mai | boxRef Reserved. Set this field to 0.

ti meout The amount of time, expressed in ticks, that you are willing to wait
for a response from the personal MSAM. It is recommended
that you set the timeout period to be a number of seconds. If the
timeout period elapses without a response from the personal
MSAM, the function completes with a noRel Er r result code.

prmsanCi d The creation ID of the MSAM record, which represents the personal
MSAM whose mail slot you want to modify.
snta An SMCAstructure. You set the sl ot CI Dfield to the creation ID of

the new Mail Service or Combined record, which contains
information about the modified mail slot. The IPM Manager sets
the resul t field to 1 before sending the kMai | EPPCMVbdi f ySI ot
high-level event to the personal MSAM. When the function
completes, if the personal MSAM has processed the

kMai | EPPCMVbdi fySI ot event, the resul t field contains the
MSAM’s result. Otherwise, it still contains 1.

Your setup template calls the Mai | Modi f yMai | Sl ot function to change the informa-
tion in a mail slot. This causes the IPM Manager to send a kMai | EPPCMVbdi f y S| ot
high-level event to the personal MSAM. You invoke the function after you have created a
new Mail Service record in the Setup catalog that contains the changed information.

Do not poll the snta.r esul t field to determine when the function has completed. If
you poll, poll the i oResul t field. Then check the value of the snta.r esul t field.

If the MSAM responds to the event, the Mai | Modi f yMai | Sl ot function completes
with the noEr r result code, regardless of the value of the snta.r esul t field. Therefore,
you should always check the value of the snta.resul t field to get the result of the
MSAM'’s processing of the event. You cannot assume that if the Mai | Modi f yMai | Sl ot
function returns noEr r, the MSAM also reported no error.

If the MSAM specifies noErr in the resul t field of the SMCAstructure, you should
delete the old Mail Service record and update the slot attribute (attribute type index is
kMai | Servi ceAttr TypeNum in the MSAM record in the Setup catalog to point to the
new Mail Service record. If the MSAM reports an error, you should leave the original Mail
Service record intact, delete the new Mail Service record, and report the error to the user.

SPECIAL CONSIDERATIONS

2-216

The Mai | Modi fyMai | Sl ot function is always executed asynchronously. After calling
Mai | Modi f yMai | Sl ot , you should call the kDETcndBusy callback routine to provide
time for the personal MSAM to receive and respond to the kMai | EPPCMbdi f ySI ot
high-level event.

Messaging Service Access Module Reference

CHAPTER 2

Messaging Service Access Modules

ASSEMBLY-LANGUAGE INFORMATION

Trap macro Selector
_oceTBDi spat ch $052C

RESULT CODES
noErr 0 No error
dskFul Err -34 All allocation blocks on the volume are full
k OCEPar antr r -50 Invalid parameter
noRel Err -1101 Timer expired before MSAM responded
kOCERef | sd osi ng -1516 IPM Manager is shutting down
the personal MSAM
kMai | | gnor edErr -15053 MSAM ignored high-level event
kMai | Lengt hErr -15054 Error in sending the event
kMai | TooManyErr -15055 IPM Manager too busy to send event
kMai | NoMSAMET r -15056 No such MSAM
kMai | NoSuchSl| ot -15062 No such slot
SEE ALSO

The Cr eat i onl Dstructure is described in the chapter “AOCE Utilities” in Inside
Macintosh: AOCE Application Interfaces.

See the chapter “Service Access Module Setup” in this book for information about the
personal MSAM’s record, Mail Service records, and the Setup catalog.

The kDETcndBusy callback routine is described in the chapter “AOCE Templates” in
Inside Macintosh: AOCE Application Interfaces.

MailWakeupPMSAM

The Mai | WakeupPMSAMfunction causes the IPM Manager to send a kMai | EPPCWakeup
event to the personal MSAM that you specify.

pascal OCSErr Mil WakeupPMSAM (MSAMPar am * par anBl ock) ;
par anBl ock Pointer to a parameter block.

Parameter block

® i oConpl eti on ProcPtr Your completion routine

- i oResul t CSEr r Result code

® prmsanCi d Creationl D Record ID of MSAM record
® mai | Sl ot D Mai | Sl ot D Reserved

See “The MSAM Parameter Block™ on page 2-94 for descriptions of the i oConpl et i on
andi oResul t fields.

Messaging Service Access Module Reference 2-217

CHAPTER 2

Messaging Service Access Modules

Field descriptions

prmsanCi d The creation ID of the MSAM record in the Setup catalog that
represents the personal MSAM you want to launch.
mai | Sl ot1 D Reserved. Set this field to 0.

DESCRIPTION

You call the Mai | WakeupPMSAMfunction to request that the IPM Manager send a
kMai | EPPCWakeup event to the personal MSAM that you specify.

Typically, you call this function in response to unpredictable events that require action by
the MSAM. For example, a fax modem driver might call the Mai | WakeupPMSAM
function when it receives an incoming call so that the MSAM can put the letter in the
incoming queue.

If the MSAM is not running at the time you call the Mai | WVakeupPMSAMfunction, the
IPM Manager launches it.

The kMai | EPPCWAkeup event is not infallible. Therefore, you cannot count on it as a
mechanism to force something to happen. However, the IPM Manager makes every
attempt to inform you of possible failures so that you can retry the operation if you wish.

SPECIAL CONSIDERATIONS

The Mai | WakeupPMSAMfunction is always executed asynchronously. After calling
Mai | WakeupPMSAM you must call the Wi t Next Event function, which provides time
for the personal MSAM to be launched.

ASSEMBLY-LANGUAGE INFORMATION

Trap macro Selector
_oceTBDi spat ch $0507

RESULT CODES
noErr 0 No error
dskFul Err -34 All allocation blocks on the volume are full
kOCERef | sd osi ng -1516 IPM Manager is shutting down
the personal MSAM
kMai | NoMSAMET r -15056 No such MSAM
SEE ALSO

The Cr eat i onl Dstructure is described in the chapter “AOCE Utilities” in Inside
Macintosh: AOCE Application Interfaces.

See the chapter “Service Access Module Setup” in this book for more information about
the personal MSAM'’s record.

2-218 Messaging Service Access Module Reference

CHAPTER 2

Messaging Service Access Modules

Application-Defined Function

This section describes the completion routine that you may provide when you call a
function in the MSAM API asynchronously.

MyCompletionRoutine

When you call an MSAM API function asynchronously, you can provide a pointer to a
completion routine.

voi d MyConpl eti onRouti ne (MSAMPar am * par anBl ock) ;

par anBl ock A pointer to the parameter block that you provided when you called the
MSAM function that is calling your completion routine.

DESCRIPTION

You can provide a completion routine to any MSAM function that you can call
asynchronously. To do so, you pass a pointer to the completion routine in the

i oConpl eti on field of the MSAMPar amparameter block. If you provide a completion
routine, it executes when the asynchronous request completes execution.

The MSAM function saves the value of your A5 register at the time you call it and
then restores the A5 value before it calls your completion routine. Your completion
routine is always called at deferred-task time. Running at deferred-task time is a
safe practice when you use virtual memory.

You can write your completion routine in C, Pascal, or assembly language.

To declare a completion routine in Pascal, use the following statement:
PROCEDURE MyConpl eti onRout i ne(VAR par anBl ock: MSAMPar anj ;

Note that if you do not want to specify a completion routine for an asynchronous
function call, you can specify ni | inthe i oConpl eti on field and poll the i oResul t
field of the parameter block header. When you call an MSAM function asynchronously, it
sets the i oResul t field in the parameter block to 1 to indicate that the routine has not
yet completed execution. When the routine completes execution, the MSAM function
sets the i oResul t field to the actual function result. If you poll, you should do so within
a loop that calls either the Wi t Next Event or Event Avai | routine so that other
processes have access to processor time.

ASSEMBLY-LANGUAGE INFORMATION
When a completion routine written in assembly language is called, register A0 contains a
pointer to the MSAMPar amparameter block, and register DO contains the MSAM function
result code (also available in the i oResul t field of the parameter block). The condition
codes are set as a result of TST.W DO.

Messaging Service Access Module Reference 2-219

CHAPTER 2

Messaging Service Access Modules

You cannot make any other assumptions about any part of your environment, including,
but not limited to

n the stack pointer and register A6
n registers A2, A3, and A4
n low-memory global variables

You must preserve all registers except DO, D1, D2, A0, and Al.

High-Level Events

2-220

This section contains descriptions of the AOCE high-level events that an MSAM may
receive. Server MSAMSs may receive the kMai | EPPCAdni nandkMai | EPPCMsgPendi ng
high-level events. Personal MSAMSs receive the kMai | EPPCMsgPendi ng event as well as
a number of others. You can find a complete list of the events sent to personal and server
MSAMSs on page 2-32.

Each event description in this section provides a description of the wher e and

nmodi fi er s fields of the event record. The what , nessage, and when field descriptions
are the same for every event. They are provided here; this information is not repeated in
the individual event descriptions.

Field name Data type Description
what short Always contains the constant kHi ghLevel Event .
message | ong Always contains the event class
kMai | Appl eMai | Creat or.
when | ong Unused.

Certain events require more information than can be passed in the event record. For
these events, the MSAM obtains the additional information it needs by calling the
Accept Hi ghLevel Event function. If an event requires no additional information, an
MSAM does not need to call the Accept Hi ghLevel Event function.

The Accept H ghLevel Event function returns a Mai | EPPCMs g structure that contains
one of the following:

n a pointer to an SMCAstructure
n a letter sequence number
n aMail Locat i onl nf o structure

Where it applies, the event descriptions in this section include a description of the
sequence number or the relevant fields of the SMCAor Mai | Locat i onl nf o structure.
The SMCAstructure is described on page 2-114. The Mai | Locat i onl nf o structure is
described on page 2-116.

Messaging Service Access Module Reference

CHAPTER 2

Messaging Service Access Modules

kMailEPPCCreateSlot

EVENT RECORD

The kMai | EPPCCr eat eSl ot event informs a personal MSAM that the MSAM’s
template has added a new Mail Service or Combined record to the Setup catalog.

Field name Data type Description
wher e | ong The constant kMai | EPPCCr eat eSl ot .
nmodi fiers short Unused; contains 0.

MailEPPCMsg STRUCTURE

DESCRIPTION

Field name Data type
u. t heSMCA- >resul t OSEr r

u.t heSMCA->u. sl ot CI D Creationl D

Description

The result of performing the
activity requested by the

kMai | EPPCCr eat eSl ot event.
When the personal MSAM receives
the kMai | EPPCCr eat eSl ot event,
this field is already set to 1. Set this
field to the noEr r result code if you
successfully complete the activity.
Otherwise, set this field to a result
code that you define.

Creation ID of the new Mail Service
or Combined record that represents
the newly created slot.

The IPM Manager sends the kMai | EPPCCr eat eS| ot event when a setup template
calls the Mai | Cr eat eMni | Sl ot function. Receipt of a kMai | EPPCCr eat eS| ot event
informs a personal MSAM that two actions have already taken place:

1. A new Mail Service or Combined record representing the new slot has been added to

the Setup catalog.

2. The configuration information for the new slot has been added to the new record.

Upon receipt of a kMai | EPPCCr eat eSl ot event, the personal MSAM should call

the Accept H ghLevel Event function to get additional information associated

with this event and get the creation ID of the new slot’s record from the

u. t heSMCA- >u. sl ot Cl Dfield of the Mai | EPPCVsg structure. Then the MSAM should
read the new slot’s record and validate the information it contains. If the information
passes the validation checks, the personal MSAM should generate a unique 2-byte slot
ID that distinguishes the new slot and add it to the slot’s record in the Setup catalog. The
MSAM should store the slot ID in an attribute whose type is referenced by the attribute
type index kSl ot | DAt t r TypeNum Valid values for a slot ID range from 1 to $FFFE.

Messaging Service Access Module Reference

2-221

RESULT CODES

SEE ALSO

CHAPTER 2

Messaging Service Access Modules

After adding the new slot ID to the slot’s record, the MSAM should return the noEr r
result code in the Mai | EPPCVBg.u.t heSMCA- >r esul t field.

If the information in the new Mail Service or Combined record is invalid, if the MSAM
fails to add the new slot ID to the record, or if some other error occurs, the MSAM
should return an error code in the r esul t field. This error code is available to the
MSAM'’s setup template when the template’s call to the Mai | Cr eat eMai | Sl ot
function completes. The MSAM and its setup template define the values that the MSAM
may returninther esul t field.

While it is running, the MSAM must be prepared to receive and process a
kMai | EPPCCr eat eSl ot event at any time.

noErr 0 No error

The Mai | EPPCMs g structure is described on page 2-113.
The SMCAstructure is described on page 2-114.
The Mai | Cr eat eMai | Sl ot function is described on page 2-213.

For information on setup templates, see the chapter “Service Access Module Setup” in
this book.

kMailEPPCModifySlot

EVENT RECORD

2-222

The kMai | EPPCModi f ySI ot event informs a personal MSAM that the user has
modified the information associated with a particular slot.

Field name Data type Description
wher e | ong The constant kMai | EPPCMbdi f y S| ot .
nmodi fiers short The slot ID of the slot that has been modified.

Messaging Service Access Module Reference

CHAPTER 2

Messaging Service Access Modules

MailEPPCMsg STRUCTURE

Field name Data type Description

u. t heSMCA- >resul t OSErr The result of performing the
activity requested by the
kMai | EPPCMbdi fySI ot event.
When the personal MSAM receives
the kMai | EPPCModi f y Sl ot event,
this field is already set to 1. Set this
field to the noEr r result code if you
successfully complete the activity.
Otherwise, set this field to a result
code that you define.

u.t heSMCA->u. sl ot CI D Creationl D Creation ID of the new record
that represents the slot that has
been modified.

DESCRIPTION

When the information for one of the personal MSAM'’s slots changes, the MSAM gets a
kMai | EPPCMVbdi f ySl ot event. The IPM Manager sends the kMai | EPPCModi f y Sl ot
event when a setup template calls the Mai | Modi f yMai | SI ot function. When the
IPM Manager sends the event, the MSAM’s setup template has already created a

new record containing the updated information for the slot and added the record to

the Setup catalog. Upon receipt of this event, the personal MSAM should call the
Accept Hi ghLevel Event function to get additional information associated with this
event. The MSAM should update any internal data it maintains for the slot and store the
creation ID of the slot’s new record so that it can read the record if it needs to. For
instance, if the MSAM got a second kai | EPPCMVbdi f yS| ot event for the same

slot, it would want to compare the new and old records to determine which informa-
tion changed.

The kMai | EPPCModi f ySI ot event does not invalidate the slot’s existing queue
references.

After updating its internal data about the modified slot, the MSAM should return the
noEr r result code in theu.t heSMCA- >r esul t field of the Mai | EPPCMs g structure. If it
fails to do this for some reason, the MSAM should return an error code in this field. This
error code is available to the MSAM'’s setup template when the template’s call to the

Mai | Modi f yMai | Sl ot function completes. The MSAM and its setup template define
the values that the MSAM may return in the Mai | EPPCVsg.u.t heSMCA- >r esul t field.

While it is running, the MSAM must be prepared to receive and process a
kMai | EPPCMVbdi f ySI ot event at any time.

Messaging Service Access Module Reference 2-223

CHAPTER 2

Messaging Service Access Modules

RESULT CODES
noErr 0 No error

SEE ALSO
The Mai | EPPCMs g structure is described on page 2-113.

The SMCAstructure is described on page 2-114.
The Mai | Modi fyMai | Sl ot function is described on page 2-215.

For information on setup templates, see the chapter “Service Access Module Setup” in
this book.

kMailEPPCDeleteSlot

The kMai | EPPCDel et eS| ot event advises the personal MSAM that a slot will
be deleted.

EVENT RECORD

Field name Data type Description
wher e | ong The constant kVai | EPPCDel et eSl ot .
nmodi fiers short The slot ID of the slot to be deleted.

MailEPPCMsg STRUCTURE

Field name Data type Description

u. t heSMCA- >resul t OSErr The result of performing the activity
requested by the kivai | EPPCDel et eS| ot
event. When the personal MSAM receives
the kMai | EPPCDel et eS| ot event, this
field is already set to 1. Set this field to the
noEr r result code if you successfully
complete the activity. Otherwise, set this
field to a result code that you define.

DESCRIPTION
The IPM Manager sends the kMai | EPPCDel et eS| ot event when a user deletes a slot.
Before a slot is actually deleted, the personal MSAM gets a kMai | EPPCDel et eSl ot
event. The personal MSAM should call the Accept H ghLevel Event function to get
access to the Mai | EPPCMs g structure. It should do what is necessary to handle this
event internally, such as discarding data that relates to that slot.

2-224 Messaging Service Access Module Reference

CHAPTER 2

Messaging Service Access Modules

After taking whatever action is appropriate regarding the slot to be deleted, the MSAM
should return the noEr r result code in the u.t heSMCA- >r esul t field of the

Mai | EPPCMVBg. If it fails to do this for some reason, the MSAM should return an
MSAM-defined error result in this field.

If the MSAM returns a noEr r result code, AOCE software deletes the slot’s record in
the Setup catalog. If the MSAM returns an error, the slot’s record in the Setup catalog
is not deleted.

While it is running, the MSAM must be prepared to receive and process a
kMai | EPPCDel et eSl ot event at any time.

RESULT CODES
noErr 0 No error

SEE ALSO

The Mai | EPPCMs g structure is described on page 2-113.
The SMCAstructure is described on page 2-114.

kMailEPPCMailboxOpened

The kMai | EPPCMai | boxOpened event tells a personal MSAM that a user has opened
his or her AOCE desktop mailbox.

EVENT RECORD

Field name Data type Description
wher e | ong The constant kivai | EPPCMVaI | boxOpened.
nmodi fiers short Unused; contains 0.

DESCRIPTION

This event notifies the personal MSAM that the user has opened his or her AOCE
mailbox. A personal MSAM receiving this event should connect to its external messaging
system, check for letters, and update the incoming queue for each of its mail slots.

This event is advisory only and requires no response from the personal MSAM.

Messaging Service Access Module Reference 2-225

CHAPTER 2

Messaging Service Access Modules

kMailEPPCMailboxClosed

The kMai | EPPCMai | boxC osed event tells a personal MSAM that a user has closed
his or her mailbox.

EVENT RECORD

Field name Data type Description
wher e | ong The constant kivai | EPPCMVaI | boxC osed.
nmodi fiers short Unused; contains 0.

DESCRIPTION

This event notifies the MSAM that the user has closed his or her AOCE mailbox.
A personal MSAM receiving this event should disconnect from its external
messaging system.

This event is advisory only and requires no response from the personal MSAM.

kMailEPPCShutDown

The kMai | EPPCShut Down event instructs a personal MSAM to quit immediately.

EVENT RECORD

Field name Data type Description
wher e | ong The constant kMai | EPPCShut Down.
nmodi fiers short Unused; contains 0.

DESCRIPTION

This event corresponds directly to the standard Apple event KAEQui t Appl i cati on.An
MSAM should treat it in the same way as it does the KAEQui t Appl i cat i onevent. You
get this event after the user chooses the Shut Down or Restart command from the
Finder’s Special menu.

While it is running, an MSAM must be prepared to receive and process a
kMai | EPPCShut Down event at any time.

2-226 Messaging Service Access Module Reference

CHAPTER 2

Messaging Service Access Modules

kMailEPPCContinue

The kMai | EPPCCont i nue event instructs a personal MSAM to resume operation after
previously suspending either itself or one of its slots.

EVENT RECORD

Field name Data type Description
wher e | ong The constant kMai | EPPCCont i nue.
nmodi fiers short Contains either the slot ID of a slot to be reactivated or

0. If this field is set to 0, the event applies to the
personal MSAM itself.

DESCRIPTION
A personal MSAM may suspend itself or one of its slots if it runs into a problem that
requires user intervention to correct. The MSAM should call the PMSAMLOQEr r or
function to report such errors and then suspend itself or the particular slot, whichever is
appropriate. While it is in a suspended state, the personal MSAM should continue to call
the Wai t Next Event function. When the user has taken the appropriate corrective
action, the personal MSAM gets the kMai | EPPCCont i nue event advising that it should
resume operations.

If the problem is with the personal MSAM itself, the MSAM can quit instead of
suspending itself. In that case, the IPM Manager launches the MSAM when the user has
taken the corrective action and then sends the MSAM the kMai | EPPCCont i nue event.

kMailEPPCSchedule

The kMai | EPPCSchedul e event informs a personal MSAM that it is time to log on to
its external messaging system and transfer mail on behalf of a specific slot.

EVENT RECORD

Field name Data type Description
wher e | ong The constant kMai | EPPCSchedul e.
nmodi fiers short The slot ID of the slot whose scheduled

time or interval has occurred.

Messaging Service Access Module Reference 2-227

DESCRIPTION

SEE ALSO

kMailEPPC

CHAPTER 2

Messaging Service Access Modules

For each account or address that a user has on an external messaging system, the user
can provide information on how often or at what time the personal MSAM should log on
and transfer mail. The IPM Manager sends a personal MSAM a kMai | EPPCSchedul e
event when the schedule information for one of the MSAM’s slots indicates that it is time
for the MSAM to connect to its external messaging system and transfer mail for that slot.
If a personal MSAM is not running at a time when it should log on, the IPM Manager
first launches it and then sends it a kMai | EPPCSchedul e event.

The frequency information is stored in a Mai | St andar dSl ot | nf oAttri but e
structure, described on page 2-121.

A setup template obtains scheduling information from the user. See the chapter “Service
Access Module Setup” in this book for more information.

InQUpdate

EVENT RECORD

The kMai | EPPCI nQUpdat e event notifies a personal MSAM that a letter in an incoming
queue has been updated.

Field name Data type Description
wher e | ong The constant kMai | EPPCI nQUpdat e.
nmodi fiers short The slot ID of the slot whose incoming queue

contains the letter to which the event applies.

MailEPPCMsg STRUCTURE

DESCRIPTION

2-228

Field name Data type Description

u. sequenceNumnber | ong The sequence number of the letter that has
either had a change to its attribute values or
that has been deleted.

The kMai | EPPClI nQUpdat e event informs a personal MSAM that the letter flags
attribute for a particular letter has changed, or that the user has deleted the letter.

The nodi fi er s field of the event record contains the slot ID of the slot to which the
letter belongs.

Messaging Service Access Module Reference

SEE ALSO

CHAPTER 2

Messaging Service Access Modules

Upon receipt of this event, the personal MSAM should first call the

Accept Hi ghLevel Event function to get additional information associated
with this event. The sequence number of the affected letter is specified in the
u. sequenceNunber field of the Mai | EPPCMs g structure.

If the MSAM chooses to act on the event immediately, it should call the

PMSAMGet MsgSunmar y function to read the message summary associated with

the letter. If the letter has been deleted by the user, the nsgDel et ed field in the
MBAMMVBE gSunmmar y structure is settot r ue. An MSAM operating in online mode should
delete the letter on its external messaging system. All MSAMSs should delete the message
summary for that letter.

If the letter flags attribute has changed, the nsgUpdat ed field in the MSAMVEgSumar y
structure issettot r ue. An MSAM operating in online mode should update information
about the letter on the external messaging system to maintain consistency with the
changed local information about the letter. All MSAMs should set the nsgUpdat ed field
tof al se.

Alternatively, the personal MSAM can wait until the next time it enumerates the
incoming queue that contains the affected letter. At that time, the MSAM can check for
letters that have been deleted or whose letter flags attribute has been updated. Then it
should take the appropriate action already described here.

The Mai | EPPCMs g structure is described on page 2-113.
The SMCAstructure is described on page 2-114.

A personal MSAM deletes letters and message summaries from an incoming queue by
calling the MSAMDel et e function, described on page 2-202.

The PMSAMCGet MsgSunmmar y function is described on page 2-171.
The MSAMEnuner at e function is described on page 2-138.

Message summaries are described in the section “MSAM Modes of Operation”
beginning on page 2-12.

The MSAMVBgSumar y structure is described on page 2-124.

kMailEPPCMsgOpened

The kMai | EPPCVsgQOpened event tells a personal MSAM that the user wants to open a
letter that does not currently exist in the incoming queue. The personal MSAM should
place the letter into the incoming queue immediately.

Messaging Service Access Module Reference 2-229

CHAPTER 2

Messaging Service Access Modules

EVENT RECORD

Field name Data type Description
wher e | ong The constant kMai | EPPCMsgOpened.
nmodi fiers short The slot ID of the slot whose incoming

queue should contain the letter.

MailEPPCMsg STRUCTURE

Field name Data type Description

u. t heSMCA- >resul t OSErr When the personal MSAM receives the
kMai | EPPCVsgOpened event, this field is
already set to 1. Set this field to the noEr r
result code to acknowledge receiving the
event. If you already know that it is not
possible to retrieve the letter that the user
wants to open, set this field to a result code
that you define.

u. t heSMCA- >user Byt es

| ong The sequence number of the letter
that the user wants to open.

u. t heSMCA- >u. nsgHi nt

| ong A reference value associated with
the letter. You supply this value to the
PMSAMSet St at us function if you need
to report an error.

DESCRIPTION

When a user double-clicks a letter to open it, the IPM Manager checks the associated
message summary in the incoming queue to see if the letter itself is also in the queue.

If only the message summary is in the incoming queue, the IPM Manager sends a

kMai | EPPCMsgOpened event to the personal MSAM. This event notifies the MSAM
that a user wants to open a letter not currently in the incoming queue. Upon receipt of
this event, the personal MSAM should call the Accept Hi ghLevel Event function to
get additional information associated with this event. You should acknowledge the event
by setting the u.t heSMCA- >r esul t field of the Mai | EPPCMs g structure to the noEr r
result code or, if you are aware of a condition that makes it impossible for you to
successfully retrieve the letter, set the field to a result code that you define. If you set the
field to noEr r, you should retrieve the letter from your external messaging system,
translate it, and write it to the incoming queue.

If you have a problem retrieving the letter, you should report the problem by

calling the PMSAMSet St at us function. Set the seqNumand nsgHi nt fields

of the PMBAMBet St at us function parameter block to the values of the

u.t heSMCA- >user Byt es and u.t heSMCA- >u.nmsgHi nt fields of the Mai | EPPCMVsg
structure, respectively. Then set the st at us field of the parameter block to
kPNVBAMSt at usEr r or and call the function.

2-230 Messaging Service Access Module Reference

CHAPTER 2

Messaging Service Access Modules

RESULT CODES
noErr 0 No error

SEE ALSO
The Mai | EPPCMs g structure is described on page 2-113.

The SMCAstructure is described on page 2-114.

kMailEPPCDeleteOutQMsg

The kMai | EPPCDel et eQut QMg event instructs a personal MSAM to delete a message
in its outgoing queue.

EVENT RECORD

Field name Data type Description
wher e | ong The constant kVai | EPPCDel et eQut Qvsg.
nodi fiers short The slot ID of the slot whose outgoing

queue holds the letter to be deleted.

MailEPPCMsg STRUCTURE

Field name Data type Description

u. sequenceNunber | ong The sequence number of the letter that
the user has deleted.

DESCRIPTION
This event tells a personal MSAM to delete, rather than send, a letter in its outgoing
queue. The IPM Manager sends this event in response to a user action. Upon receipt of
this event, the personal MSAM should call the Accept Hi ghLevel Event function to
get the sequence number of the letter.

SEE ALSO

The Mai | EPPCMs g structure is described on page 2-113.
The SMCAstructure is described on page 2-114.

Messaging Service Access Module Reference 2-231

CHAPTER 2

Messaging Service Access Modules

kMailEPPCWakeup

The kMai | EPPCWAkeup event notifies a personal MSAM that a process called the
Mai | Wak eupPMSAMfunction.

EVENT RECORD

Field name Data type Description
wher e | ong The constant kai | EPPCWakeup.
nmodi fiers short Unused; contains 0.

DESCRIPTION

When a process calls the Mai | WakeupPNMSAMfunction, the IPM Manager sends a

kMai | EPPCWakeup event to the personal MSAM specified by the application. Typically,
a process calls the Mai | VakeupPMSAMfunction in response to an external event that
cannot be predicted. For example, a fax modem driver might call the Mai | WakeupPMSAM
function when it has received an incoming call so that the MSAM can put the fax into the
incoming queue.

If the MSAM is not running at the time the Mai | WakeupPMSAMfunction is called, the
IPM Manager launches it.

kMailEPPCLocationChanged

The kMai | EPPCLocat i onChanged event notifies a personal MSAM that the current
system location has changed or that a user has changed the location flags for the
specified slot.

EVENT RECORD

Field name Data type Description
wher e | ong The constant kMai | EPPCLocat i onChanged.
nmodi fiers short The slot ID of the slot to which the event applies.

2-232 Messaging Service Access Module Reference

CHAPTER 2

Messaging Service Access Modules

MailEPPCMsg STRUCTURE

DESCRIPTION

SEE ALSO

Field name Data type Description

u. l ocati onl nf o->l ocati on OCESet upLocati on A value that identifies
the current system
location. It may
contain any integer
value between 0-8.

u. l ocati onl nfo->active Mai | Locat i onFl ags A bit array that defines
whether the slot is
active at a given
location.

The IPM Manager sends akMai | EPPCLocat i onChanged high-level event when either
of two events occurs:

1. The current system location changes. In this case, the IPM Manager sends one
kMai | EPPCLocat i onChanged high-level event for each slot belonging to an MSAM.

2. A user activates or deactivates a mail slot in a given location. In this case, the IPM
Manager updates the location flags in the Mai | St andar dSl ot I nfoAttri bute
structure for that slot and sends a kMai | EPPCLocat i onChanged high-level event to
the MSAM.

The event tells the MSAM the slot to which the event applies, the current system
location, and the location flags for the slot. Upon receipt of a

kMai | EPPCLocat i onChanged high-level event, an MSAM should examine the
location flags. If the location flags show that the slot is inactive at the current location
and the slot was previously active, the MSAM should immediately stop performing any
activity on behalf of the slot, such as downloading letters or attempting to send letters.
If the location flags show that the slot is active at the current location and the slot

was previously inactive, the MSAM should begin acting on behalf of the slot.

The Mai | EPPCMs g structure is described on page 2-113.
The Mai | Locat i onFl ags data type is described on page 2-115.
The OCESet upLocat i on data type is described on page 2-115.

Messaging Service Access Module Reference 2-233

CHAPTER 2

Messaging Service Access Modules

kMailEPPCSendImmediate

The kMai | EPPCSendl rmedi at e event notifies a personal MSAM to send a letter in an
outgoing queue as soon as possible.

EVENT RECORD

Field name Data type Description
wher e | ong The constant kMai | EPPCSendl medi at e.
nmodi fiers short The slot ID of the slot in whose

outgoing queue the letter resides.

MailEPPCMsg STRUCTURE

Field name Data type Description

u. t heSMCA- >resul t CSErr The result of performing the
activity requested by the
kMai | EPPCSendl nmedi at e event.
When the personal MSAM receives the
kMai | EPPCSendl mmedi at e event, this
field is already set to 1. Set this field to
the noEr r result code if you successfully
complete the activity. Otherwise, set this
field to an appropriate result code.

u. t heSMCA- >user Byt es | ong The sequence number of the letter that
the MSAM should attempt to send
immediately.

DESCRIPTION
The IPM Manager sends akMai | EPPCSendl rmedi at e event in response to a user’s
request to send a letter immediately. When a personal MSAM receives the event, it
should attempt immediate delivery of the letter to the external messaging system. The
letter is specified in the Mai | EPPCMVsg.u.t heSMCA- >user Byt es field of the external
messaging system.

After sending the letter, the MSAM should return the noEr r result code in the

u.t heSMCA- >r esul t field of the Mai | EPPCMVs g structure. If it is unable to send the
letter, the MSAM should return an error result code in this field. Typically, the result
codes it returns are kMai | Sl ot Suspended andkMai | TooManyErr .

RESULT CODES
noErr 0 No error
kMai | TooManyErr -15055 MSAM too busy to process event
kMai | Sl ot Suspended -15058 Slot is suspended

2-234 Messaging Service Access Module Reference